Experimental and Theoretical Investigations of Low-Dimensional BiFeO3 System for Photocatalytic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Analysis
2.2. X-ray Diffraction
2.3. Raman Spectroscopy
2.4. Microstructure Analysis
2.5. Optical Properties
2.6. Photoelectrochemical Measurements
2.7. Theoretical Calculations
2.7.1. Electronic Properties
2.7.2. Optical Properties
2.7.3. Photocatalytic Properties
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nozik, A.J. Photoelectrochemistry: Applications to Solar Energy Conversion. Annu. Rev. Phys. Chem. 1978, 29, 189–222. [Google Scholar] [CrossRef]
- Nocera, D.G. Personalized Energy: The Home as a Solar Power Station and Solar Gas Station. ChemSusChem 2009, 2, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K. A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renew. Sustain. Energy Rev. 2007, 11, 401–425. [Google Scholar] [CrossRef]
- Moniruddin, M.; Kudaibergenov, S.; Nuraje, N. Hierarchical Nanoheterostructures for Water Splitting. In Green Photo-Active Nanomaterials: Sustainable Energy and Environmental Remediation; The Royal Society of Chemistry: London, UK, 2016; Chapter 7; pp. 142–167. ISBN 978-1-84973-959-7. [Google Scholar]
- Burda, C.; Lou, Y.; Chen, X.; Samia, A.C.S.; Stout, J.; Gole, J.L. Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Lett. 2003, 3, 1049–1051. [Google Scholar] [CrossRef]
- Islam, S.Z.; Reed, A.; Wanninayake, N.; Kim, D.Y.; Rankin, S.E. Remarkable Enhancement of Photocatalytic Water Oxidation in N2/Ar Plasma Treated, Mesoporous TiO2 Films. J. Phys. Chem. C 2016, 120, 14069–14081. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, S.; Bard, A.J. Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Lett. 2006, 6, 24–28. [Google Scholar] [CrossRef]
- Alexander, F.; AlMheiri, M.; Dahal, P.; Abed, J.; Rajput, N.S.; Aubry, C.; Viegas, J.; Jouiad, M. Water Splitting TiO2 Composite Material Based on Black Silicon as an Efficient Photocatalyst. Sol. Energy Mater. Sol. Cells 2018, 180, 236–242. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Iwase, A.; Kato, H.; Kudo, A. Nanosized Au Particles as an Efficient Cocatalyst for Photocatalytic Overall Water Splitting. Catal. Lett. 2006, 108, 7–10. [Google Scholar] [CrossRef]
- Xu, D.; Yang, S.; Jin, Y.; Chen, M.; Fan, W.; Luo, B.; Shi, W. Ag-Decorated ATaO3 (A = K, Na) Nanocube Plasmonic Photocatalysts with Enhanced Photocatalytic Water-Splitting Properties. Langmuir 2015, 31, 9694–9699. [Google Scholar] [CrossRef] [PubMed]
- Abed, J.; Rajput, N.S.; Moutaouakil, A.E.; Jouiad, M. Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting. Nanomaterials 2020, 10, 2260. [Google Scholar] [CrossRef] [PubMed]
- Rajput, N.S.; Shao-Horn, Y.; Li, X.-H.; Kim, S.-G.; Jouiad, M. Investigation of Plasmon Resonance in Metal/Dielectric Nanocavities for High-Efficiency Photocatalytic Device. Phys. Chem. Chem. Phys. 2017, 19, 16989–16999. [Google Scholar] [CrossRef]
- Abed, J.; Alexander, F.; Taha, I.; Rajput, N.; Aubry, C.; Jouiad, M. Investigation of Broadband Surface Plasmon Resonance of Dewetted Au Structures on TiO2 by Aperture-Probe SNOM and FDTD Simulations. Plasmonics 2019, 14, 205–218. [Google Scholar] [CrossRef]
- Hu, S.; Lewis, N.S.; Ager, J.W.; Yang, J.; McKone, J.R.; Strandwitz, N.C. Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators. J. Phys. Chem. C 2015, 119, 24201–24228. [Google Scholar] [CrossRef]
- Nuraje, N.; Lei, Y.; Belcher, A. Virus-Templated Visible Spectrum Active Perovskite Photocatalyst. Catal. Commun. 2014, 44, 68–72. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef]
- Grinberg, I.; West, D.V.; Torres, M.; Gou, G.; Stein, D.M.; Wu, L.; Chen, G.; Gallo, E.M.; Akbashev, A.R.; Davies, P.K.; et al. Perovskite Oxides for Visible-Light-Absorbing Ferroelectric and Photovoltaic Materials. Nature 2013, 503, 509–512. [Google Scholar] [CrossRef]
- Young, S.M.; Rappe, A.M. First Principles Calculation of the Shift Current Photovoltaic Effect in Ferroelectrics. Phys. Rev. Lett. 2012, 109, 116601. [Google Scholar] [CrossRef]
- Li, H.; Zhu, J.; Wu, Q.; Zhuang, J.; Guo, H.; Ma, Z.; Ye, Y. Enhanced Photovoltaic Properties of PbTiO3-Based Ferroelectric Thin Films Prepared by a Sol-Gel Process. Ceram. Int. 2017, 43, 13063–13068. [Google Scholar] [CrossRef]
- Gao, F.; Chen, X.Y.; Yin, K.B.; Dong, S.; Ren, Z.F.; Yuan, F.; Yu, T.; Zou, Z.G.; Liu, J.-M. Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles. Adv. Mater. 2007, 19, 2889–2892. [Google Scholar] [CrossRef]
- Soltani, T.; Entezari, M.H. Photolysis and Photocatalysis of Methylene Blue by Ferrite Bismuth Nanoparticles under Sunlight Irradiation. J. Mol. Catal. A Chem. 2013, 377, 197–203. [Google Scholar] [CrossRef]
- Ponraj, C.; Vinitha, G.; Daniel, J. A Review on the Visible Light Active BiFeO3 Nanostructures as Suitable Photocatalyst in the Degradation of Different Textile Dyes. Environ. Nanotechnol. Monit. Manag. 2017, 7, 110–120. [Google Scholar] [CrossRef]
- Mostafaloo, R.; Asadi-Ghalhari, M.; Izanloo, H.; Zayadi, A. Photocatalytic Degradation of Ciprofloxacin Antibiotic from Aqueous Solution by BiFeO3 Nanocomposites Using Response Surface Methodology. Glob. J. Environ. Sci. Manag. 2020, 6, 191–202. [Google Scholar] [CrossRef]
- Daub, N.A.; Aziz, F.; Mohd Zain, N.A.; Lau, W.J.; Yusof, N.; Salleh, W.N.W.; Jaafar, J. Photocatalytic Disinfection of Bacteria under Visible Light Irradiation by BiFeO3 Photocatalyst. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1142, 012002. [Google Scholar] [CrossRef]
- Deng, J.; Banerjee, S.; Mohapatra, S.K.; Smith, Y.R.; Misra, M. Bismuth Iron Oxide Nanoparticles as Photocatalyst for Solar Hydrogen Generation from Water. J. Fundam. Renew. Energy Appl. 2011, 1. [Google Scholar] [CrossRef]
- Lan, S.; Yu, C.; Sun, F.; Chen, Y.; Chen, D.; Mai, W.; Zhu, M. Tuning Piezoelectric Driven Photocatalysis by La-Doped Magnetic BiFeO3-Based Multiferroics for Water Purification. Nano Energy 2022, 93, 106792. [Google Scholar] [CrossRef]
- Nkwachukwu, O.V.; Muzenda, C.; Ojo, B.O.; Zwane, B.N.; Koiki, B.A.; Orimolade, B.O.; Nkosi, D.; Mabuba, N.; Arotiba, O.A. Photoelectrochemical Degradation of Organic Pollutants on a La3+ Doped BiFeO3 Perovskite. Catalysts 2021, 11, 1069. [Google Scholar] [CrossRef]
- Dhanalakshmi, R.; Muneeswaran, M.; Shalini, K.; Giridharan, N.V. Enhanced Photocatalytic Activity of La-Substituted BiFeO3 Nanostructures on the Degradation of Phenol Red. Mater. Lett. 2016, 165, 205–209. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, D.; Wang, S.; Zhang, N.; Qin, L.; Huang, Y. Facile Synthesis of Sm-Doped BiFeO3 Nanoparticles for Enhanced Visible Light Photocatalytic Performance. Mater. Sci. Eng. B 2017, 220, 1–12. [Google Scholar] [CrossRef]
- Xiao, S.; Fakhri, A.; Janani, B.J. Synthesis of Spinel Tin Ferrite Decorated on Bismuth Ferrite Nanostructures for Synergetic Photocatalytic, Superior Drug Delivery, and Antibacterial Efficiencies. Surf. Interfaces 2021, 27, 101490. [Google Scholar] [CrossRef]
- Bera, S.; Ghosh, S.; Shyamal, S.; Bhattacharya, C.; Basu, R.N. Photocatalytic Hydrogen Generation Using Gold Decorated BiFeO3 Heterostructures as an Efficient Catalyst under Visible Light Irradiation. Sol. Energy Mater. Sol. Cells 2019, 194, 195–206. [Google Scholar] [CrossRef]
- Jaffari, Z.H.; Lam, S.-M.; Sin, J.-C.; Zeng, H. Boosting Visible Light Photocatalytic and Antibacterial Performance by Decoration of Silver on Magnetic Spindle-like Bismuth Ferrite. Mater. Sci. Semicond. Process. 2019, 101, 103–115. [Google Scholar] [CrossRef]
- Niu, F.; Chen, D.; Qin, L.; Zhang, N.; Wang, J.; Chen, Z.; Huang, Y. Facile Synthesis of Highly Efficient p–n Heterojunction CuO/BiFeO3 Composite Photocatalysts with Enhanced Visible-Light Photocatalytic Activity. ChemCatChem 2015, 7, 3279–3289. [Google Scholar] [CrossRef]
- Bargozideh, S.; Tasviri, M.; Shekarabi, S.; Daneshgar, H. Magnetic BiFeO3 Decorated UiO-66 as a p–n Heterojunction Photocatalyst for Simultaneous Degradation of a Binary Mixture of Anionic and Cationic Dyes. New J. Chem. 2020, 44, 13083–13092. [Google Scholar] [CrossRef]
- Duan, F.; Ma, Y.; Lv, P.; Sheng, J.; Lu, S.; Zhu, H.; Du, M.; Chen, X.; Chen, M. Oxygen Vacancy-Enriched Bi2O3/BiFeO3 p-n Heterojunction Nanofibers with Highly Efficient Photocatalytic Activity under Visible Light Irradiation. Appl. Surf. Sci. 2021, 562, 150171. [Google Scholar] [CrossRef]
- Maurya, D.; Thota, H.; Nalwa, K.S.; Garg, A. BiFeO3 Ceramics Synthesized by Mechanical Activation Assisted versus Conventional Solid-State-Reaction Process: A Comparative Study. J. Alloys Compd. 2009, 477, 780–784. [Google Scholar] [CrossRef]
- Valant, M.; Axelsson, A.-K.; Alford, N. Peculiarities of a Solid-State Synthesis of Multiferroic Polycrystalline BiFeO3. Chem. Mater. 2007, 19, 5431–5436. [Google Scholar] [CrossRef]
- Sharma, P.; Diwan, P.K.; Pandey, O.P. Impact of Environment on the Kinetics Involved in the Solid-State Synthesis of Bismuth Ferrite. Mater. Chem. Phys. 2019, 233, 171–179. [Google Scholar] [CrossRef]
- Palai, R.; Katiyar, R.S.; Schmid, H.; Tissot, P.; Clark, S.J.; Robertson, J.; Redfern, S.A.T.; Catalan, G.; Scott, J.F. β Phase and γ-β Metal-Insulator Transition in Multiferroic BiFeO3. Phys. Rev. B 2008, 77, 14110. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Islam, M.D.F.; Mahbub, R.; Hossain, M.D.S.; Hakim, M.A. A Soft Chemical Route to the Synthesis of BiFeO3 Nanoparticles with Enhanced Magnetization. Mater. Res. Bull. 2016, 73, 179–186. [Google Scholar] [CrossRef]
- Achenbach, G.D.; James, W.J.; Gerson, R. Preparation of Single-Phase Polycrystalline BiFeO3. J. Am. Ceram. Soc. 1967, 50, 437. [Google Scholar] [CrossRef]
- Hlinka, J.; Pokorny, J.; Karimi, S.; Reaney, I.M. Angular Dispersion of Oblique Phonon Modes in BiFeO3 from Micro-Raman Scattering. Phys. Rev. B 2011, 83, 20101. [Google Scholar] [CrossRef]
- Hermet, P.; Goffinet, M.; Kreisel, J.; Ghosez, P.H. Raman and Infrared Spectra of Multiferroic Bismuth Ferrite from First Principles. Phys. Rev. B 2007, 75, 220102. [Google Scholar] [CrossRef]
- Bielecki, J.; Svedlindh, P.; Tibebu, D.T.; Cai, S.; Eriksson, S.-G.; Börjesson, L.; Knee, C.S. Structural and Magnetic Properties of Isovalently Substituted Multiferroic BiFeO3: Insights from Raman Spectroscopy. Phys. Rev. B 2012, 86, 184422. [Google Scholar] [CrossRef] [Green Version]
- Sinha, K.; Mascarenhas, A.; Horner, G.S.; Bertness, K.A.; Kurtz, S.R.; Olson, J.M. Raman Line-Shape Analysis of Random and Spontaneously Ordered GaInP2 Alloy. Phys. Rev. B 1994, 50, 7509–7513. [Google Scholar] [CrossRef]
- Belhadi, J.; Yousfi, S.; Bouyanfif, H.; El Marssi, M. Structural Investigation of (111) Oriented (BiFeO3)(1−x)Λ/(LaFeO3)XΛ Superlattices by X-Ray Diffraction and Raman Spectroscopy. J. Appl. Phys. 2018, 123, 154103. [Google Scholar] [CrossRef]
- Fukumura, H.; Harima, H.; Kisoda, K.; Tamada, M.; Noguchi, Y.; Miyayama, M. Raman Scattering Study of Multiferroic BiFeO3 Single Crystal. J. Magn. Magn. Mater. 2007, 310, e367–e369. [Google Scholar] [CrossRef]
- Chang, L.-Y.; Tu, C.-S.; Chen, P.-Y.; Chen, C.-S.; Schmidt, V.H.; Wei, H.-H.; Huang, D.-J.; Chan, T.-S. Raman Vibrations and Photovoltaic Conversion in Rare Earth Doped (Bi0.93RE0.07)FeO3 (RE=Dy, Gd, Eu, Sm) Ceramics. Ceram. Int. 2016, 42, 834–842. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, B.; Dixit, A.; Naik, R.; Lawes, G.; Rao, M.S.R. Charge Transfer and Electronic Transitions in Polycrystalline BiFeO3. Phys. Rev. B 2010, 82, 12102. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Mocherla, P.S.V.; Karthik, C.; Ubic, R.; Ramachandra Rao, M.S.; Sudakar, C. Tunable Bandgap in BiFeO3 Nanoparticles: The Role of Microstrain and Oxygen Defects. Appl. Phys. Lett. 2013, 103, 22910. [Google Scholar] [CrossRef]
- Radmilovic, A.; Smart, T.J.; Ping, Y.; Choi, K.-S. Combined Experimental and Theoretical Investigations of N-Type BiFeO3 for Use as a Photoanode in a Photoelectrochemical Cell. Chem. Mater. 2020, 32, 3262–3270. [Google Scholar] [CrossRef]
- Uosaki, K.; Kita, H. Effects of the Helmholtz Layer Capacitance on the Potential Distribution at Semiconductor/Electrolyte Interface and the Linearity of the Mott-Schottky Plot. J. Electrochem. Soc. 1983, 130, 895–897. [Google Scholar] [CrossRef] [Green Version]
- Basic Theories of Semiconductor Electrochemistry. In Electrochemistry of Silicon and Its Oxide; Zhang, X.G. (Ed.) Springer: Boston, MA, USA, 2001; pp. 1–43. ISBN 978-0-306-47921-2. [Google Scholar]
- Kalanur, S.S. Structural, Optical, Band Edge and Enhanced Photoelectrochemical Water Splitting Properties of Tin-Doped WO3. Catalysts 2019, 9, 456. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-M.; Huang, S.-J.; Yan, Y.-J.; Yu, S.-H.; Chou, M.; Yang, H.-W.; Chang, Y.-S.; Chen, R.-S. Highly Responsive Photoconductance in a Sb2SeTe2 Topological Insulator Nanosheet at Room Temperature. RSC Adv. 2017, 7, 39057–39062. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Luo, L.-B.; Zhang, T.-F.; Liu, Y.-H.; Yu, Y.-Q.; Lu, R.; Qiu, H.-L.; Li, Z.-J.; Andrew Huang, J.C. Optoelectronic Characteristics of a near Infrared Light Photodetector Based on a Topological Insulator Sb2Te3 Film. J. Mater. Chem. C 2015, 3, 9154–9160. [Google Scholar] [CrossRef]
- Carles, D.; Lefrancois, G.; Vautier, C. Influence de l’intensite lumineuse sur la photoconduction des couches de selenium amorphe. Le J. De Phys. Colloq. 1982, 43, C9-327–C9-330. [Google Scholar] [CrossRef]
- Diéguez, O.; González-Vázquez, O.E.; Wojdeł, J.C.; Íñiguez, J. First-Principles Predictions of Low-Energy Phases of Multiferroic BiFeO3. Phys. Rev. B 2011, 83, 94105. [Google Scholar] [CrossRef] [Green Version]
- Hatt, A.J.; Spaldin, N.A.; Ederer, C. Strain-Induced Isosymmetric Phase Transition in BiFeO3. Phys. Rev. B 2010, 81, 54109. [Google Scholar] [CrossRef] [Green Version]
- Koller, D.; Tran, F.; Blaha, P. Merits and Limits of the Modified Becke-Johnson Exchange Potential. Phys. Rev. B 2011, 83, 195134. [Google Scholar] [CrossRef] [Green Version]
- Ihlefeld, J.F.; Podraza, N.J.; Liu, Z.K.; Rai, R.C.; Xu, X.; Heeg, T.; Chen, Y.B.; Li, J.; Collins, R.W.; Musfeldt, J.L.; et al. Optical Band Gap of BiFeO3 Grown by Molecular-Beam Epitaxy. Appl. Phys. Lett. 2008, 92, 142908. [Google Scholar] [CrossRef] [Green Version]
- Moubah, R.; Schmerber, G.; Rousseau, O.; Colson, D.; Viret, M. Photoluminescence Investigation of Defects and Optical Band Gap in Multiferroic BiFeO3 Single Crystals. Appl. Phys. Express 2012, 5, 035802. [Google Scholar] [CrossRef]
- Sando, D.; Carrétéro, C.; Grisolia, M.N.; Barthélémy, A.; Nagarajan, V.; Bibes, M. Revisiting the Optical Band Gap in Epitaxial BiFeO3 Thin Films. Adv. Opt. Mater. 2018, 6, 1700836. [Google Scholar] [CrossRef]
- Khan, H.A.A.; Ullah, S.; Rehman, G.; Khan, S.; Ahmad, I. First Principle Study of Band Gap Nature, Spontaneous Polarization, Hyperfine Field and Electric Field Gradient of Desirable Multiferroic Bismuth Ferrite (BiFeO3). J. Phys. Chem. Solids 2021, 148, 109737. [Google Scholar] [CrossRef]
- Hasan, M.; Basith, M.A.; Zubair, M.A.; Hossain, M.D.S.; Mahbub, R.; Hakim, M.A.; Islam, M.D.F. Saturation Magnetization and Band Gap Tuning in BiFeO3 Nanoparticles via Co-Substitution of Gd and Mn. J. Alloys Compd. 2016, 687, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.J.; Kivinen, J.; Zaporzan, B.; Curiel, L.; Pichardo, S.; Rubel, O. BerryPI: A Software for Studying Polarization of Crystalline Solids with WIEN2k Density Functional All-Electron Package. Comput. Phys. Commun. 2013, 184, 647–651. [Google Scholar] [CrossRef]
- Yang, F.; Li, M.; Li, L.; Wu, P.; Pradal-Velázquez, E.; Sinclair, D.C. Defect chemistry and electrical properties of sodium bismuth titanate perovskite. J. Mater. Chem. A 2018, 6, 5243–5254. [Google Scholar] [CrossRef] [Green Version]
- Karatza, D.; Konstantopoulos, C.; Chianese, S.; Diplas, S.; Svec, P.; Hristoforou, E.; Musmarra, D. Hydrogen Production through Water Splitting at Low Temperature over Fe3O4 Pellet: Effects of Electric Power, Magnetic Field, and Temperature. Fuel Process. Technol. 2021, 211, 106606. [Google Scholar] [CrossRef]
- Changsheng, L.; Hao, W.; Tao, Z. Hard Magnetization Direction and Its Relation with Permeability of Conventional Grain-Oriented Electrical Steel. Rare Met. Mater. Eng. 2016, 45, 1369–1373. [Google Scholar] [CrossRef]
- Kuzmenko, A.M.; Szaller, D.; Kain, T.H.; Dziom, V.; Weymann, L.; Shuvaev, A.; Pimenov, A.; Mukhin, A.A.; Ivanov, V.Y.; Gudim, I.A.; et al. Switching of Magnons by Electric and Magnetic Fields in Multiferroic Borates. Phys. Rev. Lett. 2018, 120, 27203. [Google Scholar] [CrossRef] [Green Version]
- H’Mŏk, H.; Martínez Aguilar, E.; Antúnez García, J.; Ribas Ariño, J.; Mestres, L.; Alemany, P.; Galván, D.H.; Siqueiros Beltrones, J.M.; Raymond Herrera, O. Theoretical Justification of Stable Ferromagnetism in Ferroelectric BiFeO3 by First-Principles. Comput. Mater. Sci. 2019, 164, 66–73. [Google Scholar] [CrossRef]
- Belhadi, J.; Ruvalcaba, J.; Yousfi, S.; el Marssi, M.; Cordova, T.; Matzen, S.; Lecoeur, P.; Bouyanfif, H. Conduction Mechanism and Switchable Photovoltaic Effect in (1 1 1) Oriented BiFe0.95Mn0.05O3 Thin Film. J. Phys. Condens. Matter 2019, 31, 275701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higuchi, T.; Liu, Y.-S.; Yao, P.; Glans, P.-A.; Guo, J.; Chang, C.; Wu, Z.; Sakamoto, W.; Itoh, N.; Shimura, T.; et al. Electronic Structure of Multiferroic BiFeO3 by Resonant Soft X-ray Emission Spectroscopy. Phys. Rev. B 2008, 78, 85106. [Google Scholar] [CrossRef] [Green Version]
- Béa, H.; Bibes, M.; Fusil, S.; Bouzehouane, K.; Jacquet, E.; Rode, K.; Bencok, P.; Barthélémy, A. Investigation on the Origin of the Magnetic Moment of BiFeO3 Thin Films by Advanced X-ray Characterizations. Phys. Rev. B 2006, 74, 20101. [Google Scholar] [CrossRef] [Green Version]
- Bilc, D.I.; Orlando, R.; Shaltaf, R.; Rignanese, G.-M.; Íñiguez, J.; Ghosez, P.H. Hybrid Exchange-Correlation Functional for Accurate Prediction of the Electronic and Structural Properties of Ferroelectric Oxides. Phys. Rev. B 2008, 77, 165107. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.J.; Robertson, J. Energy Levels of Oxygen Vacancies in BiFeO3 by Screened Exchange. Appl. Phys. Lett. 2009, 94, 022902. [Google Scholar] [CrossRef] [Green Version]
- Stroppa, A.; Picozzi, S. Hybrid Functional Study of Proper and Improper Multiferroics. Phys. Chem. Chem. Phys. 2010, 12, 5405–5416. [Google Scholar] [CrossRef] [Green Version]
- Neaton, J.B.; Ederer, C.; Waghmare, U.V.; Spaldin, N.A.; Rabe, K.M. First-Principles Study of Spontaneous Polarization in Multiferroic BiFeO3. Phys. Rev. B 2005, 71, 14113. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, K.A.; Wadnerkar, N.; English, N.J.; Rahman, M.; Dowling, D. Photo-Active and Optical Properties of Bismuth Ferrite (BiFeO3): An Experimental and Theoretical Study. Chem. Phys. Lett. 2013, 572, 78–84. [Google Scholar] [CrossRef]
- Tran, F.; Blaha, P.; Schwarz, K. Band Gap Calculations with Becke–Johnson Exchange Potential. J. Phys. Condens. Matter 2007, 19, 196208. [Google Scholar] [CrossRef]
- Ismail, A.A.; Bahnemann, D.W. Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review. Sol. Energy Mater. Sol. Cells 2014, 128, 85–101. [Google Scholar] [CrossRef]
- Kim, J.H.; Hansora, D.; Sharma, P.; Jang, J.W.; Lee, J.S. Toward Practical Solar Hydrogen Production-an Artificial Photosynthetic Leaf-to-Farm Challenge. Chem. Soc. Rev. 2019, 48, 1908–1971. [Google Scholar] [CrossRef]
- Chen, S.; Takata, T.; Domen, K. Particulate Photocatalysts for Overall Water Splitting. Nat. Rev. Mater. 2017, 2, 17050. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, N.; Xu, S.; Li, Z.; Liu, X.; Cheng, T.; Han, A.; Lv, H.; Sun, W.; Hou, Y. Towards High Visible Light Photocatalytic Activity in Rare Earth and N Co-Doped SrTiO3: A First Principles Evaluation and Prediction. RSC Adv. 2017, 7, 16282–16289. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-Z.; Chen, H.; Luo, X.-K.; Yuan, H.-K.; Kuang, A.-L. Bandgap Engineering of SrTiO3/NaTaO3 Heterojunction for Visible Light Photocatalysis. Int. J. Quantum Chem. 2017, 117, e25424. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorg. Chem. 1988, 27, 734–740. [Google Scholar] [CrossRef]
- Schwarz, K.; Blaha, P.; Madsen, G.K.H. Electronic Structure Calculations of Solids Using the WIEN2k Package for Material Sciences. Comput. Phys. Commun. 2002, 147, 71–76. [Google Scholar] [CrossRef]
- Tran, F.; Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benyoussef, M.; Saitzek, S.; Rajput, N.S.; Courty, M.; El Marssi, M.; Jouiad, M. Experimental and Theoretical Investigations of Low-Dimensional BiFeO3 System for Photocatalytic Applications. Catalysts 2022, 12, 215. https://doi.org/10.3390/catal12020215
Benyoussef M, Saitzek S, Rajput NS, Courty M, El Marssi M, Jouiad M. Experimental and Theoretical Investigations of Low-Dimensional BiFeO3 System for Photocatalytic Applications. Catalysts. 2022; 12(2):215. https://doi.org/10.3390/catal12020215
Chicago/Turabian StyleBenyoussef, Manal, Sébastien Saitzek, Nitul S. Rajput, Matthieu Courty, Mimoun El Marssi, and Mustapha Jouiad. 2022. "Experimental and Theoretical Investigations of Low-Dimensional BiFeO3 System for Photocatalytic Applications" Catalysts 12, no. 2: 215. https://doi.org/10.3390/catal12020215
APA StyleBenyoussef, M., Saitzek, S., Rajput, N. S., Courty, M., El Marssi, M., & Jouiad, M. (2022). Experimental and Theoretical Investigations of Low-Dimensional BiFeO3 System for Photocatalytic Applications. Catalysts, 12(2), 215. https://doi.org/10.3390/catal12020215