Noble Metal Promoted TiO2 from Silver-Waste Valorisation: Synergism between Ag and Au
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Results: Photocatalytic Oxidation of Ethanol
2.2. Characterization Analyses
2.2.1. XRD Analyses
2.2.2. TEM and STEM-EDS Measurements
2.2.3. XPS Analyses
2.2.4. Diffuse Reflectance Spectroscopy (DRS)
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the Catalysts
3.2.1. Synthesis of Ag-TiO2
3.2.2. Synthesis of Au/Ag-TiO2
3.3. Catalysts Characterization
3.4. Photocatalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sreeprasad, T.S.; Pradeep, T. Noble Metal Nanoparticles BT—Springer Handbook of Nanomaterials; Vajtai, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 303–388. ISBN 978-3-642-20595-8. [Google Scholar]
- Jin, S.; Li, Y.; Xie, H.; Chen, X.; Tian, T.; Zhao, X. Highly selective photocatalytic and sensing properties of 2D-ordered dome films of nano titania and nano Ag2+ doped titania. J. Mater. Chem. 2012, 22, 1469–1476. [Google Scholar] [CrossRef]
- Hou, W.; Cronin, S.B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
- Tobaldi, D.M.; Piccirillo, C.; Pullar, R.C.; Gualtieri, A.F.; Seabra, M.P.; Castro, P.M.L.; Labrincha, J.A. Silver-Modified Nano-titania as an Antibacterial Agent and Photocatalyst. J. Phys. Chem. C 2014, 118, 4751–4766. [Google Scholar] [CrossRef]
- Cushing, S.K.; Wu, N. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion. J. Phys. Chem. Lett. 2016, 7, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Endo-Kimura, M.; Janczarek, M.; Bielan, Z.; Zhang, D.; Wang, K.; Markowska-Szczupak, A.; Kowalska, E. Photocatalytic and antimicrobial properties of Ag2O/TiO2 heterojunction. ChemEngineering 2019, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Goswami, A.; Asefa, T. Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide. J. Am. Chem. Soc. 2013, 135, 17242–17245. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoval, J.V.; Lee, J.; Gorer, S.; Penner, R.M. Electrochemical Preparation of Platinum Nanocrystallites with Size Selectivity on Basal Plane Oriented Graphite Surfaces. J. Phys. Chem. B 1998, 102, 1166–1175. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, L.; Blanco, M.C.; López-Quintela, M.A. Electrochemical Synthesis of Silver Nanoparticles. J. Phys. Chem. B 2000, 104, 9683–9688. [Google Scholar] [CrossRef]
- Yin, B.; Ma, H.; Wang, S.; Chen, S. Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J. Phys. Chem. B 2003, 107, 8898–8904. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Herrmann, J.-M. Photocatalysis. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 1–44. [Google Scholar] [CrossRef]
- Stucchi, M.; Bianchi, C.L.; Pirola, C.; Vitali, S.; Cerrato, G.; Morandi, S.; Argirusis, C.; Sourkouni, G.; Sakkas, P.M.; Capucci, V. Surface decoration of commercial micro-sized TiO2 by means of high energy ultrasound: A way to enhance its photocatalytic activity under visible light. Appl. Catal. B Environ. 2014, 178, 124–132. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; He, Q.; Tian, Q.; Wu, W.; Xiao, X.; Jiang, C. Catalytic Application and Mechanism Studies of Argentic Chloride Coupled Ag/Au Hollow Heterostructures: Considering the Interface Between Ag/Au Bimetals. Nanoscale Res. Lett. 2019, 14, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Zhang, Q.; Fu, Z.W.; Qin, D. Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability. ACS Appl. Mater. Interfaces 2014, 6, 3750–3757. [Google Scholar] [CrossRef] [PubMed]
- Slater, T.J.A.; Macedo, A.; Schroeder, S.L.M.; Burke, M.G.; O’Brien, P.; Camargo, P.H.C.; Haigh, S.J. Correlating Catalytic Activity of Ag–Au Nanoparticles with 3D Compositional Variations. Nano Lett. 2014, 14, 1921–1926. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Wang, Q.; Zheng, W.; Cui, X. Highly Ordered Periodic Au/TiO2 Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation. ACS Appl. Mater. Interfaces 2016, 8, 5273–5279. [Google Scholar] [CrossRef]
- Tahir, M.; Tahir, B.; Amin, N.A.S. Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl. Catal. B Environ. 2017, 204, 548–560. [Google Scholar] [CrossRef]
- Nadeem, A.M.; Muir, J.M.R.; Connelly, K.A.; Adamson, B.T.; Metson, B.J.; Idriss, H. Ethanol photo-oxidation on a rutile TiO2(110) single crystal surface. Phys. Chem. Chem. Phys. 2011, 13, 7637–7643. [Google Scholar] [CrossRef]
- Lewis, A.C.; Hopkins, J.R.; Carslaw, D.C.; Hamilton, J.F.; Nelson, B.S.; Stewart, G.; Dernie, J.; Passant, N.; Murrells, T. An increasing role for solvent emissions and implications for future measurements of volatile organic compounds: Solvent emissions of VOCs. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190328. [Google Scholar] [CrossRef]
- Stucchi, M.; Boffito, D.C.; Pargoletti, E.; Cerrato, G.; Bianchi, C.L.; Cappelletti, G. Nano-MnO2 decoration of TiO2 microparticles to promote gaseous ethanol visible photoremoval. Nanomaterials 2018, 8, 686. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, C.L.; Pirola, C.; Galli, F.; Stucchi, M.; Morandi, S.; Cerrato, G.; Capucci, V. Nano and micro-TiO2 for the photodegradation of ethanol: Experimental data and kinetic modelling. RSC Adv. 2015, 5, 53419–53425. [Google Scholar] [CrossRef] [Green Version]
- Pargoletti, E.; Daniela, M.; Cappelletti, G. Photocatalytic removal of gaseous ethanol, acetaldehyde and acetic acid: From a fundamental approach to real cases. Int. Mater. Rev. 2022, 1–34. [Google Scholar] [CrossRef]
- Farfan-Arribas, E.; Madix, R.J. Role of Defects in the Adsorption of Aliphatic Alcohols on the TiO2(110) Surface. J. Phys. Chem. B 2002, 106, 10680–10692. [Google Scholar] [CrossRef]
- Stucchi, M.; Bianchi, C.L.; Argirusis, C.; Pifferi, V.; Neppolian, B.; Cerrato, G.; Boffito, D.C. Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light. Ultrason. Sonochemistry 2018, 40, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Barr, T.L.; Seal, S. Nature of the use of adventitious carbon as a binding energy standard. J. Vac. Sci. Technol. A Vac. Surf. Film. 1995, 13, 1239–1246. [Google Scholar] [CrossRef]
- Bukhtiyarov, A.V.; Prosvirin, I.P.; Bukhtiyarov, V.I. XPS/STM study of model bimetallic Pd–Au/HOPG catalysts. Appl. Surf. Sci. 2016, 367, 214–221. [Google Scholar] [CrossRef]
- Meroni, D.; Bianchi, C.L.; Boffito, D.C.; Cerrato, G.; Bruni, A.; Sartirana, M.; Falletta, E. Piezo-enhanced photocatalytic diclofenac mineralization over ZnO. Ultrason. Sonochemistry 2021, 75, 105615. [Google Scholar] [CrossRef]
- El-Ghmari, B.; Farah, H.; Ech-Chahad, A. A new approach for the green biosynthesis of Silver Oxide nanoparticles Ag2O, characterization and catalytic application. Bull. Chem. React. Eng. Catal. 2021, 16, 651–660. [Google Scholar] [CrossRef]
- Panpa, W.; Jinawath, S.; Kashima, D.P. Ag2O-Ag/CAC/SiO2 composite for visible light photocatalytic degradation of cumene hydroperoxide in water. J. Mater. Res. Technol. 2019, 8, 5180–5193. [Google Scholar] [CrossRef]
- Ohko, Y.; Tatsuma, T.; Fujii, T.; Naoi, K.; Niwa, C.; Kubota, Y.; Fujishima, A. Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2003, 2, 29–31. [Google Scholar] [CrossRef]
- Kawahara, K.; Suzuki, K.; Ohko, Y.; Tatsuma, T. Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism. Phys. Chem. Chem. Phys. 2005, 7, 3851–3855. [Google Scholar] [CrossRef] [PubMed]
- Tatsuma, T. Plasmonic photoelectrochemistry: Functional materials based on photoinduced reversible redox reactions of metal nanoparticles. Bull. Chem. Soc. Jpn. 2013, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, C.L.; Pirola, C.; Galli, F.; Cerrato, G.; Morandi, S.; Capucci, V. Pigmentary TiO2: A challenge for its use as photocatalyst in NOx air purification. Chem. Eng. J. 2015, 261, 76–82. [Google Scholar] [CrossRef]
- Dondi, R.; Su, W.; Griffith, G.A.; Clark, G.; Burley, G.A. Highly size- and shape-controlled synthesis of silver nanoparticles via a templated tollens reaction. Small 2012, 8, 770–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa, A.; Wang, D.; Veith, G.M.; Vindigni, F.; Prati, L. Sol immobilization technique: A delicate balance between activity, selectivity and stability of gold catalysts. Catal. Sci. Technol. 2013, 3, 3036–3041. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Ben Amar, M.; Yang, D.; Brinza, O.; Kanaev, A.; Duten, X.; Vega-González, A. Plasma catalysis application of gold nanoparticles for acetaldehyde decomposition. Chem. Eng. J. 2018, 347, 913–922. [Google Scholar] [CrossRef]
Sample | CH3CH2OH Conv. % | CH3CHO Conv. % |
---|---|---|
3%Ag-TiO2 | 87.0 | 0.0 |
0.5%Au-TiO2 | 98.0 | 81.7 |
0.5%Au/3%Ag-TiO2 | 100.0 | 100.0 |
2%Au/3%Ag-TiO2 | 98.0 | 98.0 |
Sample | C 1s | Ti 2p3/2 | O 1s | Ag 3d5/2 | Au 4f7/2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
B.E. (eV) | At. % | B.E. (eV) | At. % | B.E. (eV) | At. % | B.E. (eV) | At. % | B.E. (eV) | At. % | |
TiO2 | 284.6 | 20.0 | 458.5 | 18.8 | 529.5 | 56.8 | - | - | - | - |
3%Ag-TiO2 | 284.6 | 22.1 | 458.1 | 12.3 | 529.5 | 49.3 | 367.3 | 0.21 | - | - |
0.5%Au-TiO2 | 284.6 | 28.9 | 458.5 | 17.4 | 529.8 | 50.9 | - | - | 83.0 | 0.37 |
0.5%Au/3%Ag-TiO2 | 284.6 | 36.6 | 458.6 | 15.3 | 529.9 | 44.6 | 1.77 | 0.98 |
Catalyst | Ag 3d | Au 4f | |||
---|---|---|---|---|---|
Ag0 | Ag+ | Au0 | Au+ | ||
3%Ag-TiO2 | B.E. (eV) | n.d. | 367.0 | - | - |
% | - | 100 | - | - | |
0.5%Au-TiO2 | B.E. (eV) | - | - | 83.6 | 85.0 |
% | - | - | 91.5 | 8.5 | |
0.5%Au/3%Ag-TiO2 | B.E. (eV) | 368.7 | 367.5 | 83.4 | 84.7 |
% | 14.3 | 85.7 | 85.7 | 14.3 |
Specific Surface Area (m2 g−1) | Particle Size Range (nm) | OH/Otot (XPS) | Band Gap (eV) |
---|---|---|---|
12 ± 2 | 110–130 | 0.32 | 3.15 |
Ag | As | Cu | Fe | Ni | Pb | Zn | SO42− | Others | |
---|---|---|---|---|---|---|---|---|---|
mg/L | 327,760 | 12.2 | 4087.2 | 29.9 | 36.4 | 19.0 | 34.3 | 75.0 | <2 |
n. | Sample Name | Metal Precursors | Support |
---|---|---|---|
1 | 3%Ag-TiO2 | Ag-enriched wastewater | Pristine TiO2 |
2 | 0.5%Au-TiO2 | HAuCl4 (by sol-PVA) | Pristine TiO2 |
3 | 0.5%Au/3%Ag-TiO2 | HAuCl4 (by sol-PVA) | 3%Ag-TiO2 |
4 | 2%Au/3%Ag-TiO2 | HAuCl4 (by sol-PVA) | 3%Ag-TiO2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stucchi, M.; Meroni, D.; Safran, G.; Villa, A.; Bianchi, C.L.; Prati, L. Noble Metal Promoted TiO2 from Silver-Waste Valorisation: Synergism between Ag and Au. Catalysts 2022, 12, 235. https://doi.org/10.3390/catal12020235
Stucchi M, Meroni D, Safran G, Villa A, Bianchi CL, Prati L. Noble Metal Promoted TiO2 from Silver-Waste Valorisation: Synergism between Ag and Au. Catalysts. 2022; 12(2):235. https://doi.org/10.3390/catal12020235
Chicago/Turabian StyleStucchi, Marta, Daniela Meroni, György Safran, Alberto Villa, Claudia L. Bianchi, and Laura Prati. 2022. "Noble Metal Promoted TiO2 from Silver-Waste Valorisation: Synergism between Ag and Au" Catalysts 12, no. 2: 235. https://doi.org/10.3390/catal12020235
APA StyleStucchi, M., Meroni, D., Safran, G., Villa, A., Bianchi, C. L., & Prati, L. (2022). Noble Metal Promoted TiO2 from Silver-Waste Valorisation: Synergism between Ag and Au. Catalysts, 12(2), 235. https://doi.org/10.3390/catal12020235