Facile Synthesis, Characterization, and Photocatalytic Activity of Hydrothermally Grown Cu2+-Doped ZnO–SnS Nanocomposites for MB Dye Degradation
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction Study
2.2. Morphological Study
2.3. XPS Study
2.4. Absorption Study
2.5. Photocatalytic Activity
2.6. Proposed Transport Mechanism
- Cu2+ + ZnO–SnS + hν (solar light irradiation) → Cu2+/ZnO (e−) + SnS (h+).
- Cu2+-ZnO (e−) + O2 → O2•− (oxide free radicals)
- O2•− + H2O → HO2• + OH− (hydroxyl free radicals)
- HO2• + H2O → OH•+ H2O2
- H2O2 → 2OH•
- SnS (h+) + OH− → OH•(hydroxyl free radicals)
- OH• + MB (dye) → H2O + CO2
- h+ + MB (dye) → CO2 + H2O (harmless degradation products)
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Cu2+-Doped ZnO–SnS Nanocomposite
3.3. Characterization Techniques
3.4. Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarma, G.K.; Khan, A.; El-Toni, A.M.; Rashid, M.H. Shape-tunable CuO-Nd(OH)3 nanocomposites with excellent adsorption capacity in organic dye removal and regeneration of spent adsorbent to reduce secondary waste. J. Hazard. Mater. 2019, 380, 120838. [Google Scholar] [CrossRef] [PubMed]
- Aziz, K.H.H.; Miessner, H.; Mueller, S.; Mahyar, A.; Kalass, D.; Moeller, D.; Khorshid, I.; Rashid, M.A.M. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor. J. Hazard. Mater. 2018, 343, 107. [Google Scholar] [CrossRef]
- Chowdhury, R.; Khan, A.; Rashid, M.H. Green synthesis of CuO nanoparticles using Lantana camara flower extract and their potential catalytic activity towards the aza-Michael reaction. RSC Adv. 2020, 10, 14374. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, N.; Deepak, N.K. Enhancement of visible luminescence and photocatalytic activity of ZnO thin films via Cu doping. Optik 2018, 158, 1313. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Mahyar, A.; Miessner, H.; Mueller, S.; Kalass, D.; Moeller, D.; Khorshid, I.; Rashid, M.A.M. Application of a planar falling film reactor for decomposition and mineralization of methylene blue in the aqueous media via ozonation, Fenton, photocatalysis and non-thermal plasma: A comparative study. Process. Saf. Environ. Prot. 2018, 113, 319. [Google Scholar] [CrossRef]
- Reddy, C.V.; Reddy, K.R.; Shetti, N.P.; Shim, J.; Aminabhavi, T.M. Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting—A review. Int. J. Hydrogen Energy 2020, 45, 18331. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Q.; Bai, X.; Zhou, P.; Wang, Y. Enhanced visible-light-induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles. Catal. Today 2019, 332, 227. [Google Scholar] [CrossRef]
- Koutavarapu, R.; Babu, B.; Reddy, C.V.; Reddy, I.N.; Reddy, K.R.; Rao, M.C.; Aminabhavi, T.M.; Cho, M.; Kim, D.; Shim, J. ZnO nanosheets-decorated Bi2WO6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. J. Environ. Manag. 2020, 265, 110504. [Google Scholar] [CrossRef] [PubMed]
- Karthik, K.V.; Reddy, C.V.; Reddy, K.R.; Ravishankar, R.; Sanjeev, G.; Kulkarni, R.V.; Shetti, N.P.; Raghu, A.V. Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J. Mater. Sci. Mater. Electron. 2019, 30, 20646. [Google Scholar] [CrossRef]
- Tripathi, A.M.; Mitra, S. Tin sulfide (SnS) nanorods: Structural, optical and lithium storage property study. RSC Adv. 2014, 4, 10358. [Google Scholar] [CrossRef]
- Jayswal, S.; Moirangthem, R.S. Construction of solar spectrum active SnS/ZnO p-n heterojunction as highly efficient photocatalyst: An effect of sensitization process on its performance. New J. Chem. 2018, 42, 13689. [Google Scholar] [CrossRef]
- Riaz, U.; Ashraf, S.M.; Kashyap, J. Role of Conducting Polymers in Enhancing TiO2-based Photocatalytic Dye Degradation: A Short Review. Polym. Plast. Technol. Eng. 2015, 54, 1850. [Google Scholar] [CrossRef]
- Colón, G.; Maicu, M.; Hidalgo, M.C.; Navío, J.A. Cu-doped TiO2 systems with improved photocatalytic activity. Appl. Catal. B Environ. 2006, 67, 41. [Google Scholar] [CrossRef]
- Wang, H.; Yu, J.; Zhan, X.; Chen, L.; Sun, Y.; Shi, H. Direct 2D/2D Z-scheme SnNb2O6/ZnO hybrid photocatalyst with enhanced interfacial charge separation and high efficiency for pollutants degradation. Appl. Surf. Sci. 2020, 528, 146938. [Google Scholar] [CrossRef]
- Xu, L.; Xian, F.; Zhang, Y.; Wang, W.; Qiu, K.; Xu, J. Synthesis of ZnO-decorated SnO2 nanopowder with enhanced photocatalytic performance. Optik 2019, 194, 162965. [Google Scholar] [CrossRef]
- Xu, M.; Jia, S.; Chen, C.; Zhang, Z.; Yan, J.; Guo, Y.; Zhang, Y.; Zhao, W.; Yun, J.; Wang, Y. Microwave-assistant hydrothermal synthesis of SnO2@ZnO hierarchical nanostructures enhanced photocatalytic performance under visible light irradiation. Mater. Res. Bull. 2018, 106, 74. [Google Scholar] [CrossRef]
- Gurugubelli, T.R.; Ravikumar, R.V.S.S.N.; Koutavarapu, R. Enhanced Photocatalytic Activity of ZnO–CdS Composite Nanostructures towards the Degradation of Rhodamine B under Solar Light. Catalysts 2022, 12, 84. [Google Scholar] [CrossRef]
- Makama, A.B.; Salmiaton, A.; Saion, E.B.; Choong, T.S.Y.; Abdullah, N. Microwave-Assisted Synthesis of Porous ZnO/SnS2 Heterojunction and Its Enhanced Photoactivity for Water Purification. J. Nanomater. 2015, 2015, 108297. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yi, J.B.; Ding, J.; Wong, L.M.; Seng, H.L.; Wang, S.J.; Tao, J.G.; Li, G.P.; Xing, G.Z.; Sum, T.C.; et al. Cu-Doped ZnO Nanoneedles and Nanonails: Morphological Evolution and Physical Properties. J. Phys. Chem. C 2008, 112, 9579. [Google Scholar] [CrossRef]
- Alatawi, N.M.; Ben Saad, L.; Soltane, L.; Moulahi, A.; Mjejri, I.; Sediri, F. Enhanced solar photocatalytic performance of Cu-doped nanosized ZnO. Polyhedron 2021, 197, 115022. [Google Scholar] [CrossRef]
- Karthik, K.V.; Raghu, A.V.; Reddy, K.R.; Ravishankar, R.; Sangeeta, M.; Shetti, N.P.; Reddy, C.V. Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 2022, 287, 132081. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.T.; Ravikumar, R.V.S.S.N. Novel Fe-doped ZnO-CdS nanocomposite with enhanced visible light-driven photocatalytic performance. Mater. Res. Innov. 2020, 25, 215. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978. [Google Scholar] [CrossRef]
- Thirumala Rao, G.; Babu, B.; Joyce Stella, R.; Pushpa Manjari, V.; Ravikumar, R.V.S.S.N. Spectral investigations on undoped and Cu2+-doped ZnO–CdS composite nanopowders. Spectrochim. Acta A 2015, 139, 86. [Google Scholar] [CrossRef] [PubMed]
- Hanh, N.T.; Tri, N.L.M.; Thuan, D.V.; Tung, M.H.T.; Pham, T.D.; Minh, T.D.; Trang, H.T.; Binh, M.T.; Nguyen, M.V. Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst. J. Photochem. Photobiol. A 2019, 382, 111923. [Google Scholar] [CrossRef]
- Maryam, M.A.; Masoud, S.N. Metal (Mn, Co, Ni and Cu) doped ZnO-Zn2SnO4-SnO2 nanocomposites: Green sol-gel synthesis, characterization and photocatalytic activity. J. Mol. Liq. 2017, 248, 197. [Google Scholar]
- Liu, Y.; Zhou, Y.; Zhou, X.; Jin, X.; Li, B.; Liu, J.; Chen, G. Cu doped SnS2 nanostructure induced sulfur vacancy towards boosted photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 407, 127180. [Google Scholar] [CrossRef]
- Sajid, M.M.; Shad, N.A.; Javed, Y.; Khan, S.B.; Zhang, Z.; Amin, N.; Zhai, H. Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf. Interfaces 2020, 19, 100502. [Google Scholar] [CrossRef]
- Jia, T.; Fu, F.; Li, J.; Deng, Z.; Long, F.; Yu, D.; Cui, Q.; Wang, W. Rational construction of direct Z-scheme SnS/g-C3N4 hybrid photocatalyst for significant enhancement of visible-light photocatalytic activity. Appl. Surf. Sci. 2020, 499, 143941. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Ma, S.Y.; Zhang, R.; Tie, Y.; Pei, S.T. Optimization ethanol detection performance manifested by SnS/SnS2 nanoparticles. Mater. Lett. 2020, 258, 126783. [Google Scholar] [CrossRef]
- Tang, R.; Su, H.; Sun, Y.; Zhang, X.; Li, L.; Liu, C.; Zeng, S.; Sun, D. Enhanced photocatalytic performance in Bi2WO6/SnS heterostructures: Facile synthesis, influencing factors and mechanism of the photocatalytic process. J. Colloid Interface Sci. 2016, 466, 388. [Google Scholar] [CrossRef] [PubMed]
- Jubu, P.R.; Yam, F.K.; Igba, V.M.; Beh, K.P. Tauc-plot scale and extrapolation effect on bandgap estimation from UV-vis-NIR data—A case study of β-Ga2O3. J. Solid State Chem. 2020, 290, 121576. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Z.; Kong, X.; He, F.; Zhao, R.; Wu, R.; Wei, T.; Wang, L.; Feng, J. A novel P-N heterojunction with staggered energy level based on ZnFe2O4 decorating SnS2 nanosheet for efficient photocatalytic degradation. Appl. Surf. Sci. 2020, 510, 145442. [Google Scholar] [CrossRef]
- Khanchandani, S.; Kundu, S.; Patra, A.; Ganguli, A.K. Band Gap Tuning of ZnO/In2S3 Core/Shell Nanorod Arrays for Enhanced Visible-Light-Driven Photocatalysis. J. Phys. Chem. C 2013, 117, 5558. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, E.; Hong, Z.L.; Khalid, N.R.; Ahmed, W.; Elhissi, A. Graphene-Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. J. Alloys Compd. 2013, 577, 717. [Google Scholar] [CrossRef]
- Munawar, T.; Iqbal, F.; Yasmeen, S.; Mahmood, K.; Hussain, A. Multi metal oxide NiO-CdO-ZnO nanocomposite-synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram. Int. 2020, 46, 2421. [Google Scholar] [CrossRef]
- Tao, Y.M.; Ma, S.Y.; Chen, H.X.; Meng, J.X.; Hou, L.L.; Jia, Y.F.; Shang, X.R. Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO:Cu films. Vacuum 2011, 85, 744. [Google Scholar] [CrossRef]
- Saravanan, R.; Sacari, E.; Gracia, F.; Khan, M.M.; Moqquera, E.; Gupta, V.K. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 2016, 221, 1029. [Google Scholar] [CrossRef]
- Abdiryim, T.; Ali, A.; Jamal, R.; Sman, Y.; Zhang, Y. A facile solid-state heating method for preparation of poly(3,4-ethelenedioxythiophene)/ZnO nanocomposite and photocatalytic activity. Nanoscale Res. Lett. 2014, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, A.; Vishawanathan, P.V.; Mohan, A.C.; Panchami, R.; Viswanath, S.; Krishnan, A.V. Tuning of Photocatalytic Performance of CeO2-Fe2O3 Composite by Sn-doping for the Effective Degradation of Methlene Blue (MB) and Methyl Orange (MO) dyes. Surf. Interfaces 2021, 22, 100808. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Kim, Y.S.; Yang, O.B.; Shin, H.S. An effective nanocomposite of polyaniline and ZnO: Preparation, characterizations, and its photocatalytic activity. Colloid Polym. Sci. 2011, 289, 415. [Google Scholar] [CrossRef]
- Banumathi, S.; Uma, J.; Ravi, A.; Balaraj, B.; Siva, C.; Illanchezhiyan, P.; Kumar, G.M. Rapid sun-light driven photocatalytic functions of 3D rGO/ZnO/Ag heterostructures via improved charge transfer kinetics. J. Mater. Res. Technol. 2021, 10, 1301. [Google Scholar] [CrossRef]
- Eskizeybek, V.; Sari, F.; Giilce, H.; Avci, A. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl. Catal. B 2012, 119–120, 197. [Google Scholar] [CrossRef]
- Shavisi, Y.; Sharifnia, S.; Mohamadi, Z. Solar-light-harvesting degradation of aqueous ammonia by CuO/ZnO immobilized on pottery plate: Linear kinetic modeling for adsorption and photocatalysis process. J. Environ. Chem. Eng. 2016, 4, 2736. [Google Scholar] [CrossRef]
- Makama, A.B.; Salmiation, A.; Saion, E.B.; Choong, T.S.Y.; Abdullah, N. Microwave Assisted Synthesis of Porous ZnO/SnS Heterojunction and its Application in Visible Light Degradation of Ciprofloxacin. AIP Conf. Proc. 2016, 020018, 1733. [Google Scholar]
- Wang, L.; Zhai, H.; Jin, G.; Li, X.; Dong, C.; Zhang, H.; Yang, B.; Xiea, H.; Sun, H. 3D porous ZnO–SnS p–n heterojunction for visible light driven photocatalysis. Phys. Chem. Chem. Phys. 2017, 19, 16576–16585. [Google Scholar] [CrossRef] [PubMed]
- Govinda, D.; Rao, M.P.S.; Murthy, P.D. Enhanced photocatalytic activity in hydro-thermally grown nano structured ZnO/SnS core-shell composites. Z. Nat. A 2022, 77, 153–169. [Google Scholar]
- Altaf, S.; Ajaz, H.; Imran, M.; Ul-Hamid, A.; Naz, M.; Aqeel, M.; Shahzadi, A.; Shahbaz, A.; Ikram, M. Synthesis and characterization of binary selenides of transition metals to investigate its photocatalytic, antimicrobial and anticancer efficacy. Appl. Nanosci. 2020, 10, 2113–2127. [Google Scholar] [CrossRef]
Sample | Crystallite Size (D nm) | d-Spacing (Å) | Microstrain (ε) × 10−3 | Dislocation Density (δ) × 1015 Lines/m2 |
---|---|---|---|---|
ZS | 7.9 | 2.61 | 5.33 | 1.60 |
ZS-C1 | 7.4 | 2.45 | 5.11 | 1.82 |
ZS-C3 | 6.8 | 1.88 | 4.65 | 2.16 |
ZS-C5 | 6.5 | 1.61 | 4.38 | 2.33 |
Catalyst | Synthesis Method | Dye | Light Source | Irradiation Time (min) | Degradation Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
PANI/ZnO | Sonication | MB | Visible | 180 | 99 | [38] |
ZnO/PEDOT | Solid-state | MB | Sun light | 300 | ˃95 | [39] |
Sn doped CeO2–Fe2O3 | Thermal deposition | MB | Visible | 120 | ~94.5 | [40] |
ZnO/PANI | Rapid mixing polymerization | MB | Visible | 160 | 76 | [41] |
rGO/ZnO/Ag | Hydrothermal | MB | Sun light | 60 | 94 | [42] |
PANI/ZnO | Chemical polymerization | MB | Sun light | 300 | 99 | [43] |
Cu-doped ZnO/SnS | Hydrothermal | MB | Solar | 120 | 97.2 | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dharmana, G.; Gurugubelli, T.R.; Masabattula, P.S.R.; Babu, B.; Yoo, K. Facile Synthesis, Characterization, and Photocatalytic Activity of Hydrothermally Grown Cu2+-Doped ZnO–SnS Nanocomposites for MB Dye Degradation. Catalysts 2022, 12, 328. https://doi.org/10.3390/catal12030328
Dharmana G, Gurugubelli TR, Masabattula PSR, Babu B, Yoo K. Facile Synthesis, Characterization, and Photocatalytic Activity of Hydrothermally Grown Cu2+-Doped ZnO–SnS Nanocomposites for MB Dye Degradation. Catalysts. 2022; 12(3):328. https://doi.org/10.3390/catal12030328
Chicago/Turabian StyleDharmana, Govinda, Thirumala Rao Gurugubelli, Prabhakara Srinivasa Rao Masabattula, Bathula Babu, and Kisoo Yoo. 2022. "Facile Synthesis, Characterization, and Photocatalytic Activity of Hydrothermally Grown Cu2+-Doped ZnO–SnS Nanocomposites for MB Dye Degradation" Catalysts 12, no. 3: 328. https://doi.org/10.3390/catal12030328
APA StyleDharmana, G., Gurugubelli, T. R., Masabattula, P. S. R., Babu, B., & Yoo, K. (2022). Facile Synthesis, Characterization, and Photocatalytic Activity of Hydrothermally Grown Cu2+-Doped ZnO–SnS Nanocomposites for MB Dye Degradation. Catalysts, 12(3), 328. https://doi.org/10.3390/catal12030328