Continuous Flow Biocatalysis: Synthesis of Coumarin Carboxamide Derivatives by Lipase TL IM from Thermomyces lanuginosus
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Intermediates Coumarin Carboxylate Methyl Derivatives
2.2. Effect of Reaction Medium and Catalyst
2.3. Effect of Reaction Temperature
2.4. Effect of Substrate Ratio
2.5. Effect of Residence Time
2.6. The Effect of Enzyme Reusability
2.7. Enzymatic Synthesis of Coumarin Carboxamide Derivative in Continuous Flow Microreactors and Batch Bioreactors
2.8. The Scope and Limitation for the Coumarin Carboxamide Derivative Synthesis Methodology
3. Materials and Methods
3.1. Materials
3.2. Experimental Setup and Experiment Conditions
3.2.1. General Procedure of the Synthesis of Coumarin Carboxamide Derivatives
3.2.2. Experimental Conditions for Enzyme Reusability
3.3. Analytical Methods
3.3.1. Thin-Layer Chromatography (TLC)
3.3.2. Nuclear Magnetic Resonance (NMR) and Electrospray Ionization Mass Spectrometry (ESI/MS)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, Y.; Zhou, C.H. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2011, 21, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Dias, T.A.; Brito, A.; Proenca, F. Biological importance of structurally diversified chromenes. Eur. J. Med. Chem. 2016, 123, 487–507. [Google Scholar] [CrossRef] [PubMed]
- Dholariya, H.R.; Patel, K.S.; Patel, J.C.; Patel, A.K.; Patel, K.D. Thermal, kinetic, spectroscopic studies and anti-microbial, anti-tuberculosis, anti-oxidant properties of clioquinol and benzo-coumarin derivatives mixed complexes with copper ion. Med. Chem. Res. 2013, 22, 5848–5860. [Google Scholar] [CrossRef]
- Bansal, Y.; Sethi, P.; Bansal, G. Coumarin: A potential nucleus for anti-inflammatory molecules. Med. Chem. Res. 2012, 22, 3049–3060. [Google Scholar] [CrossRef]
- Hilgert, M.; Nöldner, M.; Chatterjee, S.S.; Klein, J. KA-672 inhibits rat brain acetylcholinesterase in vitro but not in vivo. Neurosci. Lett. 1999, 263, 193–196. [Google Scholar] [CrossRef]
- Piazzi, L.; Rampa, A.; Bisi, A.; Gobbi, S.; Belluti, F.; Cavalli, A.; Bartolini, M.; Andrisano, V.; Valenti, P.; Recanatini, M. 3-(4-[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: A dual function lead for Alzheimer’s disease therapy. J. Med. Chem. 2003, 46, 2279–2282. [Google Scholar] [CrossRef]
- Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem. 2012, 20, 1175–1180. [Google Scholar] [CrossRef]
- Maresca, A.; Scozzafava, A.; Supuran, C.T. 7,8-disubstituted- but not 6,7-disubstituted coumarins selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II in the low nanomolar/subnanomolar range. Bioorg. Med. Chem. Lett. 2010, 20, 7255–7258. [Google Scholar] [CrossRef]
- Maresca, A.; Supuran, C.T. Coumarins incorporating hydroxy- and chloro-moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg. Med. Chem. Lett. 2010, 20, 4511–4514. [Google Scholar] [CrossRef]
- Endo, S.; Xia, S.; Suyama, M.; Morikawa, Y.; Oguri, H.; Hu, D.; Ao, Y.; Takahara, S.; Horino, Y.; Hayakawa, Y.; et al. Synthesis of Potent and Selective Inhibitors of Aldo-Keto Reductase 1B10 and Their Efficacy against Proliferation, Metastasis, and Cisplatin Resistance of Lung Cancer Cells. J. Med. Chem. 2017, 60, 8441–8455. [Google Scholar] [CrossRef]
- Markad, D.; Khullar, S.; Mandal, S.K. A Primary Amide-Functionalized Heterogeneous Catalyst for the Synthesis of Coumarin-3-carboxylic Acids via a Tandem Reaction. Inorg. Chem. 2020, 59, 11407–11416. [Google Scholar] [CrossRef]
- Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem. 2016, 119, 141–168. [Google Scholar] [CrossRef]
- Viña, D.; Matos, M.J.; Yáñez, M.; Santana, L.; Uriarte, E. 3-Substituted coumarins as dual inhibitors of AChE and MAO for the treatment of Alzheimer’s disease. Med. Chem. Commun. 2012, 3, 213–218. [Google Scholar] [CrossRef]
- Robert, S.; Bertolla, C.; Masereel, B.; Dogne, J.M.; Pochet, L. Novel 3-carboxamide-coumarins as potent and selective FXIIa inhibitors. J. Med. Chem. 2008, 51, 3077–3080. [Google Scholar] [CrossRef]
- Abdizadeh, T.; Kalani, M.R.; Abnous, K.; Tayarani-Najaran, Z.; Khashyarmanesh, B.Z.; Abdizadeh, R.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur. J. Med. Chem. 2017, 132, 42–62. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, Y.; Li, G.; Chen, L.; Nie, M.; Wang, Z.; Ji, H. Coumarin Sulfonamides and Amides Derivatives: Design, Synthesis, and Antitumor Activity In Vitro. Molecules 2021, 26, 786. [Google Scholar] [CrossRef]
- Fonseca, A.; Reis, J.; Silva, T.; Matos, M.J.; Bagetta, D.; Ortuso, F.; Alcaro, S.; Uriarte, E.; Borges, F. Coumarin versus Chromone Monoamine Oxidase B Inhibitors: Quo Vadis? J. Med. Chem. 2017, 60, 7206–7212. [Google Scholar] [CrossRef]
- Thacker, P.S.; Alvala, M.; Arifuddin, M.; Angeli, A.; Supuran, C.T. Design, synthesis and biological evaluation of coumarin-3-carboxamides as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Chem. 2019, 86, 386–392. [Google Scholar] [CrossRef]
- Pan, Z.X.; He, X.; Chen, Y.Y.; Tang, W.J.; Shi, J.B.; Tang, Y.L.; Song, B.A.; Li, J.; Liu, X.H. New 2H-chromene-3-carboxamide derivatives: Design, synthesis and use as inhibitors of hMAO. Eur. J. Med. Chem. 2014, 80, 278–284. [Google Scholar] [CrossRef]
- Guo, X.; Okamoto, Y.; Schreier, M.R.; Ward, T.R.; Wenger, O.S. Enantioselective synthesis of amines by combining photoredox and enzymatic catalysis in a cyclic reaction network. Chem. Sci. 2018, 9, 5052–5056. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Tian, L. Novozym 40086 as a novel biocatalyst to improve benzyl cinnamate synthesis. RSC Adv. 2018, 8, 37184–37192. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhao, Z.; Wang, Z.; Guo, C.; Wang, C.; Zhao, R.; Wang, L. Lipase-Catalyzed Synthesis of Indolyl 4H-Chromenes via a Multicomponent Reaction in Ionic Liquid. Catalysts 2017, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Dai, L.; Liu, D.; Du, W. Research Progress in Enzymatic Synthesis of Vitamin E Ester Derivatives. Catalysts 2021, 11, 739. [Google Scholar] [CrossRef]
- Chen, D.; Chen, R.; Xie, K.; Yue, T.; Zhang, X.; Ye, F.; Dai, J. Biocatalytic C-Glucosylation of Coumarins Using an Engineered C-Glycosyltransferase. Org. Lett. 2018, 20, 1634–1637. [Google Scholar] [CrossRef]
- Wang, C.-H.; Guan, Z.; He, Y.-H. Biocatalytic domino reaction: Synthesis of 2H-1-benzopyran-2-one derivatives using alkaline protease from Bacillus licheniformis. Green Chem. 2011, 13, 2048–2054. [Google Scholar] [CrossRef]
- Bavandi, H.; Habibi, Z.; Yousefi, M. Porcine pancreas lipase as a green catalyst for synthesis of bis-4-hydroxy coumarins. Bioorg. Chem. 2020, 103, 104139. [Google Scholar] [CrossRef]
- Chen, D.; Fan, S.; Yang, Z.; Dai, J. Biocatalytic Application of a Membrane-Bound Coumarin C-Glucosyltransferase in the Synthesis of Coumarin and Benzofuran C-Glucosides. Adv. Synth. Catal. 2021, 363, 5072–5078. [Google Scholar] [CrossRef]
- Asanomi, Y.; Yamaguchi, H.; Miyazaki, M.; Maeda, H. Enzyme-immobilized microfluidic process reactors. Molecules 2011, 16, 6041–6059. [Google Scholar] [CrossRef] [Green Version]
- Britton, J.; Majumdar, S.; Weiss, G.A. Continuous flow biocatalysis. Chem. Soc. Rev. 2018, 47, 5891–5918. [Google Scholar] [CrossRef]
- Koch, K.; van den Berg, R.J.; Nieuwland, P.J.; Wijtmans, R.; Schoemaker, H.E.; van Hest, J.C.; Rutjes, F.P. Enzymatic enantioselective C-C-bond formation in microreactors. Biotechnol. Bioeng. 2008, 99, 1028–1033. [Google Scholar] [CrossRef]
- Planchestainer, M.; Contente, M.L.; Cassidy, J.; Molinari, F.; Tamborini, L.; Paradisi, F. Continuous flow biocatalysis: Production and in-line purification of amines by immobilised transaminase from Halomonas elongata. Green Chem. 2017, 19, 372–375. [Google Scholar] [CrossRef]
- Wang, J.; Gu, S.S.; Cui, H.S.; Yang, L.Q.; Wu, X.Y. Rapid synthesis of propyl caffeate in ionic liquid using a packed bed enzyme microreactor under continuous-flow conditions. Bioresour. Technol. 2013, 149, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Valikhani, D.; Srivastava, P.L.; Allemann, R.K.; Wirth, T. Immobilised Enzymes for Sesquiterpene Synthesis in Batch and Flow Systems. ChemCatChem 2020, 12, 2194–2197. [Google Scholar] [CrossRef]
- Du, L.-H.; Chen, P.-F.; Long, R.-J.; Xue, M.; Luo, X.-P. A sustainable innovation for the tandem synthesis of sugar-containing coumarin derivatives catalyzed by lipozyme TL IM fromThermomyces lanuginosusin continuous-flow microreactors. RSC Adv. 2020, 10, 13252–13259. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P.K. Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online 2016, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Serdakowski, A.L.; Dordick, J.S. Enzyme activation for organic solvents made easy. Trends Biotechnol. 2008, 26, 48–54. [Google Scholar] [CrossRef]
- Arcus, V.L.; Prentice, E.J.; Hobbs, J.K.; Mulholland, A.J.; Van der Kamp, M.W.; Pudney, C.R.; Parker, E.J.; Schipper, L.A. On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry 2016, 55, 1681–1688. [Google Scholar] [CrossRef]
- Bolivar, J.M.; López-Gallego, F. Characterization and evaluation of immobilized enzymes for applications in flow reactors. In Current Opinion in Green and Sustainable Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 25. [Google Scholar]
- Benítez-Mateos, A.I.; Contente, M.L.; Roura Padrosa, D.; Paradisi, F. Flow biocatalysis 101: Design, development and applications. React. Chem. Eng. 2021, 6, 599–611. [Google Scholar] [CrossRef]
- Coloma, J.; Guiavarc’h, Y.; Hagedoorn, P.L.; Hanefeld, U. Immobilisation and flow chemistry: Tools for implementing biocatalysis. Chem. Commun. 2021, 57, 11416–11428. [Google Scholar] [CrossRef]
- Boodhoo, K.V.K.; Flickinger, M.C.; Woodley, J.M.; Emanuelsson, E.A.C. Bioprocess intensification: A route to efficient and sustainable biocatalytic transformations for the future. Chem. Eng. Process. Process. Intensif. 2022, 172, 108793. [Google Scholar] [CrossRef]
- De Santis, P.; Meyer, L.-E.; Kara, S. The rise of continuous flow biocatalysis—fundamentals, very recent developments and future perspectives. React. Chem. Eng. 2020, 5, 2155–2184. [Google Scholar] [CrossRef]
Entry | Salicylaldehyde Derivative | Dimethyl Malonate | Product | Yield b (%) |
---|---|---|---|---|
1 | 86.5 ± 1.7 | |||
2 | 89.3 ± 1.3 | |||
3 | 82.6 ± 0.8 | |||
4 | 95.5 ± 1.5 |
Entry | Solvent | Catalysts | Log p | Yield b (%) |
---|---|---|---|---|
1 | tert-amyl alcohol | None | 0.60 | n.d. |
2 | Methanol | Lipozyme TL IM | −0.76 | 45.4 ± 2 |
3 | tert-amyl alcohol | Lipozyme TL IM | 0.60 | 66.8 ± 1.5 |
4 | DMSO | Lipozyme TL IM | −1.3 | n.d. |
5 | Isopropanol | Lipozyme TL IM | 0.39 | 35.3 ± 0.5 |
6 | Acetonitrile | Lipozyme TL IM | −0.33 | 42.4 ± 0.8 |
7 | Acetone | Lipozyme TL IM | −0.23 | 36.7 ± 1.2 |
8 | Toluene | Lipozyme TL IM | 2.5 | 33.2 ± 0.7 |
9 | tert-amyl alcohol | Novozym® 435 | 0.60 | 21.8 ± 0.3 |
10 | Methanol | Novozym® 435 | −0.76 | 16.1 ± 0.6 |
11 | Isopropanol | Novozym® 435 | 0.39 | n.d. |
12 | Acetonitrile | Novozym® 435 | −0.33 | n.d. |
13 | DMSO | Novozym® 435 | −1.3 | n.d. |
Entry | Method | STY (g L−1 h−1) | Yield b (%) |
---|---|---|---|
1 | A | 31.2941 | 85.7 ± 0.6 |
2 | B | 0.6829 | 66.9 ± 1.2 |
Entry | R1 | R2 | R3 | Product | Yield b (%) |
---|---|---|---|---|---|
1 | H | H | CH(CH3)2 | 5a | 85.7 ± 0.6 |
2 | H | H | 5b | 71.3 ± 0.8 | |
3 | H | H | 5c | 64.2 ± 1.5 | |
4 | H | H | 5d | 74.6 ± 2 | |
5 | CH3 | H | CH(CH3)2 | 5e | 87.5 ± 0.5 |
6 | CH3 | H | 5f | 75.8 ± 0.2 | |
7 | CH3 | H | 5g | 63.4 ± 1.1 | |
8 | CH3 | H | 5h | 77.9 ± 0.1 | |
9 | Cl | H | CH(CH3)2 | 5i | 80.6 ± 1.8 |
10 | Cl | H | 5j | 35.4 ± 1.1 | |
11 | Cl | H | 5k | <5 | |
12 | Cl | H | 5l | 43.6 ± 1.5 | |
13 | H | OCH3 | CH(CH3)2 | 5m | 90.5 ± 0.5 |
14 | H | OCH3 | 5n | 79.8 ± 0.4 | |
15 | H | OCH3 | 5o | 67.9 ± 1.2 | |
16 | H | OCH3 | 5p | 80.2 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.-H.; Yang, M.-J.; Pan, Y.; Zheng, L.-Y.; Zhang, S.-Y.; Sheng, Z.-K.; Chen, P.-F.; Luo, X.-P. Continuous Flow Biocatalysis: Synthesis of Coumarin Carboxamide Derivatives by Lipase TL IM from Thermomyces lanuginosus. Catalysts 2022, 12, 339. https://doi.org/10.3390/catal12030339
Du L-H, Yang M-J, Pan Y, Zheng L-Y, Zhang S-Y, Sheng Z-K, Chen P-F, Luo X-P. Continuous Flow Biocatalysis: Synthesis of Coumarin Carboxamide Derivatives by Lipase TL IM from Thermomyces lanuginosus. Catalysts. 2022; 12(3):339. https://doi.org/10.3390/catal12030339
Chicago/Turabian StyleDu, Li-Hua, Meng-Jie Yang, Yue Pan, Ling-Yan Zheng, Shi-Yi Zhang, Zhi-Kai Sheng, Ping-Feng Chen, and Xi-Ping Luo. 2022. "Continuous Flow Biocatalysis: Synthesis of Coumarin Carboxamide Derivatives by Lipase TL IM from Thermomyces lanuginosus" Catalysts 12, no. 3: 339. https://doi.org/10.3390/catal12030339
APA StyleDu, L. -H., Yang, M. -J., Pan, Y., Zheng, L. -Y., Zhang, S. -Y., Sheng, Z. -K., Chen, P. -F., & Luo, X. -P. (2022). Continuous Flow Biocatalysis: Synthesis of Coumarin Carboxamide Derivatives by Lipase TL IM from Thermomyces lanuginosus. Catalysts, 12(3), 339. https://doi.org/10.3390/catal12030339