The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials
3.2. Catalytic Testing
3.3. Catalyst Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Teh, L.P.; Setiabudi, H.D.; Timmiati, S.N.; Aziz, M.A.A.; Annuar, N.H.R.; Ruslan, N.N. Recent progress in ceria-based catalysts for the dry reforming of methane: A review. Chem. Eng. Sci. 2021, 242, 116606. [Google Scholar] [CrossRef]
- García-Diéguez, M.; Pieta, I.S.; Herrera, M.C.; Larrubia, M.A.; Alemany, L.J. Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane. J. Catal. 2010, 270, 136–145. [Google Scholar] [CrossRef]
- Karmaker, A.K.; Rahman, M.M.; Hossain, M.A.; Ahmed, M.R. Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. J. Clean. Prod. 2020, 244, 118645. [Google Scholar] [CrossRef]
- Shahzad, U.; Fareed, Z.; Shahzad, F.; Shahzad, K. Investigating the nexus between economic complexity, energy consumption and ecological footprint for the United States: New insights from quantile methods. J. Clean. Prod. 2021, 279, 123806. [Google Scholar] [CrossRef]
- Springmann, M.; Mason-D’Croz, D.; Robinson, S.; Wiebe, K.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Chang. 2016, 7, 69–74. [Google Scholar] [CrossRef]
- Watson, J.; Zhang, Y.; Si, B.; Chen, W.T.; de Souza, R. Gasification of biowaste: A critical review and outlooks. Renew. Sustain. Energy Rev. 2018, 83, 1–17. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Zhao, M.; Fennell, P.S.; Shah, N.; Anthony, E.J. Progress in biofuel production from gasification. Prog. Energy Combust. Sci. 2017, 61, 189–248. [Google Scholar] [CrossRef]
- Al-Fatish, A.S.A.; Ibrahim, A.A.; Fakeeha, A.H.; Soliman, M.A.; Siddiqui, M.R.H.; Abasaeed, A.E. Coke formation during CO2 reforming of CH4 over alumina-supported nickel catalysts. Appl. Catal. A Gen. 2009, 364, 150–155. [Google Scholar] [CrossRef]
- Abasaeed, A.; Kasim, S.; Khan, W.; Sofiu, M.; Ibrahim, A.; Fakeeha, A.; Al-Fatesh, A. Hydrogen Yield from CO2 Reforming of Methane: Impact of La2O3 Doping on Supported Ni Catalysts. Energies 2021, 14, 2412. [Google Scholar] [CrossRef]
- Patel, R.; Al-Fatesh, A.S.; Fakeeha, A.H.; Arafat, Y.; Kasim, S.O.; Ibrahim, A.A.; Al-Zahrani, S.A.; Abasaeed, A.E.; Srivastava, V.K.; Kumar, R. Impact of ceria over WO3–ZrO2 supported Ni catalyst towards hydrogen production through dry reforming of methane. Int. J. Hydrogen Energy 2021, 46, 25015–25028. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Fakeeha, A.H.; Ibrahim, A.A.; Abasaeed, A.E. Ni supported on La2O3+ZrO2 for dry reforming of methane: The impact of surface adsorbed oxygen species. Int. J. Hydrogen Energy 2021, 46, 3780–3788. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Al-Fatesh, A.S.; Khan, W.U.; Kasim, S.O.; Abasaeed, A.E.; Fakeeha, A.H.; Bonura, G.; Frusteri, F. Enhanced coke suppression by using phosphate-zirconia supported nickel catalysts under dry methane reforming conditions. Int. J. Hydrogen Energy 2019, 44, 27784–27794. [Google Scholar] [CrossRef]
- Tsyganok, A.I.; Inaba, M.; Tsunoda, T.; Suzuki, K.; Takehira, K.; Hayakawa, T. Combined partial oxidation and dry reforming of methane to synthesis gas over noble metals supported on Mg–Al mixed oxide. Appl. Catal. A Gen. 2004, 275, 149–155. [Google Scholar] [CrossRef]
- Das, S.; Thakur, S.; Bag, A.; Gupta, M.S.; Mondal, P.; Bordoloi, A. Support interaction of Ni nanocluster based catalysts applied in CO2 reforming. J. Catal. 2015, 330, 46–60. [Google Scholar] [CrossRef]
- Singha, R.K.; Yadav, A.; Shukla, A.; Iqbal, Z.; Pendem, C.; Sivakumar, K.; Bal, R. Promoting Effect of CeO2 and MgO for CO2 Reforming of Methane over Ni-ZnO Catalyst. ChemistrySelect 2016, 1, 3075–3085. [Google Scholar] [CrossRef]
- Abdel Karim Aramouni, N.; Zeaiter, J.; Kwapinski, W.; Leahy, J.J.; Ahmad, M.N. Molybdenum and nickel-molybdenum nitride catalysts supported on MgO-Al2O3 for the dry reforming of methane. J. CO2 Util. 2021, 44, 101411. [Google Scholar] [CrossRef]
- Papadopoulou, C.; Matralis, H.; Verykios, X. Utilization of Biogas as a Renewable Carbon Source: Dry Reforming of Methane. Catal. Altern. Energy Gener. 2012, 9781461403449, 57–127. [Google Scholar] [CrossRef]
- McCullough, J.D.; Trueblood, K.N. The crystal structure of baddeleyite (monoclinic ZrO2). Acta Crystallogr. 1959, 12, 507–511. [Google Scholar] [CrossRef]
- Chen, A.; Zhou, Y.; Miao, S.; Li, Y.; Shen, W. Assembly of monoclinic ZrO2 nanorods: Formation mechanism and crystal phase control. CrystEngComm 2016, 18, 580–587. [Google Scholar] [CrossRef]
- Smith, D.K.; Cline, C.F. Verification of Existence of Cubic Zirconia at High Temperature. J. Am. Ceram. Soc. 1962, 45, 249–250. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, C.; Lin, J. Phase Transformation and Photoluminescence Properties of Nanocrystalline ZrO2 Powders Prepared via the Pechini-type Sol−Gel Process. J. Phys. Chem. C 2007, 111, 3300–3307. [Google Scholar] [CrossRef]
- Shukla, S.; Seal, S.; Vij, R.; Bandyopadhyay, S.; Rahman, Z. Effect of Nanocrystallite Morphology on the Metastable Tetragonal Phase Stabilization in Zirconia. Nano Lett. 2002, 2, 989–993. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Zhou, Z.; Chen, S.; Zhang, T.; Song, F.; Zhang, Q.; Tsubaki, N.; Tan, Y.; Han, Y. Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst. Appl. Catal. B Environ. 2020, 264, 118522. [Google Scholar] [CrossRef]
- Yang, E.H.; Moon, D.J. CO2 Reforming of Methane over Ni0/La2O3 Catalyst without Reduction Step: Effect of Calcination Atmosphere. Top. Catal. 2017, 60, 697–705. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Zhou, Z.; Zhang, Q.; Tan, Y.; Han, Y. Effects of calcination atmosphere on the performance of the co-precipitated Ni/ZrO2 catalyst in dry reforming of methane. Can. J. Chem. Eng. 2021. [Google Scholar] [CrossRef]
- Ji, B.; Li, Q.; Huang, Q. Enhanced leaching recovery of rare earth elements from a phosphatic waste clay through calcination pretreatment. J. Clean. Prod. 2021, 319, 128654. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Zeaiter, J.; Kwapinski, W.; Leahy, J.J.; Ahmad, M.N. Trimetallic Ni-Co-Ru catalyst for the dry reforming of methane: Effect of the Ni/Co ratio and the calcination temperature. Fuel 2021, 300, 120950. [Google Scholar] [CrossRef]
- Fertal, D.R.; Monai, M.; Proaño, L.; Bukhovko, M.P.; Park, J.; Ding, Y.; Weckhuysen, B.M.; Banerjee, A.C. Calcination temperature effects on Pd/alumina catalysts: Particle size, surface species and activity in methane combustion. Catal. Today 2021, 382, 120–129. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Wang, Y.; Li, Y. Effect of the calcination temperature on the performance of a CeMoOx catalyst in the selective catalytic reduction of NOx with ammonia. Catal. Today 2015, 245, 10–15. [Google Scholar] [CrossRef]
- Liu, Q.; Bian, C.; Jin, Y.; Pang, L.; Chen, Z.; Li, T. Influence of calcination temperature on the evolution of Fe species over Fe-SSZ-13 catalyst for the NH3-SCR of NO. Catal. Today 2020, 388–389, 158–167. [Google Scholar] [CrossRef]
- Bian, Z.; Zhong, W.; Yu, Y.; Wang, Z.; Jiang, B.; Kawi, S. Dry reforming of methane on Ni/mesoporous-Al2O3 catalysts: Effect of calcination temperature. Int. J. Hydrogen Energy 2021, 46, 31041–31053. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Ning, P.; Wang, H.; Ma, Y.; Xu, S.; Liu, M.; Zhang, Q.; Xia, F. The property tuning of NH3-SCR over iron-tungsten catalyst: Role of calcination temperature on surface defect and acidity. Appl. Surf. Sci. 2021, 538, 147999. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, G.; Xu, Y.; Zhang, R. Catalytic performance of dioxide reforming of methane over Co/AC-N catalysts: Effect of nitrogen doping content and calcination temperature. Int. J. Hydrogen Energy 2019, 44, 16424–16435. [Google Scholar] [CrossRef]
- Chan, K.S.; Chuah, G.K.; Jaenicke, S. Preparation of stable, high surface area zirconia. J. Mater. Sci. Lett. 1994, 13, 1579–1581. [Google Scholar] [CrossRef]
- Chuah, G.K.; Jaenicke, S.; Cheong, S.A.; Chan, K.S. The influence of preparation conditions on the surface area of zirconia. Appl. Catal. A Gen. 1996, 145, 267–284. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Arafat, Y.; Ibrahim, A.A.; Kasim, S.O.; Alharthi, A.; Fakeeha, A.H.; Abasaeed, A.E.; Bonura, G.; Frusteri, F. Catalytic Behaviour of Ce-Doped Ni Systems Supported on Stabilized Zirconia under Dry Reforming Conditions. Catalysts 2019, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Yamaguchi, D.; Tang, L.; Periasamy, S.; Ma, H.; Hart, J.N.; Chiang, K. Enhancement of oxygen exchanging capability by loading a small amount of ruthenium over ceria-zirconia on dry reforming of methane. Adv. Powder Technol. 2021, 103407. [Google Scholar] [CrossRef]
- Mesrar, F.; Kacimi, M.; Liotta, L.F.; Puleo, F.; Ziyad, M. Syngas production from dry reforming of methane over ni/perlite catalysts: Effect of zirconia and ceria impregnation. Int. J. Hydrogen Energy 2018, 43, 17142–17155. [Google Scholar] [CrossRef]
- Quéré, C.; Andrew, R.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.; Ivar Korsbakken, J.; Peters, G.; Canadell, J.; et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.Y.; Lee, Y.H.; Park, H.; Choi, Y.H.; Lee, M.H.; Lee, J.S. Coke tolerance of Ni/Al2O3 nanosheet catalyst for dry reforming of methane. Catal. Sci. Technol. 2016, 6, 2060–2064. [Google Scholar] [CrossRef]
- Al-Mubaddel, F.S.; Kumar, R.; Sofiu, M.L.; Frusteri, F.; Ibrahim, A.A.; Srivastava, V.K.; Kasim, S.O.; Fakeeha, A.H.; Abasaeed, A.E.; Osman, A.I.; et al. Optimizing acido-basic profile of support in Ni supported La2O3+Al2O3 catalyst for dry reforming of methane. Int. J. Hydrogen Energy 2021, 46, 14225–14235. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Kumar, R.; Kasim, S.O.; Aidid, A.; Anis, I.; Fakeeha, H.; Abasaeed, A.E.; Atia, H.; Armbruster, U.; Kreyenschulte, C.; et al. Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Cite This Ind. Eng. Chem. Res 2021, 2022, 174. [Google Scholar] [CrossRef]
- Pan, C.; Guo, Z.; Dai, H.; Ren, R.; Chu, W. Anti-sintering mesoporous Ni–Pd bimetallic catalysts for hydrogen production via dry reforming of methane. Int. J. Hydrogen Energy 2020. [Google Scholar] [CrossRef]
- Setiabudi, H.; Lim, K.; Ainirazali, N.; Chin, S.Y.; Kamarudin, N.H.N. CO2 reforming of CH4 over Ni/SBA-15: Influence of Ni loading on the metal-support interaction and catalytic activity. J. Mater. Environ. Sci. 2017, 8, 573–581. [Google Scholar]
Catalyst | Calcination Temp. (°C) | BET (m2/g) | VPore (cm3/g) | DPore (nm) |
---|---|---|---|---|
Ni-MK | 600 | 3.5 | 0.02 | 29.9 |
700 | 3.2 | 0.02 | 41.4 | |
800 | 2.7 | 0.02 | 34.9 | |
Ni-ZH | 600 | 43.2 | 0.16 | 15.5 |
700 | 9.8 | 0.05 | 24.8 | |
800 | 10.0 | 0.05 | 24.8 | |
Ni-DK | 600 | 19.6 | 0.16 | 39.7 |
700 | 14.8 | 0.12 | 39.2 | |
800 | 13.2 | 0.12 | 49.7 | |
Ni-EN | 600 | 24.4 | 0.21 | 37.5 |
700 | 15.5 | 0.13 | 38.6 | |
800 | 16.0 | 0.13 | 37.6 | |
Ni-RC | 600 | 50.4 | 0.27 | 21.5 |
700 | 17.7 | 0.12 | 31.7 | |
800 | 18.7 | 0.12 | 31.1 |
Catalyst | Calcination Temperature (°C) | Conversion (%) | Carbon Deposits (%) | Deact. Factor (DF) (%) | |||
---|---|---|---|---|---|---|---|
CH4 | CO2 | ||||||
Initial | Final | Initial | Final | ||||
Ni-MK | 600 | 21.9 | 20.1 | 32.6 | 30.1 | 12.7 | 8.2 |
700 | 46.0 | 36.3 | 54.2 | 46.4 | 46.7 | 21.1 | |
800 | 36.5 | 22.9 | 39.6 | 34.0 | 14.0 | 37.3 | |
Ni-ZH | 600 | 59.3 | 44.9 | 61.3 | 55.5 | 75.0 | 24.3 |
700 | 62.2 | 45.3 | 69.5 | 57.9 | 38.1 | 27.2 | |
800 | 55.0 | 38.5 | 55.1 | 49.2 | 61.2 | 30.0 | |
Ni-DK | 600 | 52.3 | 36.1 | 57.7 | 49.2 | 48.5 | 31.0 |
700 | 50.6 | 32.7 | 49.3 | 45.0 | 63.4 | 35.4 | |
800 | 47.5 | 34.7 | 57.2 | 48.6 | 53.3 | 26.9 | |
Ni-EN | 600 | 44.6 | 30.3 | 53.2 | 42.1 | 17.3 | 30.5 |
700 | 42.3 | 31.9 | 52.8 | 43. 9 | 25.1 | 24.6 | |
800 | 45.1 | 28.3 | 52.6 | 39.3 | 27.8 | 37.25 | |
Ni-RC | 600 | 67.6 | 46.5 | 66.8 | 61.7 | 60.6 | 1.63 |
700 | 67.4 | 46.5 | 68.4 | 58.2 | 65.8 | 31.0 | |
800 | 64.4 | 76.4 * | 66.8 | 59.5 * | 68.7 | −1.7 |
Catalyst | Reaction Temperature (°C) | GHSV (mL/(g·h)) | Average * CH4 Conversion (%) | Ref. |
---|---|---|---|---|
5%Ni/La+Zr | 700 | 8000 | 66 | [36] |
0.1%Ni/Ce+Zr | 850 | 3000 | 38 | [37] |
15%Ni/perlite+Zr | 700 | 60,000 | 79 | [38] |
15%Ni+Co/Al+-Zr-I | 850 | 24 | 72 | [39] |
5%Ni+Co/Al+Zr | 550 | 24 | 18 | [40] |
5%Ni/PO4+Zr | 800 | 13,000 | 45 | [12] |
Ni/Al2O3 | 700 | 42,000 | 53 | [41] |
Ni/MCM-41 | 800 | 39,000 | 85 | [42] |
Ni/SiO2 | 700 | 24,000 | 41 | [43] |
3Ni/SBA-15 | 800 | 15,000 | 72 | [44] |
Ni/La+Zr | 700 | 8000 | 70 | [36] |
10 wt.% Ni/SA-5239 | 700 | 680 | 70 | [8] |
5%Ni/Y+Zr | 700 | 42,000 | 67 | Present work |
Country of Origin | Product Brand-Name | Abbreviated Name | BET (m2/g) | Pore-Volume (cm3/g) | Pore-Diameter (µm) |
---|---|---|---|---|---|
Tokyo, Japan (Daiichi Kigenso Kagaku Kogyo Co., Ltd.) | RC-100 (zirconia oxide) | RC | 100 | 0.38 | 7.2 |
Z-1325 (zirconia hydroxide) | ZH | 371 | 0.36 | 3.6 | |
DK-1 (zirconia oxide) | DK | 25 | 0.20 | 28.4 | |
Hefei, China (Anhui Elite Industrial Co., Ltd.) | ELTN (zirconia oxide) | EN | 28 | 0.21 | 32.5 |
Canada | MKnano (zirconia oxide) | MK | 4 | 0.10 | 19.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.A.; Fakeeha, A.H.; Lanre, M.S.; Al-Awadi, A.S.; Alreshaidan, S.B.; Albaqmaa, Y.A.; Adil, S.F.; Al-Zahrani, A.A.; Abasaeed, A.E.; Al-Fatesh, A.S. The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane. Catalysts 2022, 12, 361. https://doi.org/10.3390/catal12040361
Ibrahim AA, Fakeeha AH, Lanre MS, Al-Awadi AS, Alreshaidan SB, Albaqmaa YA, Adil SF, Al-Zahrani AA, Abasaeed AE, Al-Fatesh AS. The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane. Catalysts. 2022; 12(4):361. https://doi.org/10.3390/catal12040361
Chicago/Turabian StyleIbrahim, Ahmed Aidid, Anis Hamza Fakeeha, Mahmud Sofiu Lanre, Abdulrhman S. Al-Awadi, Salwa Bader Alreshaidan, Yousef Abdulrahman Albaqmaa, Syed Farooq Adil, Ateyah A. Al-Zahrani, Ahmed Elhag Abasaeed, and Ahmed S. Al-Fatesh. 2022. "The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane" Catalysts 12, no. 4: 361. https://doi.org/10.3390/catal12040361
APA StyleIbrahim, A. A., Fakeeha, A. H., Lanre, M. S., Al-Awadi, A. S., Alreshaidan, S. B., Albaqmaa, Y. A., Adil, S. F., Al-Zahrani, A. A., Abasaeed, A. E., & Al-Fatesh, A. S. (2022). The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane. Catalysts, 12(4), 361. https://doi.org/10.3390/catal12040361