Investigations on Structural, Electronic and Optical Properties of MoS2/CDs Heterostructure via First-Principles Study
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, E.; Singh, P.; Kim, K.S.; Yeom, G.Y.; Nalwa, H.S. Flexible Molybdenum Disulfide (MoS2) Atomic Layers for Wearable Electronics and Optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 11061–11105. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, F.; Patel, S.; Hu, Z.-L.; Tang, M.; Lou, J. Minimizing the Water Effect in Synthesis of High-Quality Monolayer MoS2 Nanosheets: Implications for Electronic and Optoelectronic Devices. ACS Appl. Nano Mater. 2021, 4, 8094–8100. [Google Scholar] [CrossRef]
- Tang, K.; Qi, W.; Li, Y.; Wang, T. Electronic properties of van der Waals heterostructure of black phosphorus and MoS2. J. Phys. Chem. C 2018, 122, 7027–7032. [Google Scholar] [CrossRef]
- Morales-Guio, C.; Hu, X. Amorphous Molybdenum Sulfides as Hydrogen Evolution Catalysts. Acc. Chem. Res. 2014, 47, 2671–2681. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Sun, Y.; Zheng, X.; Aoki, T.; Pattengale, B.; Huang, J.; He, X.; Bian, W.; Younan, S.; Williams, N.; et al. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982. [Google Scholar] [CrossRef]
- Lau, T.H.M.; Lu, X.; Kulhavý, J.; Wu, S.; Lu, L.; Wu, T.-S.; Kato, R.; Foord, J.S.; Soo, Y.-L.; Suenaga, K.; et al. Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chem. Sci. 2018, 9, 4769–4776. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Chen, T.; Pan, L.; Niu, L.; Hu, B.; Li, D.; Li, J.; Sun, Z. MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim. Acta 2015, 153, 55–61. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, W.; Gao, M.; Xu, H.; Guo, Y.; Sun, L.; Zheng, D.; Lin, J. A truncated octahedron metal-organic framework derived TiO2@C@MoS2 composite with superior lithium-ion storage properties. J. Power Sources 2021, 518, 230746. [Google Scholar] [CrossRef]
- Poudel, M.B.; Karki, H.P.; Kim, H.J. Silver nanoparticles decorated molybdenum sulfide/tungstate oxide nanorods as high performance supercapacitor electrode. J. Energy Storage 2020, 32, 101693. [Google Scholar] [CrossRef]
- Jaramillo, T.F.; Jørgensen, K.P.; Bonde, J.; Nelsen, J.H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef] [Green Version]
- Ganatra, R.; Zhang, Q. Few-Layer MoS2: A Promising Layered Semiconductor. ACS Nano 2014, 8, 4074–4099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huangfu, L.; Gu, Z.; Xiao, S.; Zhou, J.; Nan, H.; Gu, X.; Ostrikov, K. Controllable Epitaxial Growth of Large-Area MoS 2 /WS 2 Vertical Heterostructures by Confined-Space Chemical Vapor Deposition. Small 2021, 17, 2007312. [Google Scholar] [CrossRef] [PubMed]
- Zafiropoulou, I.; Katsiotis, M.S.; Boukos, N.; Karakassides, M.A.; Stephen, S.; Tzitzios, V.; Fardis, M.; Vladea, R.V.; Alhassan, S.M.; Papavassiliou, G. In Situ Deposition and Characterization of MoS2 Nanolayers on Carbon Nanofibers and Nanotubes. J. Phys. Chem. C 2013, 117, 10135–10142. [Google Scholar] [CrossRef]
- Jing, Y.; Ortiz-Quiles, E.O.; Cabrera, C.R.; Chen, Z.; Zhou, Z. Layer-by-Layer Hybrids of MoS2 and Reduced Graphene Oxide for Lithium Ion Batteries. Electrochim. Acta 2014, 147, 392–400. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, X.; Cai, Y.; Chen, J.; Wong, J.I.; Tay, Y.-Y.; Chai, J.; Wu, J.; Zeng, Z.; Zheng, B.; et al. Preparation of MoS2-MoO3Hybrid Nanomaterials for Light-Emitting Diodes. Angew. Chem. Int. Ed. 2014, 53, 12560–12565. [Google Scholar] [CrossRef]
- Sahatiya, P.; Jones, S.S.; Badhulika, S. 2D MoS2–carbon quantum dot hybrid based large area, flexible UV–vis–NIR photodetector on paper substrate. Appl. Mater. Today 2018, 10, 106–114. [Google Scholar] [CrossRef]
- Thangasamy, P.; Partheeban, T.; Sudanthiramoorthy, S.; Sathish, M. Enhanced Superhydrophobic Performance of BN-MoS2 Heterostructure Prepared via a Rapid, One-Pot Supercritical Fluid Processing. Langmuir 2017, 33, 6159–6166. [Google Scholar] [CrossRef]
- Zhao, Y.-F.; Yang, Z.-Y.; Zhang, Y.-X.; Jing, L.; Guo, X.; Ke, Z.; Hu, P.; Wang, G.; Yan, Y.-M.; Sun, K.-N. Cu2O Decorated with Cocatalyst MoS2 for Solar Hydrogen Production with Enhanced Efficiency under Visible Light. J. Phys. Chem. C 2014, 118, 14238–14245. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Karuppannan, M.; Vinothkannan, M.; Ramachandran, K.; Kwon, O.J.; Yoo, D.J. Ultrafine Pt Nanoparticles Stabilized by MoS2/N-Doped Reduced Graphene Oxide as a Durable Electrocatalyst for Alcohol Oxidation and Oxygen Reduction Reactions. ACS Appl. Mater. Interfaces 2019, 11, 12504–12515. [Google Scholar] [CrossRef]
- Poudel, M.B.; Ojha, G.P.; A Kim, A.; Kim, H.J. Manganese-doped tungsten disulfide microcones as binder-free electrode for high performance asymmetric supercapacitor. J. Energy Storage 2021, 47, 103674. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, H.; Sun, Y.; Tang, L.; Zhang, X. Doping MoS2 with Graphene Quantum Dots: Structural and Electrical Engineering towards Enhanced Electrochemical Hydrogen Evolution. Electrochim. Acta 2016, 211, 603–610. [Google Scholar] [CrossRef]
- Heng, Z.W.; Chong, W.C.; Pang, Y.L.; Koo, C.H. An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy ex-ploitation. J. Environ. Chem. Eng. 2021, 9, 105199. [Google Scholar] [CrossRef]
- Chen, W.; Li, D.; Tian, L.; Xiang, W.; Wang, T.; Hu, W.; Hu, Y.; Chen, S.; Chen, J.; Dai, Z. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem. 2018, 20, 4438–4442. [Google Scholar] [CrossRef]
- Luo, Z.; Qi, G.; Chen, K.; Zou, M.; Yuwen, L.; Zhang, X.; Huang, W.; Wang, L. Microwave-Assisted Preparation of White Fluorescent Graphene Quantum Dots as a Novel Phosphor for Enhanced White-Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 2739–2744. [Google Scholar] [CrossRef]
- Guo, X.; Wang, C.-F.; Yu, Z.-Y.; Chen, L.; Chen, S. Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem. Commun. 2012, 48, 2692–2694. [Google Scholar] [CrossRef]
- Su, W.; Wang, Y.; Wu, W.; Qin, H.; Song, K.; Huang, X.; Zhang, L.; Chen, D. Towards full-colour tunable photoluminescence of monolayer MoS2/carbon quantum dot ultra-thin films. J. Mater. Chem. C 2017, 5, 6352–6358. [Google Scholar] [CrossRef]
- Gan, Z.; Wu, X.; Hao, Y. The mechanism of blue photoluminescence from carbon nanodots. CrystEngComm 2014, 16, 4981–4986. [Google Scholar] [CrossRef]
- Zuo, P.; Lu, X.; Sun, Z.; Guo, Y.; He, H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Mikrochim. Acta 2015, 183, 519–542. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides. Chem. Eur. J. 2009, 15, 4195–4203. [Google Scholar] [CrossRef]
- Poudel, M.B.; Awasthi, G.P.; Kim, H.J. Novel insight into the adsorption of Cr(VI) and Pb(II) ions by MOF derived Co-Al layered double hydroxide @hematite nanorods on 3D porous carbon nanofiber network. Chem. Eng. J. 2021, 417, 129312. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, H.J. Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors. Chem. Eng. J. 2021, 429, 132345. [Google Scholar] [CrossRef]
- Yan, J.-A.; Chou, M.-Y. Oxidation functional groups on graphene: Structural and electronic properties. Phys. Rev. B 2010, 82, 125403. [Google Scholar] [CrossRef]
- Tang, S.; Wu, W.; Zhang, S.; Ye, D.; Zhong, P.; Li, X.; Liu, L.; Li, Y.-F. Tuning the activity of the inert MoS2 surface via graphene oxide support doping towards chemical functionalization and hydrogen evolution: A density functional study. Phys. Chem. Chem. Phys. 2018, 20, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Liu, Z.; Hu, S.; Chang, Q.; Xue, C.; Wang, H. Electronic and photocatalytic properties of modified MoS2/graphene quantum dots heterostructures: A computational study. Appl. Surf. Sci. 2019, 473, 70–76. [Google Scholar] [CrossRef]
- Danovich, M.; Aleiner, I.L.; Drummond, N.D.; Fal’Ko, V. Fast Relaxation of Photo-Excited Carriers in 2-D Transition Metal Dichalcogenides. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Feng, L.-P.; Zheng, X.; Hu, C.; Lu, H.; Liu, Z. Promising Approach for High-Performance MoS2 Nanodevice: Doping the BN Buffer Layer to Eliminate the Schottky Barriers. ACS Appl. Mater. Interfaces 2017, 9, 40940–40948. [Google Scholar] [CrossRef]
- Zhang, J.; Lang, X.Y.; Zhu, Y.F.; Jiang, Q. Strain tuned InSe/MoS2 bilayer van der Waals heterostructures for photovoltaics or photocatalysis. Phys. Chem. Chem. Phys. 2018, 20, 17574–17582. [Google Scholar] [CrossRef]
- Kośmider, K.; Fernández-Rossier, J. Electronic properties of the MoS2-WS2heterojunction. Phys. Rev. B 2013, 87, 075451. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shu, H.; Wang, S.; Wang, J. Electronic and Optical Properties of Graphene Quantum Dots: The Role of Many-Body Effects. J. Phys. Chem. C 2015, 119, 4983–4989. [Google Scholar] [CrossRef]
- Petkov, V.; Billinge, S.J.L.; Larson, P.; Mahanti, S.D.; Vogt, T.; Rangan, K.K.; Kanatzidis, M.G. Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of LiMoS2. Phys. Rev. B 2002, 65, 092105. [Google Scholar] [CrossRef] [Green Version]
- Lauritsen, J.; Kibsgaard, J.; Helveg, S.; Topsøe, H.; Clausen, B.S.; Laegsgaard, E.; Besenbacher, F. Size-dependent structure of MoS2 nanocrystals. Nat. Nanotechnol. 2007, 2, 53–58. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Lee, H.S.; Min, S.-W.; Chang, Y.-G.; Park, M.K.; Nam, T.; Kim, H.; Kim, J.H.; Ryu, S.; Im, S. MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. Nano Lett. 2012, 12, 3695–3700. [Google Scholar] [CrossRef]
- Feng, L.-P.; Sun, H.-Q.; Li, A.; Su, J.; Zhang, Y.; Liu, Z.-T. Influence of Mo-vacancy concentration on the structural, electronic and optical properties of monolayer MoS2: A first-principles study. Mater. Chem. Phys. 2018, 209, 146–151. [Google Scholar] [CrossRef]
- Ong, W.-J.; Putri, L.K.; Tan, Y.-C.; Tan, L.-L.; Li, N.; Ng, Y.H.; Wen, X.; Chai, S.-P. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study. Nano Res. 2017, 10, 1673–1696. [Google Scholar] [CrossRef]
- Dürr, H. Handbook of Photochemistry; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 2006, 73, 045112. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Pan, H.; Zhang, Y.-W.; Yakobson, B.I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 2013, 87, 155304. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ahluwalia, P. Ahluwalia, A first principle comparative study of electronic and optical properties of 1H-MoS2 and 2H-MoS2. Mater. Chem. Phys. 2012, 135, 755–761. [Google Scholar] [CrossRef]
- Liang, W.Y.; A Wilson, J.; Yoffe, A.D. Optical studies of metal-semiconductor transmutations produced by intercalation. J. Phys. C: Solid State Phys. 1971, 4, L18–L20. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.-P.; Su, J.; Liu, Z.-T. Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: A first-principles study. J. Alloys Compd. 2014, 613, 122–127. [Google Scholar] [CrossRef]
- Yang, C.-L.; Wang, M.-S.; Ma, X.G. First-principles study on the electronic and optical properties of WS2 and MoS2 monolayers. Chin. J. Phys. 2017, 55, 1930–1937. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.-L.; Araujo, C.M.; Luo, W.; Ahuja, R. Single-layer MoS2 as an efficient photocatalyst. Catal. Sci. Technol. 2013, 3, 2214–2220. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Teng, A.; Chang, Z.; Yuan, P.; Zhang, D.; Yu, J. Investigations on Structural, Electronic and Optical Properties of MoS2/CDs Heterostructure via First-Principles Study. Catalysts 2022, 12, 456. https://doi.org/10.3390/catal12050456
Yin X, Teng A, Chang Z, Yuan P, Zhang D, Yu J. Investigations on Structural, Electronic and Optical Properties of MoS2/CDs Heterostructure via First-Principles Study. Catalysts. 2022; 12(5):456. https://doi.org/10.3390/catal12050456
Chicago/Turabian StyleYin, Xianglu, Aijun Teng, Zhi Chang, Peng Yuan, Dongbin Zhang, and Jiyang Yu. 2022. "Investigations on Structural, Electronic and Optical Properties of MoS2/CDs Heterostructure via First-Principles Study" Catalysts 12, no. 5: 456. https://doi.org/10.3390/catal12050456
APA StyleYin, X., Teng, A., Chang, Z., Yuan, P., Zhang, D., & Yu, J. (2022). Investigations on Structural, Electronic and Optical Properties of MoS2/CDs Heterostructure via First-Principles Study. Catalysts, 12(5), 456. https://doi.org/10.3390/catal12050456