Immobilization of Polyoxometalates on Carbon Nanotubes: Tuning Catalyst Activity, Selectivity and Stability in H2O2-Based Oxidations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Carbon Support Characterization and POM Adsorption
2.1.1. Carbon Nanotubes Synthesis and Characterization
2.1.2. POM Adsorption Study
2.1.3. POM/(N)-CNTs Catalysts Characterization
2.2. Catalytic Activity of POM/(N)-CNTs in H2O2-Based Oxidations
2.2.1. Alkene Oxidation
2.2.2. Alkylphenol Oxidation
2.2.3. Thioethers Oxidation
2.3. Catalyst Stability and Reusability
3. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Teles, J.H.; Partenheimer, W.; Jira, R.; Cavani, F.; Strukul, G.; Hage, R.; de Boer, J.W.; Goossen, L.; Mamone, P.; Kholdeeva, O.A. Oxidation. In Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, 3rd ed.; Cornils, B., Hermann, W.A., Beller, M., Paciello, R., Eds.; Wiley-VCH: Weinheim, Germany, 2017; Volume 2, pp. 465–568. [Google Scholar]
- Duprez, D.; Cavani, F. (Eds.) Handbook of Advanced Methods and Processes in Oxidation Catalysis; Imperial College Press: London, UK, 2014. [Google Scholar]
- Clerici, M.G.; Kholdeeva, O.A. (Eds.) Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Mizuno, N. (Ed.) Modern Heterogeneous Oxidation Catalysis: Design, Reactions and Characterization; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Sheldon, R.A. E factors, green chemistry and catalysis: An odyssey. Chem. Comm. 2008, 29, 3352–3365. [Google Scholar] [CrossRef] [PubMed]
- Campos-Martin, J.M.; Blanco-Brieva, G.; Fierro, J.L. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 2006, 45, 6962–6984. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.W. Applications of Hydrogen Peroxide and Derivatives; Royal Society of Chemistry: Cambridge, UK, 1999. [Google Scholar]
- Pope, M.T.; Jeannin, Y.; Fournier, M. Heteropoly and Isopoly Oxometalates; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- López, X.; Carbó, J.J.; Bo, C.; Poblet, J.M. Structure, properties and reactivity of polyoxometalates: A theoretical perspective. Chem. Soc. Rev. 2012, 41, 7537–7571. [Google Scholar] [CrossRef] [PubMed]
- Long, D.L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. 2010, 49, 1736–1758. [Google Scholar] [CrossRef]
- Kortz, U.; Mueller, A.; van Slageren, J.; Schnack, J.; Dalal, N.S.; Dressel, M. Polyoxometalates: Fascinating structures, unique magnetic properties. Coord. Chem. Rev. 2009, 253, 2315–2327. [Google Scholar] [CrossRef]
- Hill, C.L.; Prosser-McCartha, C.M. Homogeneous catalysis by transition metal oxygen anion clusters. Coord. Chem. Rev. 1995, 143, 407–455. [Google Scholar] [CrossRef]
- Wang, S.S.; Yang, G.Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962. [Google Scholar] [CrossRef]
- Omwoma, S.; Gore, C.T.; Ji, Y.; Hu, C.; Song, Y.F. Environmentally benign polyoxometalate materials. Coord. Chem. Rev. 2015, 286, 17–29. [Google Scholar] [CrossRef]
- Lv, H.; Geletii, Y.V.; Zhao, C.; Vickers, J.W.; Zhu, G.; Luo, Z.; Song, J.; Lian, T.; Musaev, D.G.; Hill, C.L. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 2012, 41, 7572–7589. [Google Scholar] [CrossRef]
- Hill, C.L. Progress and challenges in polyoxometalate-based catalysis and catalytic materials chemistry. J. Mol. Cat. A Chem. 2007, 262, 2–6. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Z.; Hou, W.; Wang, Q.; Wang, J. Polyoxometalate-based phase transfer catalysis for liquid-solid organic reactions: A review. Cat. Sci. Technol. 2015, 5, 4324–4335. [Google Scholar] [CrossRef]
- Ahmadian, M.; Anbia, M. Oxidative desulfurization of liquid fuels using polyoxometalate-based catalysts: A review. Energy Fuels 2021, 35, 10347–10373. [Google Scholar] [CrossRef]
- Vilà-Nadal, L.; Cronin, L. Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nat. Rev. Mater. 2017, 2, 17054. [Google Scholar] [CrossRef]
- Wang, Y.; Weinstock, I.A. Polyoxometalate-decorated nanoparticles. Chem. Soc. Rev. 2012, 41, 7479–7496. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J.; Bond, A.M.; Forster, R.J.; Keyes, T.E. Hybrid polyoxometalate materials for photo (electro-) chemical applications. Coord. Chem. Rev. 2016, 306, 217–234. [Google Scholar] [CrossRef]
- Proust, A.; Matt, B.; Villanneau, R.; Guillemot, G.; Gouzerh, P.; Izzet, G. Functionalization and post-functionalization: A step towards polyoxometalate-based materials. Chem. Soc. Rev. 2012, 41, 7605–7622. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord. Chem. Rev. 2011, 255, 2358–2370. [Google Scholar] [CrossRef]
- Mizuno, N.; Yamaguchi, K.; Kamata, K. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coord. Chem. Rev. 2005, 249, 1944–1956. [Google Scholar] [CrossRef]
- Brégeault, J.M.; Vennat, M.; Salles, L.; Piquemal, J.Y.; Mahha, Y.; Briot, E.; Bakala, P.C.; Atlamsani, A.; Thouvenot, R. From polyoxometalates to polyoxoperoxometalates and back again; potential applications. J. Mol. Cat. A Chem. 2006, 250, 177–189. [Google Scholar] [CrossRef]
- Vazylyev, M.; Sloboda-Rozner, D.; Haimov, A.; Maayan, G.; Neumann, R. Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Top. Catal. 2005, 34, 93–99. [Google Scholar] [CrossRef]
- Neumann, R. Applications of polyoxometalates in homogeneous catalysis. In Polyoxometalate Molecular Science; Borras-Almenar, J.J., Coronado, E., Mueller, A., Pope, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 327–349. [Google Scholar]
- Mizuno, N.; Kamata, K.; Yamaguchi, K. Green oxidation reactions by polyoxometalate-based catalysts: From molecular to solid catalysts. Top. Catal. 2010, 53, 876–893. [Google Scholar] [CrossRef]
- Hill, C.L.; Kholdeeva, O.A. Selective liquid phase oxidations in the presence of supported polyoxometalates. In Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications; Clerici, M.G., Kholdeeva, O.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 263–319. [Google Scholar]
- Samaniyan, M.; Mirzaei, M.; Khajavian, R.; Eshtiagh-Hosseini, H.; Streb, C. Heterogeneous catalysis by polyoxometalates in metal–organic frameworks. ACS Catal. 2019, 9, 10174–10191. [Google Scholar] [CrossRef]
- Stamate, A.E.; Pavel, O.D.; Zavoianu, R.; Marcu, I.C. Highlights on the catalytic properties of polyoxometalate-intercalated layered double hydroxides: A review. Catalysts 2020, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Kholdeeva, O.A.; Maksimchuk, N.V.; Maksimov, G.M. Polyoxometalate-based heterogeneous catalysts for liquid phase selective oxidations: Comparison of different strategies. Catal. Tod. 2010, 157, 107–113. [Google Scholar] [CrossRef]
- Thompson, D.J.; Zhang, Y.; Ren, T. Polyoxometalate [γ-SiW10O34(H2O)2]4− on MCM-41 as catalysts for sulfide oxygenation with hydrogen peroxide. J. Mol. Cat. A Chem. 2014, 392, 188–193. [Google Scholar] [CrossRef]
- Sakamoto, T.; Pac, C. Selective epoxidation of olefins by hydrogen peroxide in water using a polyoxometalate catalyst supported on chemically modified hydrophobic mesoporous silica gel. Tet. Lett. 2000, 41, 10009–10012. [Google Scholar] [CrossRef]
- Zhao, H.; Zeng, L.; Li, Y.; Liu, C.; Hou, B.; Wu, D.; Feng, N.; Zheng, A.; Xie, X.; Su, S.; et al. Polyoxometalate-based ionic complexes immobilized in mesoporous silicas prepared via a one-pot procedure: Efficient and reusable catalysts for H2O2-mediated alcohol oxidations in aqueous media. Microporous Mesoporous Mater. 2013, 172, 67–76. [Google Scholar] [CrossRef]
- Mizuno, N.; Yamaguchi, K. Polyoxometalate catalysts: Toward the development of green H2O2-based epoxidation systems. Chem. Rec. 2006, 6, 12–22. [Google Scholar] [CrossRef]
- Kasai, J.; Nakagawa, Y.; Uchida, S.; Yamaguchi, K.; Mizuno, N. [γ-1,2-H2SiV2W10O40] Immobilized on Surface-Modified SiO2 as a Heterogeneous Catalyst for Liquid-Phase Oxidation with H2O2. Chem. Eur. J. 2006, 12, 4176–4184. [Google Scholar] [CrossRef]
- Hajian, R.; Jafari, F. Zinc polyoxometalate immobilized on ionic liquid-modified MCM-41: An efficient reusable catalyst for the selective oxidation of alcohols with hydrogen peroxide. J. Iran. Chem. Soc. 2019, 16, 563–570. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Yoshida, C.; Uchida, S.; Mizuno, N. Peroxotungstate immobilized on ionic liquid-modified silica as a heterogeneous epoxidation catalyst with hydrogen peroxide. J. Am. Chem. Soc. 2005, 127, 530–531. [Google Scholar] [CrossRef] [PubMed]
- Craven, M.; Xiao, D.; Kunstmann-Olsen, C.; Kozhevnikova, E.F.; Blanc, F.; Steiner, A.; Kozhevnikov, I.V. Oxidative desulfurization of diesel fuel catalyzed by polyoxometalate immobilized on phosphazene-functionalized silica. Appl. Catal. B Environ. 2018, 231, 82–91. [Google Scholar] [CrossRef]
- Dong, X.; Wang, D.; Li, K.; Zhen, Y.; Hu, H.; Xue, G. Vanadium-substituted heteropolyacids immobilized on amine-functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H2O2. Mater. Res. Bull. 2014, 57, 210–220. [Google Scholar] [CrossRef]
- Al-Oweini, R.; Aghyarian, S.; El-Rassy, H. Immobilized polyoxometalates onto mesoporous organically-modified silica aerogels as selective heterogeneous catalysts of anthracene oxidation. J. Sol-Gel Sci. Technol. 2012, 61, 541–550. [Google Scholar] [CrossRef]
- Karimi, Z.; Mahjoub, A.R.; Harati, S.M. Polyoxometalate-based hybrid mesostructured catalysts for green epoxidation of olefins. Inorg. Chim. Acta 2011, 376, 1–9. [Google Scholar] [CrossRef]
- Kamata, K.; Yonehara, K.; Sumida, Y.; Hirata, K.; Nojima, S.; Mizuno, N. Efficient heterogeneous epoxidation of alkenes by a supported tungsten oxide catalyst. Angew. Chem. Int. Ed. 2011, 50, 12062–12066. [Google Scholar] [CrossRef]
- Nojima, S.; Kamata, K.; Suzuki, K.; Yamaguchi, K.; Mizuno, N. Selective Oxidation with Aqueous Hydrogen Peroxide by [PO4{WO(O2)2}4]3− Supported on Zinc-Modified Tin Dioxide. ChemCatChem 2015, 7, 1097–1104. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, F.; Zhu, Q.; Zhao, W.; Ma, B.; Ding, Y. Magnetically separable polyoxometalate catalyst for the oxidation of dibenzothiophene with H2O2. J. Colloid Interface Sci. 2011, 360, 189–194. [Google Scholar] [CrossRef]
- Leng, Y.; Zhao, J.; Jiang, P.; Wang, J. Amphiphilic polyoxometalate-paired polymer coated Fe3O4: Magnetically recyclable catalyst for epoxidation of bio-derived olefins with H2O2. ACS Appl. Mater. Interfaces 2014, 6, 5947–5954. [Google Scholar] [CrossRef]
- Gholamyan, S.; Khoshnavazi, R.; Rostami, A.; Bahrami, L. Immobilized Sandwich-Type Polyoxometalates [Mn4(XW9O34)2]n− on Tb-Doped TiO2 Nanoparticles as Efficient and Selective Catalysts in the Oxidation of Sulfides and Alcohols. Catal. Lett. 2017, 147, 71–81. [Google Scholar] [CrossRef]
- Liu, P.; Wang, C.; Li, C. Epoxidation of allylic alcohols on self-assembled polyoxometalates hosted in layered double hydroxides with aqueous H2O2 as oxidant. J. Catal. 2009, 262, 159–168. [Google Scholar] [CrossRef]
- Liu, K.; Yao, Z.; Miras, H.N.; Song, Y.F. Facile immobilization of a Lewis acid polyoxometalate onto layered double hydroxides for highly efficient N-oxidation of pyridine based derivatives and denitrogenation. ChemCatChem 2015, 7, 3903–3910. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Zhu, K.; Lu, X.; Zhang, G.; Yao, C.; Kong, Y.; Liu, J. Restructuring of silica-pillared clay (SPC) through posthydrothermal treatment and application as phosphotungstic acid supports for cyclohexene oxidation. J. Colloid Interface Sci. 2015, 446, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Swalus, C.; Farin, B.; Gillard, F.; Devillers, M.; Gaigneaux, E.M. Hybrid peroxotungstophosphate organized catalysts highly active and selective in alkene epoxidation. Catal. Commun. 2013, 37, 80–84. [Google Scholar] [CrossRef]
- Lang, X.; Li, Z.; Xia, C. [α-PW12O40]3− Immobilized on Ionic Liquid-Modified Polymer as a Heterogeneous Catalyst for Alcohol Oxidation with Hydrogen Peroxide. Synth. Commun. 2008, 38, 1610–1616. [Google Scholar] [CrossRef]
- Maradur, S.P.; Jo, C.; Choi, D.H.; Kim, K.; Ryoo, R. Mesoporous Polymeric Support Retaining High Catalytic Activity of Polyoxotungstate for Liquid-Phase Olefin Epoxidation using H2O2. ChemCatChem 2011, 3, 1435–1438. [Google Scholar] [CrossRef]
- Peng, C.; Lu, X.H.; Ma, X.T.; Shen, Y.; Wei, C.C.; He, J.; Zhou, D.; Xia, Q.H. Highly efficient epoxidation of cyclohexene with aqueous H2O2 over powdered anion-resin supported solid catalysts. J. Mol. Catal. A Chem. 2016, 423, 393–399. [Google Scholar] [CrossRef]
- Zheng, W.; Wu, M.; Yang, C.; Chen, Y.; Tan, R.; Yin, D. Alcohols selective oxidation with H2O2 catalyzed by robust heteropolyanions intercalated in ionic liquid-functionalized graphene oxide. Mater. Chem. Phys. 2020, 256, 123681. [Google Scholar] [CrossRef]
- Zhang, W.H.; Shen, J.J.; Wu, J.; Liang, X.Y.; Xu, J.; Liu, P.; Xue, B.; Li, Y.X. An amphiphilic graphene oxide-immobilized polyoxometalate-based ionic liquid: A highly efficient triphase transfer catalyst for the selective oxidation of alcohols with aqueous H2O2. Mol. Catal. 2017, 443, 262–269. [Google Scholar] [CrossRef]
- Masteri-Farahani, M.; Alavijeh, M.K.; Hosseini, M.S. Venturello anion immobilized on the surface of porous activated carbon as heterogeneous catalyst for the epoxidation of olefins. React. Kinet. Mech. Catal. 2020, 130, 303–315. [Google Scholar] [CrossRef]
- Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042. [Google Scholar] [CrossRef] [PubMed]
- Maksimchuk, N.V.; Timofeeva, M.N.; Melgunov, M.S.; Shmakov, A.N.; Chesalov, Y.A.; Dybtsev, D.N.; Fedin, V.P.; Kholdeeva, O.A. Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. J. Catal. 2008, 257, 315–323. [Google Scholar] [CrossRef]
- Maksimchuk, N.V.; Kovalenko, K.A.; Arzumanov, S.S.; Chesalov, Y.A.; Melgunov, M.S.; Stepanov, A.G.; Fedin, V.P.; Kholdeeva, O.A. Hybrid polyoxotungstate/MIL-101 materials: Synthesis, characterization, and catalysis of H2O2-based alkene epoxidation. Inorg. Chem. 2010, 49, 2920–2930. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Wei, W.; Xiao, F.; Xi, Y.; Chen, S.L.; Wang, J.L.; Xu, Y.; Hu, C. High-valent cationic metal-organic macrocycles as novel supports for immobilization and enhancement of activity of polyoxometalate catalysts. Catal. Sci. Technol. 2016, 6, 8540–8547. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, W.; Ma, B.; Ding, Y. The epoxidation of olefins catalyzed by a new heterogeneous polyoxometalate-based catalyst with hydrogen peroxide. Catal. Comm. 2010, 12, 318–322. [Google Scholar] [CrossRef]
- Nlate, S.; Plault, L.; Astruc, D. Synthesis of 9- and 27-Armed Tetrakis (diperoxotungsto)phosphate-Cored Dendrimers and Their Use as Recoverable and Reusable Catalysts in the Oxidation of Alkenes, Sulfides, and Alcohols with Hydrogen Peroxide. Chem. Eur. J. 2006, 12, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhou, Y.; Long, Z.; Wang, X.; Li, J.; Wang, J. Mesoporous polyoxometalate-based ionic hybrid as a triphasic catalyst for oxidation of benzyl alcohol with H2O2 on water. ACS Appl. Mater. Interfaces 2014, 6, 4438–4446. [Google Scholar] [CrossRef]
- Qi, W.; Wang, Y.; Li, W.; Wu, L. Surfactant-Encapsulated Polyoxometalates as Immobilized Supramolecular Catalysts for Highly Efficient and Selective Oxidation Reactions. Chem. Eur. J. 2010, 16, 1068–1078. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Shaterian, M.; Aghmasheh, M. Catalytic oxidative desulphurization of gasoline using amphiphilic polyoxometalate@polymer nanocomposite as an efficient, reusable, and green organic–inorganic hybrid catalyst. Environ. Technol. 2020, 41, 1219–1231. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Asli, M.A.N.; Oveisi, M.; Babaei, R.; Qasemi, K.; Khandan, S. An organic–inorganic hybrid based on an Anderson-type polyoxometalate immobilized on PVA as a reusable and efficient nanocatalyst for oxidative desulphurization of gasoline. RSC Adv. 2016, 6, 53069–53079. [Google Scholar] [CrossRef]
- Hua, L.; Chen, J.; Chen, C.; Zhu, W.; Yu, Y.; Zhang, R.; Guo, L.; Song, B.; Gan, H.; Hou, Z. Immobilization of polyoxometalate-based ionic liquid on carboxymethyl cellulose for epoxidation of olefins. New J. Chem. 2014, 38, 3953–3959. [Google Scholar] [CrossRef]
- Buru, C.T.; Farha, O.K. Strategies for incorporating catalytically active polyoxometalates in metal–organic frameworks for organic transformations. ACS Appl. Mater. Interfaces 2020, 12, 5345–5360. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Liu, G.; Lv, Z.; Si, C.; Han, H.; Jin, M. Mono-substituted polyoxometalate clusters@Zr-MOFs: Reactivity, kinetics, and catalysis for cycloolefins-H2O2 biphase reactions. Mol. Catal. 2021, 504, 111465. [Google Scholar] [CrossRef]
- Song, X.; Hu, D.; Yang, X.; Zhang, H.; Zhang, W.; Li, J.; Jia, M.; Yu, J. Polyoxomolybdic cobalt encapsulated within Zr-based metal-organic frameworks as efficient heterogeneous catalysts for olefins epoxidation. ACS Sustain. Chem. Eng. 2019, 7, 3624–3631. [Google Scholar] [CrossRef]
- Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Shams, E.; Salavati, H. Olefin epoxidation with H2O2 catalyzed by vanadium-containing polyphosphomolybdates immobilized on TiO2 nanoparticles under different conditions. Catal. Comm. 2008, 9, 1001–1009. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, D.; Ma, N.; Hou, Z.; Hu, M.; Wang, C.; Wang, W. Covalent immobilization of a polyoxometalate in a porous polymer matrix: A heterogeneous catalyst towards sustainability. RSC Adv. 2013, 3, 21544–21551. [Google Scholar] [CrossRef]
- Guillemot, G.; Matricardi, E.; Chamoreau, L.M.; Thouvenot, R.; Proust, A. Oxidovanadium (V) Anchored to Silanol-Functionalized Polyoxotungstates: Molecular Models for Single-Site Silica-Supported Vanadium Catalysts. ACS Catal. 2015, 5, 7415–7423. [Google Scholar] [CrossRef]
- Hoegaerts, D.; Sels, B.F.; De Vos, D.E.; Verpoort, F.; Jacobs, P.A. Heterogeneous tungsten-based catalysts for the epoxidation of bulky olefins. Catal. Tod. 2000, 60, 209–218. [Google Scholar] [CrossRef]
- Zhu, J.; Holmen, A.; Chen, D. Carbon nanomaterials in catalysis: Proton affinity, chemical and electronic properties, and their catalytic consequences. ChemCatChem 2013, 5, 378–401. [Google Scholar] [CrossRef]
- Toma, F.M.; Sartorel, A.; Iurlo, M.; Carraro, M.; Parisse, P.; Maccato, C.; Rapino, S.; Gonzalez, B.R.; Amenitsch, H.; Da Ros, T.; et al. Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat. Chem. 2010, 2, 826–831. [Google Scholar] [CrossRef]
- Jawale, D.V.; Fossard, F.; Miserque, F.; Geertsen, V.; Teillout, A.L.; de Oliveira, P.; Mbomekalle, I.M.; Gravel, E.; Doris, E. Carbon nanotube-polyoxometalate nanohybrids as efficient electro-catalysts for the hydrogen evolution reaction. Carbon 2022, 188, 523–532. [Google Scholar] [CrossRef]
- Pan, D.; Chen, J.; Tao, W.; Nie, L.; Yao, S. Polyoxometalate-modified carbon nanotubes: New catalyst support for methanol electro-oxidation. Langmuir 2006, 22, 5872–5876. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Huang, L.; Hu, J.; Streb, C.; Song, Y.F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 2015, 8, 776–789. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, B.; Jia, X.; Hu, H.; He, L.; Chen, W.; Song, Y.F. Fabrication of redox-active polyoxometalate-based ionic crystals onto single-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries. Inorg. Chem. Front. 2020, 7, 1420–1427. [Google Scholar] [CrossRef]
- Ji, Y.; Hu, J.; Huang, L.; Chen, W.; Streb, C.; Song, Y.F. Covalent attachment of Anderson-type polyoxometalates to single-walled carbon nanotubes gives enhanced performance electrodes for lithium ion batteries. Chem. Eur. J. 2015, 21, 6469–6474. [Google Scholar] [CrossRef]
- Chen, W.; Huang, L.; Hu, J.; Li, T.; Jia, F.; Song, Y.F. Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials. Phys. Chem. Chem. Phys. 2014, 16, 19668–19673. [Google Scholar] [CrossRef]
- Kawasaki, N.; Wang, H.; Nakanishi, R.; Hamanaka, S.; Kitaura, R.; Shinohara, H.; Yokoyama, T.; Yoshikawa, H.; Awaga, K. Nanohybridization of polyoxometalate clusters and single-wall carbon nanotubes: Applications in molecular cluster batteries. Angew. Chem. Int. Ed. 2011, 50, 3471–3474. [Google Scholar] [CrossRef]
- Hu, J.; Ji, Y.; Chen, W.; Streb, C.; Song, Y.F. “Wiring” redox-active polyoxometalates to carbon nanotubes using a sonication-driven periodic functionalization strategy. Energy Environ. Sci. 2016, 9, 1095–1101. [Google Scholar] [CrossRef] [Green Version]
- Akter, T.; Hu, K.; Lian, K. Investigations of multilayer polyoxometalates-modified carbon nanotubes for electrochemical capacitors. Electrochim. Acta 2011, 56, 4966–4971. [Google Scholar] [CrossRef]
- Cuentas-Gallegos, A.K.; Martínez-Rosales, R.; Baibarac, M.; Gomez-Romero, P.; Rincón, M.E. Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates. Electrochem. Commun. 2007, 9, 2088–2092. [Google Scholar] [CrossRef]
- Ma, D.; Liang, L.; Chen, W.; Liu, H.; Song, Y.F. Covalently Tethered Polyoxometalate-Pyrene Hybrids for Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes as High-Performance Anode Material. Adv. Funct. Mater. 2013, 23, 6100–6105. [Google Scholar] [CrossRef]
- Hajian, R.; Alghour, Z. Selective oxidation of alcohols with H2O2 catalyzed by zinc polyoxometalate immobilized on multi-wall carbon nanotubes modified with ionic liquid. Chin. Chem. Lett. 2017, 28, 971–975. [Google Scholar] [CrossRef]
- Salavati, H.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Mohammadpoor-Baltork, I. Sonocatalytic epoxidation of alkenes by vanadium-containing polyphosphomolybdate immobilized on multi-wall carbon nanotubes. Ultrason. Sonochemistry 2010, 17, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yu, F.; Zhang, G.; Zhao, H. Performance evaluation of the carbon nanotubes supported Cs2.5H0.5PW12O40 as efficient and recoverable catalyst for the oxidative removal of dibenzothiophene. Catal. Tod. 2010, 150, 37–41. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, R.; Zhang, G.; Zheng, Y.; Zhao, J. Oxidative desulfurization of model fuel in the presence of molecular oxygen over polyoxometalate based catalysts supported on carbon nanotubes. Fuel 2018, 224, 261–270. [Google Scholar] [CrossRef]
- Giusti, A.; Charron, G.; Mazerat, S.; Compain, J.D.; Mialane, P.; Dolbecq, A.; Riviere, E.; Wernsdorfer, W.; Biboum, R.N.; Keita, B.; et al. Magnetic Bistability of Individual Single-Molecule Magnets Grafted on Single-Wall Carbon Nanotubes. Angew. Chem. Int. Ed. 2009, 48, 4949–4952. [Google Scholar] [CrossRef]
- Cao, Y.; Mao, S.; Li, M.; Chen, Y.; Wang, Y. Metal/porous carbon composites for heterogeneous catalysis: Old catalysts with improved performance promoted by N-doping. ACS Catal. 2017, 7, 8090–8112. [Google Scholar] [CrossRef]
- Podyacheva, O.Y.; Ismagilov, Z.R. Nitrogen-doped carbon nanomaterials: To the mechanism of growth, electrical conductivity and application in catalysis. Catal. Tod. 2015, 249, 12–22. [Google Scholar] [CrossRef]
- Podyacheva, O.Y.; Cherepanova, S.V.; Romanenko, A.I.; Kibis, L.S.; Svintsitskiy, D.A.; Boronin, A.I.; Stonkus, O.A.; Suboch, A.N.; Puzynin, A.V.; Ismagilov, Z.R. Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties. Carbon 2017, 122, 475–483. [Google Scholar] [CrossRef]
- Mabena, L.F.; Ray, S.S.; Mhlanga, S.D.; Coville, N.J. Nitrogen-doped carbon nanotubes as a metal catalyst support. Appl. Nanosci. 2011, 1, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Ayala, P.; Arenal, R.; Rümmeli, M.; Rubio, A.; Pichler, T. The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 2010, 48, 575–586. [Google Scholar] [CrossRef]
- Evtushok, V.Y.; Suboch, A.N.; Podyacheva, O.Y.; Stonkus, O.A.; Zaikovskii, V.I.; Chesalov, Y.A.; Kibis, L.S.; Kholdeeva, O.A. Highly efficient catalysts based on divanadium-substituted polyoxometalate and N-doped carbon nanotubes for selective oxidation of alkylphenols. ACS Catal. 2018, 8, 1297–1307. [Google Scholar] [CrossRef]
- Evtushok, V.Y.; Ivanchikova, I.D.; Podyacheva, O.Y.; Stonkus, O.A.; Suboch, A.N.; Chesalov, Y.A.; Zalomaeva, O.V.; Kholdeeva, O.A. Carbon nanotubes modified by Venturello complex as highly efficient catalysts for alkene and thioethers oxidation with hydrogen peroxide. Front. Chem. 2019, 7, 858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evtushok, V.Y.; Podyacheva, O.Y.; Suboch, A.N.; Maksimchuk, N.V.; Stonkus, O.A.; Kibis, L.S.; Kholdeeva, O.A. H2O2-based selective oxidations by divanadium-substituted polyoxotungstate supported on nitrogen-doped carbon nanomaterials. Catal. Tod. 2020, 354, 196–203. [Google Scholar] [CrossRef]
- Evtushok, V.Y.; Ivanchikova, I.D.; Lopatkin, V.A.; Maksimchuk, N.V.; Podyacheva, O.Y.; Suboch, A.N.; Stonkus, O.A.; Kholdeeva, O.A. Heterolytic alkene oxidation with H2O2 catalyzed by Nb-substituted Lindqvist tungstates immobilized on carbon nanotubes. Catal. Sci. Technol. 2021, 11, 3198–3207. [Google Scholar] [CrossRef]
- Suboch, A.N.; Cherepanova, S.V.; Kibis, L.S.; Svintsitskiy, A.D.; Stonkus, O.A.; Boronin, A.I.; Chesnokov, V.V.; Romanenko, A.I.; Ismagilov, Z.R.; Podyacheva, O.Y. Aerobic oxidation of syringyl alcohol over N-doped carbon nanotubes. Fuller. Nanotub. Carbon Nanostructures 2016, 24, 520–530. [Google Scholar] [CrossRef]
- Evtushok, V.Y.; Lopatkin, V.A. unpublished results.
- Strano, M.S.; Huffman, C.B.; Moore, V.C.; O’Connell, M.J.; Haroz, E.H.; Hubbard, J.; Miller, M.; Rialon, K.; Kitrell, C.; Ramesh, S.; et al. Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J. Phys. Chem. B 2003, 107, 6979–6985. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, S.; Ericson, L.M.; Davis, V.A.; Saini, R.K.; Kittrell, C.; Pasquali, M.; Billups, W.E.; Adams, W.W.; Hauge, R.H.; Smalley, R.E. Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 2004, 108, 8794–8798. [Google Scholar] [CrossRef]
- Parra-Vasquez, A.N.G.; Behabtu, N.; Green, M.J.; Pint, C.L.; Young, C.C.; Schmidt, J.; Kesselman, E.; Goyal, A.; Ajayan, P.M.; Cohen, Y.; et al. Spontaneous dissolution of ultralong single-and multiwalled carbon nanotubes. ACS Nano 2010, 4, 3969–3978. [Google Scholar] [CrossRef]
- Zalomaeva, O.V.; Podyacheva, O.Y.; Suboch, A.N.; Kibis, L.S.; Kholdeeva, O.A. Aerobic oxidation of syringyl alcohol over N-doped carbon nanotubes. Appl. Catal. A Gen. 2022, 629, 118424. [Google Scholar] [CrossRef]
- Childs, R.F.; Parrington, B.D. Protonation of Methyl Substituted Phenols in Super Acids. Can. J. Chem. 1974, 52, 3303–3312. [Google Scholar] [CrossRef]
- Solcà, N.; Dopfer, O. Protonation of aromatic molecules: Competition between ring and oxygen protonation of phenol (Ph) revealed by IR spectra of PhH+-Arn. Chem. Phys. Lett. 2001, 342, 191–199. [Google Scholar] [CrossRef]
- Bulusheva, L.G.; Fedorovskaya, E.O.; Kurenya, A.G.; Okotrub, A.V. Supercapacitor performance of nitrogen-doped carbon nanotube arrays. Phys. Status Solidi B 2013, 250, 2586–2591. [Google Scholar] [CrossRef]
- Kamata, K.; Sugahara, K.; Ishimoto, R.; Nojima, S.; Okazaki, M.; Matsumoto, T.; Mizuno, N. Highly selective epoxidation of cycloaliphatic alkenes with aqueous hydrogen peroxide catalyzed by [PO4{WO(O2)2}4]3-/Imidazole. ChemCatChem 2014, 6, 2327–2332. [Google Scholar] [CrossRef]
- Svintsitskiy, D.A.; Kibis, L.S.; Smirnov, D.A.; Suboch, A.N.; Stonkus, O.A.; Podyacheva, O.Y.; Boronin, A.I.; Ismagilov, Z.R. Spectroscopic study of nitrogen distribution in N-doped carbon nanotubes and nanofibers synthesized by catalytic ethylene-ammonia decomposition. Appl. Surf. Sci. 2018, 435, 1273–1284. [Google Scholar] [CrossRef]
- Sheldon, R.; Kochi, J.K. Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Zalomaeva, O.V.; Maksimchuk, N.V.; Maksimov, G.M.; Kholdeeva, O.A. Thioether Oxidation with H2O2 Catalyzed by Nb-Substituted Polyoxotungstates: Mechanistic Insights. Eur. J. Inorg. Chem. 2019, 2019, 410–416. [Google Scholar] [CrossRef]
- Maksimchuk, N.V.; Maksimov, G.M.; Evtushok, V.Y.; Ivanchikova, I.D.; Chesalov, Y.A.; Maksimovskaya, R.I.; Kholdeeva, O.A.; Sole-Daura, A.; Poblet, J.M.; Carbo, J.J. Relevance of protons in heterolytic activation of H2O2 over Nb (V): Insights from model studies on Nb-substituted polyoxometalates. ACS Catal. 2018, 8, 9722–9737. [Google Scholar] [CrossRef]
- Duncan, D.C.; Chambers, R.C.; Hecht, E.; Hill, C.L. Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of {PO4[WO(O2)2]4}3−. J. Am. Chem. Soc. 1995, 117, 681–691. [Google Scholar] [CrossRef]
- Kochkar, H.; Figueras, F. Synthesis of Hydrophobic TiO2–SiO2 Mixed Oxides for the Epoxidation of Cyclohexene. J. Catal. 1997, 171, 420–430. [Google Scholar] [CrossRef]
- Corma, A.; Esteve, P.; Martınez, A. Solvent effects during the oxidation of olefins and alcohols with hydrogen peroxide on Ti-beta catalyst: The influence of the hydrophilicity–hydrophobicity of the zeolite. J. Catal. 1996, 161, 11–19. [Google Scholar] [CrossRef]
- Yamazaki, S. An improved methyltrioxorhenium-catalyzed epoxidation of alkenes with hydrogen peroxide. Org. Biomol. Chem. 2007, 5, 2109–2113. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.L. A Matter of Life (time) and Death. ACS Catal. 2018, 8, 8597–8599. [Google Scholar] [CrossRef] [Green Version]
- Kamata, K.; Yonehara, K.; Nakagawa, Y.; Uehara, K.; Mizuno, N. Efficient stereo-and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate. Nat. Chem. 2010, 2, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Skobelev, I.Y.; Evtushok, V.Y.; Kholdeeva, O.A.; Maksimchuk, N.V.; Maksimovskaya, R.I.; Ricart, J.M.; Poblet, J.M.; Carbó, J.J. Understanding the regioselectivity of aromatic hydroxylation over divanadium-substituted γ-Keggin polyoxotungstate. ACS Catal. 2017, 7, 8514–8523. [Google Scholar] [CrossRef]
- Ivanchikova, I.D.; Maksimchuk, N.V.; Maksimovskaya, R.I.; Maksimov, G.M.; Kholdeeva, O.A. Highly selective oxidation of alkylphenols to p-benzoquinones with aqueous hydrogen peroxide catalyzed by divanadium-substituted polyoxotungstates. ACS Catal. 2014, 4, 2706–2713. [Google Scholar] [CrossRef]
- Kamata, K.; Yamaura, T.; Mizuno, N. Chemo- and Regioselective Direct Hydroxylation of Arenes with Hydrogen Peroxide Catalyzed by a Divanadium-Substituted Phosphotungstate. Angew. Chem. Int. Ed. 2012, 51, 7275–7278. [Google Scholar] [CrossRef]
NH3, vol. % | Ntotal, at. % | NPy, % | NPyr, % | NQ, % | NOx, % | N2, % |
---|---|---|---|---|---|---|
10 | 0.8 | 23 | 10 | 40 | 10 | 17 |
25 | 1.8 | 16 | 13 | 33 | 11 | 27 |
40 | 3.1 | 18 | 10 | 32 | 13 | 27 |
60 | 4.8 | 27 | 18 | 25 | 10 | 20 |
POM | [PV2W10O40]5− | [HNbW5(O2)O18]2− | [PO4{WO(O2)2}4]3− | ||||||
---|---|---|---|---|---|---|---|---|---|
HClO4 Additive, equiv. | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 |
Irreversible Adsorption on CNTs, wt. % (μmol/g) | 0 | 17 (47) | 17 (47) | 0 (0) | 8 (44) | 20 (111) | 0 (0) | 0 (0) | 15 (67) |
Maximum Adsorption on CNTs, wt. % (μmol/g) | 6 (17) | 31 (86) | 31 (86) | 10 (50) | 24 (133) | 25 (138) | 5 (22) | 5 (22) | 22 (98) |
Irreversible Adsorption on N-CNTs, wt. % (μmol/g) | 0 (0) | 20 (55) | 25 (69) | 0 (0) | 9 (50) | 23 (127) | 0 (0) | 15 (67) | 33 (147) |
Maximum Adsorption on N-CNTs, wt. % (μmol/g) | 8 (22) | 28 (77) | 36 (100) | 10 (55) | 24 (133) | 28 (155) | 15 (67) | 22 (98) | 37 (165) |
Catalyst | POM wt. %/H+ Added equiv. a | Conversion CyO/CyH, % | Epoxide Selectivity CyO/CyH, % | trans-Cyclohexane Diol Selectivity, % | TOF CyO/CyH, h−1 | Catalyst Recycling |
---|---|---|---|---|---|---|
TBA3.5[H1.5PV2W10O40] | - | -/93 | -/94 | 5 | -/341 | + |
PV2W10/N-CNTs b | 15/1 | -/39 | -/51 | 33 | -/147 | n.d. c |
PV2W10/CNTs | 15/1 | -/82 | -/79 | 19 | -/310 | - |
TBA2[HNbW5(O2)O17] | - | 20/30 | 80/5 | 53 | 12/- | + |
NbW5/N-CNTs d | 15/2 | 70/30 | 97/23 | 38 | 59/72 | + |
NbW5/CNTs | 15/2 | 86/59 | 98/15 | 55 | 96/58 | + |
NbW5/CNTs | 8/2 | 94/- | 98/- | - | 139/- | + |
NbW5/CNTs | 10/0 | 63/32 | 99/39 | 43 | 42/- | + |
THA3[PW4O24] | - | 80/90 | 100/77 | 16 | 44/- | + |
PW4/N-CNTs b | 15/1 | 37/- | 89/- | - | 136/- | + |
PW4/CNTs | 15/2 | 93/82 | 97/2 | 90 | 290/410 | +/- e |
PW4/CNTs | 5/0 | 82/46 | 98/82 | 15 | 41/40 | + |
Substrate | Catalyst | HClO4 Added, equiv.a | Time, h | Conversion, % | Selectivity, % |
---|---|---|---|---|---|
15 wt. % PW4/CNTs | 2 | 2 | 93 | 97 | |
5 wt. % PW4/CNTs | 0.2 | 4 | 66 | 79 | |
5 wt. % PW4/CNTs | 0 | 5 | 50 | 80 | |
15 wt. % PW4/CNTs | 2 | 1 | 100 | 65 | |
5 wt. % PW4/CNTs | 0 | 7 | 14 | 95 | |
5 wt. % PW4/CNTs | 0 | 4 | 85 | 85 |
Catalyst | CyH:H2O2:W mol:mol:mol | Solvent | T °C | t h | Conv. % | Epox. Select. % | TON a | TOF b h−1 |
---|---|---|---|---|---|---|---|---|
5% PW4/CNTs [101] | 36:36:1 | DMC | 50 | 4 | 66 | 79 | 24 | 6 |
PW12/MIL-101 [61] | 17:34:1 | CH3CN | 50 | 3 | 72 | 76 | 12 | 4 |
PWx/phosp-MCM-41 [76] | 80:120:1 | CH3CN | 50 | 20 | 30 | 60 | 24 | 1.2 |
PWx/D201 resin [55] | 22:26.5:1 | CH3CN | 50 | 6 | 92 | 98 | 22 | 3.7 |
PW4/NH2-AC [58] | 200:300:1 | CH 3CN | 80 | 24 | 63 | 99 | 126 | 5 |
PW12/SPC [51] | 50:120:1 | CH3CN | 80 | 4 | 99 | 75 | 49 | 12 |
Substrate | Conversion, % | Selectivity, % | Quinone Yield, % |
---|---|---|---|
100 | 99 | 99 | |
90 | 90 | 81 | |
94 | 90 | 85 | |
30 | 88 | 26 | |
15 | 10 | 2 | |
10 | 0 | 0 |
Catalyst | TMP Conversion, % | TMBQ Selectivity, % | TMBQ Yield, % |
---|---|---|---|
TBA4[HPV2W10O40] | 100 | 99 | 99 |
PV2W10/N-CNTs | 100 | 99 | 99 |
PV2W10/MIL-101 | 22 | 68 | 15 |
PV2W10/NH2-SiO2 | 68 | 68 | 46 |
PV2W10/Sibunit | 86 (50) a | 90 (23) a | 77 (11) |
PV2W10@SiO2 | 98 b | 98 | 96 |
Substrate | Catalyst/μmol PW4 | HClO4 Added a, equiv. | Time, h | Thioether conv., % | Sulfoxide Selectivity, % |
---|---|---|---|---|---|
THA3[PW4O24]/1 | 0 | 0.25 | 93 | 83 | |
THA3[PW4O24]/1 | 1 | 0.5 | 92 | 86 | |
15 wt. % PW4/CNTs/1 | 2 | 2.5 | 93 | 90 | |
15 wt. % PW4/CNTs/0.3 | 2 | 6 | 93 | 92 | |
5 wt. % PW4/CNTs/0.3 | 0 | 3 | 88 | 84 | |
15 wt. % PW4/CNTs/1 | 2 | 2 | 90 | 88 | |
15 wt. % PW4/CNTs/1 | 2 | 2 | 94 | 89 | |
15 wt. % PW4/CNTs/1 | 2 | 2 | 86 | 81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evtushok, V.Y.; Lopatkin, V.A.; Podyacheva, O.Y.; Kholdeeva, O.A. Immobilization of Polyoxometalates on Carbon Nanotubes: Tuning Catalyst Activity, Selectivity and Stability in H2O2-Based Oxidations. Catalysts 2022, 12, 472. https://doi.org/10.3390/catal12050472
Evtushok VY, Lopatkin VA, Podyacheva OY, Kholdeeva OA. Immobilization of Polyoxometalates on Carbon Nanotubes: Tuning Catalyst Activity, Selectivity and Stability in H2O2-Based Oxidations. Catalysts. 2022; 12(5):472. https://doi.org/10.3390/catal12050472
Chicago/Turabian StyleEvtushok, Vasilii Yu., Vladimir A. Lopatkin, Olga Yu. Podyacheva, and Oxana A. Kholdeeva. 2022. "Immobilization of Polyoxometalates on Carbon Nanotubes: Tuning Catalyst Activity, Selectivity and Stability in H2O2-Based Oxidations" Catalysts 12, no. 5: 472. https://doi.org/10.3390/catal12050472
APA StyleEvtushok, V. Y., Lopatkin, V. A., Podyacheva, O. Y., & Kholdeeva, O. A. (2022). Immobilization of Polyoxometalates on Carbon Nanotubes: Tuning Catalyst Activity, Selectivity and Stability in H2O2-Based Oxidations. Catalysts, 12(5), 472. https://doi.org/10.3390/catal12050472