Formation Mechanism of Carbon-Supported Hollow PtNi Nanoparticles via One-Step Preparations for Use in the Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Catalyst preparation
3.2. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, Z.; Wu, J.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater. 2010, 22, 1098–1106. [Google Scholar] [CrossRef]
- Dubau, L.; Asset, T.; Chattot, R.; Bonnaud, C.; Vanpeene, V.; Nelayah, J.; Mailard, F. Tuning the performance and the stability of porous hollow PtNi/C nanostructures for the oxygen reduction reaction. ACS Catal. 2015, 5, 5333–5341. [Google Scholar] [CrossRef] [Green Version]
- Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 2010, 39, 2184–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Liu, H.; Cui, P.; Peng, Z.; Zhang, S.; Yang, J. Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction. Sci. Rep. 2014, 4, 6414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Fan, J.; Zhou, Y.; Wang, C.; Li, J.; Zou, Z.; Yang, H. Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res. 2015, 8, 2777–2788. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.; Li, Y.; Jia, Y.; Tang, Y.; Chen, y. Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction. Nano Res. 2016, 9, 3494–3503. [Google Scholar] [CrossRef]
- Dubau, L.; Lopez-Haro, M.; Durst, J.; Maillard, F. Atomic-scale restructuring of hollow PtNi/C electrocatalysts during accelerated stress tests. Catal. Today 2016, 262, 146–154. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, G.; Lu, W.; Qin, X.; Shao, Z.; Yi, B. Preparation of hollow PtCu nanoparticles as high-performance electrocatalysts for oxygen reduction reaction in the absence of a surfactant. RSC Adv. 2016, 6, 39993–40001. [Google Scholar] [CrossRef]
- Xue, Q.; Xu, Z.; Jia, D.; Li, X.; Zhang, M.; Bai, J.; Li, W.; Zhang, W.; Zhou, B. Solid-Phase Synthesis Porous Organic Polymer as Precursor for Fe/Fe3C-Embedded Hollow Nanoporous Carbon for Alkaline Oxygen Reduction Reaction. ChemElectroChem 2019, 6, 4491–4496. [Google Scholar] [CrossRef]
- Yao, P.; Zhang, J.; Qiu, Y.; Zheng, Q.; Zhang, H.; Yan, J.; Li, X. Atomic-Dispersed Coordinated Unsaturated Nickel–Nitrogen Sites in Hollow Carbon Spheres for the Efficient Electrochemical CO2 Reduction. ACS Sustain. Chem. Eng. 2021, 9, 5437–5444. [Google Scholar] [CrossRef]
- Ko, Y.D.; Yang, H.N.; Zuttel, A.; Kim, S.D.; Kim, W.J. Membrane electrode assembly fabricated with the combination of Pt/C and hollow shell structured-Pt-SiO2@ZrO2 sphere for self-humidifying proton exchange membrane fuel cell. J. Power Source 2017, 367, 8–16. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, W.; Wnag, J.; Wexler, D.; Poyton, S.D.; Slade, R.C.T.; Liu, H.; Winther-Jensen, B.; Kerr, R.; Shi, D.; et al. PdNi hollow nanoparticles for improved electrocatalytic oxygen reduction in alkaline environments. ACS Appl. Mater. Interfaces 2013, 5, 12708–12715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.X.; Ma, C.; Choi, Y.M.; Su, D.; Zhu, Y.; Liu, P.; Si, R.; Vukmirovic, M.B.; Zhang, Y.; Adzic, R.R. Kirkendall effect and lattice contraction in nanocatalysts: A new strategy to enhance sustainable activity. J. Am. Chem. Soc. 2011, 133, 13551–13557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, C.; Zhu, Y.; Si, R.; Cai, Y.; Wnag, J.X.; Adzic, R.R. Hollow core supported Pt monolayer catalysts for oxygen reduction. Catal. Today 2013, 202, 50–54. [Google Scholar] [CrossRef]
- Hong, J.W.; Kang, S.W.; Choi, B.S.; Kim, D.; Lee, S.B.; Han, S.W. Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 2012, 6, 2410–2419. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Lu, X. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids. ACS Nano 2012, 6, 7397–7405. [Google Scholar] [CrossRef]
- Kang, Y.S.; Jung, J.Y.; Choi, D.; Sohn, Y.; Lee, S.H.; Lee, K.S.; Kim, N.D.; Kim, P.; Yoo, S.J. Formation Mechanism and Gram-Scale Production of PtNi Hollow Nanoparticles for Oxygen Electrocatalysis through In Situ Galvanic Displacement Reaction. ACS Appl. Mater. Interfaces 2020, 12, 16286–16297. [Google Scholar] [CrossRef]
- Gong, L.; Liu, J.; Li, Y.; Wang, X.; Luo, E.; Jin, Z.; Ge, J.; Liu, C.; Xing, W. An ultralow-loading platinum alloy efficient ORR electrocatalyst based on the surface-contracted hollow structure. Chem. Eng. J. 2022, 428, 131569. [Google Scholar] [CrossRef]
- Kim, C.; Dionigi, F.; Beermann, V.; Wnag, X.; Moller, T.; Strasser, P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31, 1805617. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, L.; Xiong, X.; Shi, R.; Waterhouse, G.I.N.; Zhang, T. Hollow PtFe Alloy Nanoparticles Derived from Pt-Fe3O4 Dimers through a Silica-Protection Reduction Strategy as Efficient Oxygen Reduction Electrocatalysts. Chem. Eur. J. 2020, 26, 4090–4096. [Google Scholar] [CrossRef]
- Bae, S.J.; Yoo, S.J.; Lim, Y.; Kim, S.; Lim, Y.; Choi, J.; Nahm, K.S.; Hwang, S.K.; Lim, T.H.; Kim, S.K.; et al. Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance. J. Mater. Chem. 2012, 22, 8820–8825. [Google Scholar] [CrossRef]
- Zhou, X.; Gan, Y.; Du, J.; Tian, D.; Zhang, R.; Yang, C.; Dai, Z. A review of hollow Pt-based nanocatalysts applied in proton exchange membrane fuel cells. J. Power Source 2013, 232, 310–322. [Google Scholar] [CrossRef]
- Chattot, R.; Asset, T.; Drnec, J.; Bordet, P.; Nelayah, J.; Dubau, L.; Mailard, F. Atomic-scale snapshots of the formation and growth of hollow PtNi/C nanocatalysts. Nano Lett. 2017, 17, 2447–2453. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Chen, H.; Wen, G.; Feng, J.; Zhang, Q.; Wang, A. One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction. J. Colloid Interface Sci. 2019, 539, 525–532. [Google Scholar] [CrossRef]
- Merkoçi, F.; Patarroyo, J.; Russo, L.; Piella, J.; Genç, A.; Arbiol, J.; Batus, N.G.; Puntes, V. Understanding galvanic replacement reactions: The case of Pt and Ag. Mater. Today Adv. 2020, 5, 100037. [Google Scholar] [CrossRef]
- Li, G.G.; Wang, Z.; Wang, H. Complementing Nanoscale Galvanic Exchange with Redox Manipulation toward Architectural Control of Multimetallic Hollow Nanostructures. ChemNanoMat 2020, 6, 998–1013. [Google Scholar] [CrossRef]
- Chen, A.N.; Endres, E.J.; Ashberry, H.M.; Bueno, S.L.A.; Chen, Y.; Skrabalak, S.E. Galvanic replacement of intermetallic nanocrystals as a route toward complex heterostructures. Nanoscale 2021, 13, 2618–2625. [Google Scholar] [CrossRef]
- Nie, Y.; Deng, J.; Jin, W.; Guo, W.; Wu, G.; Deng, M.; Zhou, J.; Yang, R.; Zhang, S.; Wei, Z. Engineering multi-hollow PtCo nanoparticles for oxygen reduction reaction via a NaCl-sealed annealing strategy. J. Alloys Compd. 2021, 884, 161063. [Google Scholar] [CrossRef]
- Lu, L.; Wnag, B.; Zou, S.; Fang, B. Engineering porous Pd–Cu nanocrystals with tailored three-dimensional catalytic facets for highly efficient formic acid oxidation. Nanoscale 2021, 13, 3709–3722. [Google Scholar] [CrossRef]
- Ammam, M.; Easton, E.B. PtCu/C and Pt (Cu)/C catalysts: Synthesis, characterization and catalytic activity towards ethanol electrooxidation. J. Power Source 2013, 222, 79–87. [Google Scholar] [CrossRef]
- Huy, H.A.; Man, T.V.; Tai, H.T.; Ho, V.T.T. Preparation and characterization of high-dispersed pt/c nano-electrocatalysts for fuel cell applications. Vietnam J. Sci. Technol. 2016, 54, 472. [Google Scholar] [CrossRef] [Green Version]
- Tientong, J.; Garcia, S.; Thuber, C.R.; Golden, T.D. Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction. J. Nanotechnol. 2014, 2014, 193162. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.S.; Lockwood, D.J.; Bock, C.; MacDougall, B.R. Nickel hydroxides and related materials: A review of their structures, synthesis and properties. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140792. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Rioux, R.M.; Erdonmez, C.K.; Hughes, S.; Somorai, G.A.; Alivisatos, A.P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Dahl, M.; Yin, Y. Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 2013, 25, 1179–1189. [Google Scholar] [CrossRef]
- Zhao, X.; Xi, C.; Zhang, R.Z.; Song, L.; Wnag, C.; Spendelow, J.S.; Frenkel, A.I.; Yang, J.; Xin, H.L.; Sasaki, K. High-performance nitrogen-doped intermetallic PtNi catalyst for the oxygen reduction reaction. Acs Catal. 2020, 10, 10637–10645. [Google Scholar] [CrossRef]
Pt Contents (wt%) | Ni Contents (wt%) | Atomic Ratio (Pt/Ni) 1 | Atomic Ratio (Pt/Ni) 2 | |
---|---|---|---|---|
Pt/C commercial | 19.6 | - | - | - |
PtNi/C–H AT | 22.6 | 0.70 | 9.7 | - |
PtNi2/C–H AT | 19.1 | 0.73 | 7.9 | - |
PtNi3/C–H AT | 15.8 | 0.75 | 6.3 | 5.6 |
PtNi3/C–S AT | 15.7 | 1.52 | 3.1 | 2.1 |
PtNi3/C–H | 15.9 | 13.9 | 0.3 | 0.82 |
PtNi3/C–S | 15.8 | 14.0 | 0.3 | 0.13 |
PtNi/C–H AT | PtNi2/C–H AT | PtNi3/C–H AT | PtNi3/C–S AT | Pt/C | |
---|---|---|---|---|---|
Average size (nm) 1 | 7.6 | 9.3 | 13.0 | 6.1 | - |
Shell thickness or crystallite size (nm) 2 | 2.6 | 2.7 | 2.8 | 5.3 3 | - |
Pt(111) Lattice constant (Å) | 3.91 | 3.89 | 3.87 | 3.92 | 3.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-g.; Sohn, Y.; Jang, I.; Yoo, S.J.; Kim, P. Formation Mechanism of Carbon-Supported Hollow PtNi Nanoparticles via One-Step Preparations for Use in the Oxygen Reduction Reaction. Catalysts 2022, 12, 513. https://doi.org/10.3390/catal12050513
Kim D-g, Sohn Y, Jang I, Yoo SJ, Kim P. Formation Mechanism of Carbon-Supported Hollow PtNi Nanoparticles via One-Step Preparations for Use in the Oxygen Reduction Reaction. Catalysts. 2022; 12(5):513. https://doi.org/10.3390/catal12050513
Chicago/Turabian StyleKim, Dong-gun, Yeonsun Sohn, Injoon Jang, Sung Jong Yoo, and Pil Kim. 2022. "Formation Mechanism of Carbon-Supported Hollow PtNi Nanoparticles via One-Step Preparations for Use in the Oxygen Reduction Reaction" Catalysts 12, no. 5: 513. https://doi.org/10.3390/catal12050513
APA StyleKim, D. -g., Sohn, Y., Jang, I., Yoo, S. J., & Kim, P. (2022). Formation Mechanism of Carbon-Supported Hollow PtNi Nanoparticles via One-Step Preparations for Use in the Oxygen Reduction Reaction. Catalysts, 12(5), 513. https://doi.org/10.3390/catal12050513