Fabrication of 5 V High-Performance Solid-State Asymmetric Supercapacitor Device Based on MnO2/Graphene/Ni Electrodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Raman Analysis
2.2. SEM and EDX Analysis
2.3. Electrochemical Evaluations
2.3.1. CV and GCD Analysis of Electrodes
2.3.2. Assembly and Performance of ASC Cell
3. Experimental Section
3.1. Material Details
3.2. Preparation of MnO2/G/Ni Electrodes and (G + AC)/Ni Electrodes
3.3. Sample Characterization and Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balali, Y.; Stegen, S. Review of energy storage systems for vehicles based on technology, environmental impacts, and costs. Renew. Sustain. Energy Rev. 2021, 135, 110185. [Google Scholar] [CrossRef]
- Erusappan, E.; Pan, G.T.; Chung, H.Y.; Chong, S.; Thiripuranthagan, S.; Yang, T.C.K.; Huang, C.M. Hierarchical Nickel-Cobalt Oxide and Glucose-based Carbon Electrodes for Asymmetric Supercapacitor with High Energy Density. J. Taiwan Inst. Chem. Eng. 2020, 112, 330–336. [Google Scholar] [CrossRef]
- Ismail, M.M.; Hong, Z.Y.; Arivanandhan, M.; Yang, T.C.K.; Pan, G.T.; Huang, C.M. In-situ binder-free and hydrothermal growth of nanostructured NiCo2S4/Ni electrodes for solid-state hybrid supercapacitors. Energies 2021, 14, 7114. [Google Scholar] [CrossRef]
- Karaman, O.; Özcan, N.; Karaman, C.; Yola, B.B.; Atar, N.; Yola, M.L. Electrochemical cardiac troponin I immunosensor based on nitrogen and boron-doped graphene quantum dots electrode platform and Ce-doped SnO2/SnS2 signal amplification. Mater. Today Chem. 2022, 23, 100666. [Google Scholar] [CrossRef]
- Karaman, C.; Bölükbasi, Ö.S.; Yola, B.B.; Karaman, O.; Atar, N.; Yola, M.L. Electrochemical neuron-specific enolase (NSE) immunosensor based on CoFe2O4@Ag nanocomposite and AuNPs@MoS2/rGO. Anal. Chim. Acta 2022, 1200, 339609. [Google Scholar] [CrossRef]
- Karaman, C.; Karaman, O.; Yola, B.B.; Ülker, I.; Atar, N.; Yola, M.L. A novel electrochemical aflatoxin B1 immunosensor based on gold nanoparticle-decorated porous graphene nanoribbon and Ag nanocube-incorporated MoS2 nanosheets. New J. Chem. 2021, 45, 11222. [Google Scholar] [CrossRef]
- Jiang, S.H.; Ding, J.; Wang, R.H.; Chen, F.U.; Sun, J.; Deng, Y.X.; Li, X.L. Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Met. 2021, 40, 3520–3530. [Google Scholar] [CrossRef]
- Hao, X.; Dong, H.; Yu, F.; Li, P.; Yang, Z. Arc welding of titanium alloy stainless steel with Cu foil as interlayer and Ni-based alloy as filler metal. J. Mater. Res. Technol. 2021, 13, 48–60. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, T.; Zhang, Y.; Li, B.; Han, Q.; Li, D.; Ni, Y. Li–Na metal compounds inserted into porous natural wood as a bifunctional hybrid applied in supercapacitors and electrocatalysis. Int. J. Hydrog. 2021, 10, 168. [Google Scholar]
- Xiong, C.; Zheng, C.; Li, B.; Ni, Y. Wood-based micro-spring composite elastic material with excellent electrochemical performance, high elasticity and elastic recovery rate applied in supercapacitors and sensors. Ind. Crops. Prod. 2022, 178, 114565. [Google Scholar] [CrossRef]
- Wang, S.C.; Wang, X.H.; Qiao, G.Q.; Chen, X.Y.; Wang, X.Z.; Wu, N.N.; Tian, J.; Cui, H.Z. NiO nanoparticles-decorated ZnO hierarchical structures for isopropanol gas sensing. Rare Met. 2022, 41, 960–971. [Google Scholar] [CrossRef]
- Lee, K.C.; Lim, M.S.W.; Hong, Z.Y.; Chong, S.; Tiong, T.J.; Pan, G.T.; Huang, C.M. Coconut Shell-derived Activated Carbon for High-Performance Solid-State Supercapacitors. Energies 2021, 14, 4546. [Google Scholar] [CrossRef]
- Kundu, M.; Liu, L.F. Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. J. Power Sources 2013, 243, 676. [Google Scholar] [CrossRef]
- Min, S.; Zhao, C.; Chen, G.; Qian, X. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochim. Acta 2014, 115, 155–164. [Google Scholar] [CrossRef]
- Hoa, N.V.; Lamiel, C.; Nghia, N.H.; Dat, P.A.; Shim, J.J. Different morphologies of MnO2 growth on graphene@nickel foam electrode for supercapacitor application. Mater. Lett. 2017, 208, 102–106. [Google Scholar]
- Liu, R.; Jiang, R.; Chu, Y.H.; Yang, W.D. Facile Fabrication of MnO2/Graphene/Ni Foam Composites for High-Performance Supercapacitors. Nanomaterials 2021, 11, 2736. [Google Scholar] [CrossRef]
- Chung, H.Y.; Pan, G.T.; Hong, Z.Y.; Hsu, C.T.; Chong, S.; Yang, T.C.K.; Huang, C.M. Biomass-Derived Porous Carbons Derived from Soybean Residues for High Performance Solid State Supercapacitors. Molecules 2020, 25, 4050. [Google Scholar] [CrossRef]
- Xu, L.; Jia, M.; Li, Y.; Jin, X.; Zhang, F. High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor. Sci. Rep. 2017, 7, 12857. [Google Scholar] [CrossRef]
- Bian, S.W.; Xu, L.L.; Guo, M.X.; Shao, F.; Liu, S. Fabrication of Graphene/Cotton and MnO2/Graphene/Cotton Composite Fabrics as Flexible Electrodes for Electrochemical Capacitors. Acta Phys.-Chim. Sin. 2016, 32, 1199–1206. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S.; Zhao, K.; He, Z.; Yuan, H.; Lv, K.; Jia, G. Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors. Lonics 2016, 22, 1185–1195. [Google Scholar] [CrossRef]
- Kong, S.; Cheng, K.; Ouyang, T.; Gao, Y.; Ye, K.; Wang, G.; Cao, D. Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochim. Acta 2017, 226, 29–39. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, F.; Qian, L.; Xiao, J.; Wang, J.; Liu, Y. Facile Synthesis of 3D MnO2 –Graphene and Carbon Nanotube–Graphene Composite Networks for High-Performance, Flexible, All-Solid-State Asymmetric Supercapacitors. Adv. Energy Mater. 2014, 4, 1400064. [Google Scholar] [CrossRef]
- Jayashree, M.; Parthibavarman, M.; BoopathiRaja, R.; Prabhu, S.; Ramesh, R. Ultrafine MnO2/graphene based hybrid nanoframeworks as high-performance flexible electrode for energy storage applications. J. Mater. Sci. Mater. Electron. 2020, 31, 6910–6918. [Google Scholar] [CrossRef]
- He, M.; Cao, L.; Li, W.; Chang, X.; Ren, Z. α-MnO2 nanotube@δ-MnO2 nanoflake hierarchical structure on three-dimensional graphene foam as a lightweight and free-standing supercapacitor electrode. J. Alloy. Compounds. 2021, 865, 158934. [Google Scholar] [CrossRef]
- Chhabra, T.; Kumar, A.; Bahuguna, A.; Krishnan, V. Reduced graphene oxide supported MnO2 nanorods as recyclable and efficient adsorptive photocatalysts for pollutants removal. Vacuum 2019, 160, 333–346. [Google Scholar] [CrossRef]
- Hu, M.; Hui, K.S.; Hui, K.N. Role of graphene in MnO2/graphene composite for catalytic ozonation of gaseous toluene. Chem. Eng. J. 2014, 254, 237–244. [Google Scholar] [CrossRef]
- Song, C.; Guo, B.B.; Sun, X.F.; Wang, S.G.; Li, Y.T. Enrichment and degradation of tetracycline using three-dimensional graphene/MnO2 composites. Chem. Eng. J. 2019, 358, 1139–1146. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, M.-C.; Chen, B.-H.; Hong, Z.-Y.; Liu, J.-K.; Huang, P.-C.; Huang, C.-M. Fabrication of 5 V High-Performance Solid-State Asymmetric Supercapacitor Device Based on MnO2/Graphene/Ni Electrodes. Catalysts 2022, 12, 572. https://doi.org/10.3390/catal12050572
Hsieh M-C, Chen B-H, Hong Z-Y, Liu J-K, Huang P-C, Huang C-M. Fabrication of 5 V High-Performance Solid-State Asymmetric Supercapacitor Device Based on MnO2/Graphene/Ni Electrodes. Catalysts. 2022; 12(5):572. https://doi.org/10.3390/catal12050572
Chicago/Turabian StyleHsieh, Ming-Chun, Bo-Han Chen, Zhong-Yun Hong, Jue-Kai Liu, Pin-Cheng Huang, and Chao-Ming Huang. 2022. "Fabrication of 5 V High-Performance Solid-State Asymmetric Supercapacitor Device Based on MnO2/Graphene/Ni Electrodes" Catalysts 12, no. 5: 572. https://doi.org/10.3390/catal12050572
APA StyleHsieh, M. -C., Chen, B. -H., Hong, Z. -Y., Liu, J. -K., Huang, P. -C., & Huang, C. -M. (2022). Fabrication of 5 V High-Performance Solid-State Asymmetric Supercapacitor Device Based on MnO2/Graphene/Ni Electrodes. Catalysts, 12(5), 572. https://doi.org/10.3390/catal12050572