Recent Advances in Perovskite Catalysts for Efficient Overall Water Splitting
Abstract
:1. Introduction
2. General Mechanisms of Water Splitting
2.1. General OER Mechanism
2.2. General HER Mechanism
2.3. OER/HER Mechanisms for Perovskite Oxides
3. The Key Aspects of Perovskite Oxides as Electrocatalysts for Water Splitting
3.1. Structural and Compositional Flexibility
3.1.1. Structural Flexibility
3.1.2. Compositional Flexibility
3.2. Varied Synthesis Strategy
4. Performance Improvement Strategies of Perovskite Oxides for Electrocatalytic Water Splitting
4.1. Doping/Substituting and Defect Engineering
4.1.1. Doping/Substituting
4.1.2. Defect Engineering
4.2. Surface Modification
4.3. Nanostructure and Morphology Control
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noah, K.; Felix, L.; Daniel, M.K. Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2017, 2, 17125. [Google Scholar]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Iain, S.; Daniel, S.; Anthony, V.A.; Paul, B.; Paul, E.D.; Paul, E.; Nilay, S.; Kate, R.W. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar]
- Sebastian, T.W.; Jakob, S.E.; Søren, B.V.; Flemming, B.B.; Winnie, L.E.; Kim, A.-P.; Cathrine, F.; Ib, C.; Peter, M.M. Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science 2019, 364, 756–759. [Google Scholar]
- Liu, M.; Sun, W.; Li, X.; Feng, S.; Ding, D.; Chen, D.; Liu, M.; Park, H.C. High-performance Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) membranes for hydrogen separation. Int. J. Hydrog. Energ. 2013, 38, 14743–14749. [Google Scholar] [CrossRef]
- Oka, K.; Tsujimura, O.; Suga, T.; Nishide, H.; Jensen, B.W. Light-assisted electrochemical water-splitting at very low bias voltage using metal-free polythiophene as photocathode at high pH in a full-cell setup. Energy Environ. Sci. 2018, 11, 1335–1342. [Google Scholar] [CrossRef]
- Pearre, N.; Swan, L. Combining wind, solar, and in-stream tidal electricity generation with energy storage using a load-perturbation control strategy. Energy 2020, 203, 117898. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Zhong, Y.; Bu, Y.; Chen, X.; Zhong, Q.; Liu, M.; Shao, Z. A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Adv. Energy Mater. 2017, 7, 1602122. [Google Scholar] [CrossRef]
- Long, X.; Lin, H.; Zhou, D.; An, Y.; Yang, S. Enhancing full water-splitting performance of transition metal bifunctional electrocatalysts in alkaline solutions by tailoring CeO2-transition metal oxides-Ni nanointerfaces. ACS Energy Lett. 2018, 3, 290–296. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, H.; Sun, J.; Qin, F.; Yu, F.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827. [Google Scholar] [CrossRef]
- Yu, F.; Zhou, H.; Huang, Y.; Sun, J.; Qin, F.; Bao, J.; Goddard, W.A., III; Chen, S.; Ren, Z. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 2018, 9, 2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.; Lohe, M.R.; Zhang, J.; Liu, S.; Zhuang, X.; Feng, X. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy Environ. Sci. 2016, 9, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Han, N.; Liu, P.; Jiang, J.; Ai, L.; Shao, Z.; Liu, S. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 2018, 6, 19912–19933. [Google Scholar] [CrossRef]
- Han, N.; Yang, K.R.; Lu, Z.; Li, Y.; Xu, W.; Gao, T.; Cai, Z.; Zhang, Y.; Batista, V.S.; Liu, W.; et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, B.; Li, M.; Luo, J.L. A facile surface chemistry approach to bifunctional excellence for perovskite electrocatalysis. Nano Energy 2018, 49, 117–125. [Google Scholar] [CrossRef]
- Zong, R.; Fang, Y.; Zhu, C.; Zhang, X.; Wu, L.; Hou, X.; Tao, Y.; Shao, J. Surface defect engineering on perovskite oxides as efficient bifunctional electrocatalysts for water splitting. ACS Appl. Mater. Interfaces 2021, 13, 42852–42860. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoo, S.; Murphy, R.; Chen, Y.; Ding, Y.; Pei, K.; Zhao, B.; Kim, G.; Choi, Y.; Liu, M.L. Promotion of oxygen reduction reaction on a double perovskite electrode by a water-induced surface modification. Energy Environ. Sci. 2021, 14, 1506–1516. [Google Scholar] [CrossRef]
- Hua, B.; Li, M.; Sun, Y.F.; Zhang, Y.Q.; Yan, N.; Chen, J.; Thundat, T.; Li, J.; Luo, J.L. A coupling for success: Controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. Nano Energy 2017, 32, 247–254. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Zhong, C.; Xi, P.; Chao, D.; Gao, D. Surface-electronic-structure reconstruction of perovskite via double-cation gradient etching for superior water oxidation. Nano Lett. 2021, 21, 8166–8174. [Google Scholar] [CrossRef]
- Gui, L.Q.; Pan, G.H.; Ma, X.; You, M.S.; He, B.B.; Yang, Z.H.; Sun, J.; Zhou, W.; Xu, J.M.; Zhao, L. In-situ exsolution of CoNi alloy nanoparticles on LiFe0.8Co0.1Ni0.1O2 parent: New opportunity for boosting oxygen evolution and reduction reaction. Appl. Surf. Sci. 2021, 543, 148817. [Google Scholar] [CrossRef]
- Xu, K.L.; Song, F.; Gu, J.; Xu, X.; Liu, Z.N.; Hu, X.L. Solvent-induced surface hydroxylation of a layered perovskite Sr3FeCoO7-δ for enhanced oxygen evolution catalysis. J. Mater. Chem. A 2018, 6, 14240–14245. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Z.; Laberty-Robert, C.; Batuk, D.; Cibin, G.; Chadwick, A.V.; Pimenta, V.; Yin, W.; Zhang, L.T.; Tarascon, J.-M.; Grimaud, A. Phosphate ion functionalization of perovskite surfaces for enhanced oxygen evolution reaction. J. Phys. Chem. Lett. 2017, 8, 3466–3472. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dai, J.; Zhou, C.; Guan, D.; Wu, X.; Zhou, W.; Shao, Z. Engineering charge redistribution within perovskite oxides for synergistically enhanced overall water splitting. ACS Mater. Lett. 2021, 3, 1258–1265. [Google Scholar] [CrossRef]
- Wang, W.; Xu, M.; Xu, X.; Zhou, W.; Shao, Z. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angew. Chem. Int. Ed. Engl. 2020, 59, 136–152. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, Y.; Shao, Z. Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem. 2019, 1, 410–424. [Google Scholar] [CrossRef]
- Yin, W.-J.; Weng, B.; Ge, J.; Sun, Q.; Li, Z.; Yan, Y. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci. 2019, 12, 442–462. [Google Scholar] [CrossRef]
- Xu, X.; Wang, W.; Zhou, W.; Shao, Z. Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods 2018, 2, 1800071. [Google Scholar] [CrossRef]
- Hwang, J.; Rao, R.R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Li, Y.-F.; Selloni, A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 2014, 4, 1148–1153. [Google Scholar] [CrossRef]
- Fang, Y.H.; Liu, Z.P. Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2(110). J. Am. Chem. Soc. 2010, 132, 18214–18222. [Google Scholar] [CrossRef] [PubMed]
- Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Rossmeisl, J.; Qu, Z.-W.; Zhu, H.; Kroes, G.-J.; Nørskov, J.K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645. [Google Scholar] [CrossRef]
- Li, L.; Wang, P.; Shao, Q.; Huang, X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106. [Google Scholar] [CrossRef] [PubMed]
- Tilak, B.V.; Chen, C.-P. Generalized analytical expressions for Tafel slope, reaction order and a.c. impedance for the hydrogen evolution reaction (HER): Mechanism of HER on platinum in alkaline media. J. Appl. Electrochem. 1993, 23, 631–640. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Manoharan, R.; Paranthaman, M. Surface protonation and electrochemical activity of oxides in aqueous solution. J. Am. Chem. Soc. 1990, 112, 2076–2082. [Google Scholar] [CrossRef]
- Mefford, J.T.; Rong, X.; Abakumov, A.M.; Hardin, W.G.; Dai, S.; Kolpak, A.M.; Johnston, K.P.; Stevenson, K.J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Huang, J.; Zhu, Y.; Zhou, H.; Hu, Z.; Liao, Y.-K.; Lai, Y.-H.; Chen, C.-T.; Chu, Y.-H.; Zhang, K.H.L.; et al. Structural anisotropy determining the oxygen evolution mechanism of strongly correlated perovskite nickelate electrocatalyst. ACS Sustain. Chem. Eng. 2021, 9, 4262–4270. [Google Scholar]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef]
- Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc. 1958, 54, 1053–1063. [Google Scholar] [CrossRef]
- Peña, M.A.; Fierro, J.L.G. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.-I.; Kimura, T.; Sawada, H.; Terakura, K.; Tokura, Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 1998, 395, 677–680. [Google Scholar] [CrossRef]
- Maeno, Y.; Hashimoto, H.; Yoshida, K.; Nishizaki, S.; Fujita, T.; Bednorz, J.G.; Lichtenberg, F. Superconductivity in a layered perovskite without copper. Nature 1994, 372, 532–534. [Google Scholar] [CrossRef]
- Locherer, T.; Dinnebier, R.; Kremer, R.K.; Greenblatt, M.; Jansen, M. Synthesis and properties of a new quadruple perovskite: A-site ordered PbMn3Mn4O12. J. Solid State Chem. 2012, 190, 277–284. [Google Scholar] [CrossRef]
- Vasala, S.; Karppinen, M. A2B′B″O6 perovskites: A review. Prog. Solid State Chem. 2015, 43, 1–36. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Chen, G.; Zhou, Y.; Lin, H.-J.; Chen, C.-T.; Ran, R.; Zhou, W.; Shao, Z. Smart control of composition for double perovskite electrocatalysts toward enhanced oxygen evolution reaction. ChemSusChem 2019, 12, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Pelosato, R.; Cordaro, G.; Stucchi, D.; Cristiani, C.; Dotelli, G. Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: A brief review. J. Power Sources 2015, 298, 46–67. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Lu, F.; Jin, C.; Wu, J.; Shen, M.; Yang, R.; Chen, F. Carbon-coating functionalized La0.6Sr1.4MnO4+δ layered perovskite oxide: Enhanced catalytic activity for the oxygen reduction reaction. RSC Adv. 2015, 5, 974–980. [Google Scholar] [CrossRef]
- Jung, K.-N.; Jung, J.-H.; Im, W.B.; Yoon, S.; Shin, K.-H.; Lee, J.-W. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries. ACS Appl. Mater. Interfaces 2013, 5, 9902–9907. [Google Scholar] [CrossRef]
- Chen, C.-F.; King, G.; Dickerson, R.M.; Papin, P.A.; Gupta, S.; Kellogg, W.R.; Wu, G. Oxygen-deficient BaTiO3−δ perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy 2015, 13, 423–432. [Google Scholar] [CrossRef]
- Lee, H.; Gwon, O.; Choi, K.; Zhang, L.; Zhou, J.; Park, J.; Yoo, J.-W.; Wang, J.-Q. Enhancing bifunctional electrocatalytic activities via metal d-band center lift induced by oxygen vacancy on the subsurface of perovskites. ACS Catal. 2020, 10, 4664–4670. [Google Scholar] [CrossRef]
- Abreu-Sepulveda, M.A.; Dhital, C.; Huq, A.; Li, L.; Bridges, C.A.; Paranthaman, M.P.; Narayanan, S.R.; Quesnel, D.J.; Tryk, D.A.; Manivannan, A. The influence of Fe substitution in lanthanum calcium cobalt oxide on the oxygen evolution reaction in alkaline media. J. Electrochem. Soc. 2016, 163, F1124–F1132. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Chen, Y.; Yu, J.; Liu, M.; Shao, Z. A high-performance electrocatalyst for oxygen evolution reaction: LiCo0.8 Fe0.2O2. Adv. Mater. 2015, 27, 7150–7155. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Fan, J.; Do-Thanh, C.-L.; Suo, X.; Yang, Z.; Chen, H.; Yuan, Y.; Lyu, H.; Yang, S.; Dai, S. Perovskite oxide-halide solid solutions: A platform for electrocatalysts. Angew. Chem. Int. Ed. 2021, 26, 9953–9958. [Google Scholar] [CrossRef]
- Wang, L.; Stoerzinger, K.A.; Chang, L.; Zhao, J.; Li, Y.; Tang, C.S.; Yin, X.; Bowden, M.E.; Yang, Z.; Guo, H.; et al. Tuning bifunctional oxygen electrocatalysts by changing the A-site rare-earth element in perovskite nickelates. Adv. Funct. Mater. 2018, 28, 1803712. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhou, W.; Zhu, Z.; Su, C.; Liu, M.; Shao, Z. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442–6448. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Liang, J.; Luo, Y.; Chen, G.; Shi, X.; Lu, S.; Gao, S.; Hu, J.; Liu, Q.; et al. A-site perovskite oxides: An emerging functional material for electrocatalysis and photocatalysis. J. Mater. Chem. A 2021, 9, 6650–6670. [Google Scholar] [CrossRef]
- Si, W.; Wang, Y.; Peng, Y.; Li, J. Selective dissolution of A-site cations in ABO3 perovskites: A new path to high-performance catalysts. Angew. Chem. Int. Ed. Engl. 2015, 127, 8065–8068. [Google Scholar] [CrossRef]
- Dai, L.; Lu, X.B.; Chu, G.H.; He, C.H.; Zhan, W.C.; Zhou, G.J. Surface tuning of LaCoO3 perovskite by acid etching to enhance its catalytic performance. Rare Met. 2020, 40, 555–562. [Google Scholar] [CrossRef]
- Seitz, L.C.; Dickens, C.F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H.Y.; Norskov, J.K.; et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459. [Google Scholar] [CrossRef] [PubMed]
- Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W.T.; Lee, Y.L.; Giordano, L.; Stoerzinger, K.A.; Koper, M.T.M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yu, J.; Yang, G.; Liu, H.; Zhou, W.; Shao, Z. Perovskite oxide/carbon nanotube hybrid bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 2018, 286, 47–54. [Google Scholar] [CrossRef]
- Du, J.; Zhang, T.; Cheng, F.; Chu, W.; Wu, Z.; Chen, J. Nonstoichiometric perovskite CaMnO3−δ for oxygen electrocatalysis with high activity. Inorg. Chem. 2014, 53, 9106–9114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Sunarso, J. Enhancing bi-functional electrocatalytic activity of perovskite by temperature shock: A case study of LaNiO3−δ. J. Phys. Chem. Lett. 2013, 4, 2982–2988. [Google Scholar] [CrossRef]
- Yan, J.; Lin, S.; Qiu, X.; Chen, H.; Li, K.; Yuan, Y.; Long, M.; Yang, B.; Gao, Y.; Zhou, C. Accelerated hole-extraction in carbon-electrode based planar perovskite solar cells by moisture-assisted post-annealing. Appl. Phys. Lett. 2019, 114, 103503. [Google Scholar] [CrossRef]
- Bu, Y.; Jang, H.; Gwon, O.; Kim, S.H.; Joo, S.H.; Nam, G.; Kim, S.; Qin, Y.; Zhong, Q.; Kwak, S.K.; et al. Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst. J. Mater. Chem. A 2019, 7, 2048–2054. [Google Scholar] [CrossRef]
- Farhang, Y.; Taheri-Nassaj, E.; Rezaei, M. Pd doped LaSrCuO4 perovskite nano-catalysts synthesized by a novel solid state method for CO oxidation and methane combustion. Ceram. Int. 2018, 44, 21499–21506. [Google Scholar] [CrossRef]
- Ashok, A.; Kumar, A.; Bhosale, R.R.; Almomani, F.; Malik, S.S.; Suslov, S.; Tarlochan, F. Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. J. Electroanal. Chem. 2018, 809, 22–30. [Google Scholar] [CrossRef]
- Xia, W.; Wu, H.; Xue, P.; Zhu, X. Microstructural, magnetic, and optical properties of Pr-doped perovskite manganite La0.67Ca0.33MnO3 nanoparticles synthesized via sol-gel process. Nanoscale Res. Lett. 2018, 13, 135. [Google Scholar] [CrossRef]
- Zhang, R.; Dubouis, N.; Ben Osman, M.; Yin, W.; Sougrati, M.T.; Corte, D.A.D.; Giaume, D.; Grimaud, A. A dissolution/precipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media. Angew. Chem. Int. Ed. Engl. 2019, 58, 4571–4575. [Google Scholar] [CrossRef] [PubMed]
- Saiduzzaman, M.; Yoshida, H.; Takei, T.; Yanagida, S.; Kumada, N.; Nagao, M.; Yamane, H.; Azuma, M.; Rubel, M.H.K.; Moriyoshi, C.; et al. Hydrothermal synthesis and crystal structure of a (Ba0.54K0.46)4Bi4O12 double-perovskite superconductor with onset of the transition Tc ~ 30 K. Inorg. Chem. 2019, 58, 11997–12001. [Google Scholar] [CrossRef] [PubMed]
- Beckel, D.; Bieberle-Hütter, A.; Harvey, A.; Infortuna, A.; Muecke, U.P.; Prestat, M.; Rupp, J.L.M.; Gauckler, L.J. Thin films for micro solid oxide fuel cells. J. Power Sources 2007, 173, 325–345. [Google Scholar] [CrossRef]
- Murauskas, T.; Kubilius, V.; Saltyte, Z.; Plausinaitiene, V. Metalorganic chemical vapor deposition and investigation of nonstoichiometry of undoped BaSnO3 and La-doped BaSnO3 thin films. Thin Solid Film. 2019, 692, 137575. [Google Scholar] [CrossRef]
- Rehman, S.U.; Song, R.H.; Lim, T.H.; Park, S.J.; Hong, J.E.; Lee, J.W.; Lee, S.B. High-performance nanofibrous LaCoO3 perovskite cathode for solid oxide fuel cells fabricated via chemically assisted electrodeposition. J. Mater. Chem. A 2018, 6, 6987–6996. [Google Scholar] [CrossRef]
- Zheng, Y.; Feng, X.; Lin, D.; Wu, E.; Luo, Y.; You, Y.; Huang, B.; Qian, Q.; Chen, Q. Insights into the low-temperature synthesis of LaCoO3 derived from Co(CH3COO)2 via electrospinning for catalytic propane oxidation. Chin. J. Chem. 2019, 38, 144–150. [Google Scholar] [CrossRef]
- Vila-Fungueirino, J.M.; Gomez, A.; Antoja-Lleonart, J.; Gazquez, J.; Magen, C.; Noheda, B.; Carretero-Genevrier, A. Direct and converse piezoelectric responses at the nanoscale from epitaxial BiFeO3 thin films grown by polymer assisted deposition. Nanoscale 2018, 10, 20155–20161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ban, T.; Kaiden, T.; Ohya, Y. Hydrothermal synthesis of layered perovskite-structured metal oxides and cesium tungstate nanosheets. Cryst. Growth Des. 2019, 19, 6903–6910. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Q.; Zhao, Z.; Fan, C.; Chen, X.; Xu, G.; Wu, M.; Chen, J.; Li, J. Enhanced low-temperature activity of toluene oxidation over the rod-like MnO2/LaMnO3 perovskites with alkaline hydrothermal and acid-etching treatment. Ind. Eng. Chem. Res. 2020, 59, 6556–6564. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, A.; Goutam, U.K.; Kumar, A. Microstructure and electrochemical performance of La2ZnMnO6 nanoflakes synthesized by facile hydrothermal route. Appl. Phys. A Mater. 2019, 126, 11. [Google Scholar] [CrossRef]
- Wang, S.; Wu, X.; Yuan, L.; Zhang, C.; Cui, X.; Lu, D. Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3). CrystEngComm 2018, 20, 3034–3042. [Google Scholar] [CrossRef]
- Ogunniran, K.O.; Murugadoss, G.; Thangamuthu, R.; Periasamy, P. Evaluation of nanostructured Nd0.7Co0.3FeO3 perovskite obtained via hydrothermal method as anode material for Li-ion battery. Mater. Chem. Phys. 2020, 248, 122944. [Google Scholar] [CrossRef]
- Risch, M.; Stoerzinger, K.A.; Maruyama, S.; Hong, W.T.; Takeuchi, I.; Shao-Horn, Y. La0.8Sr0.2MnO3-δ Decorated with Ba0.5Sr0.5Co0.8Fe0.2O3-δ: A bifunctional surface for oxygen electrocatalysis with enhanced stability and activity. J. Am. Chem. Soc. 2014, 136, 5229–5232. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.P.; Lei, N.; Yu, B.; Liu, Y.K.; Jiang, G.H.; Dai, J.M.; Li, S.H.; Lu, Q.L. Flexible supercapacitor electrodes based on carbon cloth-supported LaMnO3/MnO nano-arrays by one-step electrodeposition. Nanomaterials 2019, 9, 1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, G.P.; Choi, K.S. Photoelectrochemical properties and stability of nanoporous p-type LaFeO3 photoelectrodes prepared by electrodeposition. ACS Energy Lett. 2017, 2, 2378–2382. [Google Scholar] [CrossRef]
- Li, B.Q.; Tang, C.; Wang, H.F.; Zhu, X.L.; Zhang, Q. An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance. Sci. Adv. 2016, 2, e1600495. [Google Scholar] [CrossRef] [Green Version]
- Bian, J.; Su, R.; Yao, Y.; Wang, J.; Zhou, J.; Li, F.; Wang, Z.L.; Sun, C. Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc-air batteries. ACS Appl. Energy Mater. 2019, 2, 923–931. [Google Scholar] [CrossRef]
- Vignesh, A.; Prabu, M.; Shanmugam, S. Porous LaCo1–xNixO3−δ nanostructures as an efficient electrocatalyst for water oxidation and for a zinc-air battery. ACS Appl. Mater. Interfaces 2016, 8, 6019–6031. [Google Scholar] [CrossRef]
- Hua, B.; Li, M.; Zhang, Y.Q.; Sun, Y.F.; Luo, J.L. All-in-one perovskite catalyst: Smart controls of architecture and composition toward enhanced oxygen/hydrogen evolution reactions. Adv. Energy Mater. 2017, 7, 1700666. [Google Scholar] [CrossRef]
- Si, C.; Zhang, C.; Sunarso, J.; Zhang, Z. Transforming bulk alloys into nanoporous lanthanum-based perovskite oxides with high specific surface areas and enhanced electrocatalytic activities. J. Mater. Chem. A 2018, 6, 19979–19988. [Google Scholar] [CrossRef]
- Dai, X.P.; Li, R.J.; Yu, C.C.; Hao, Z.P. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A = La, Nd, Eu) perovskite-type oxides as oxygen storage. J. Phys. Chem. B 2006, 110, 22525–22531. [Google Scholar] [CrossRef] [PubMed]
- Suntivich, J.; May, K.J.; Gasteiger, H.A.; Goodenough, J.B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385. [Google Scholar] [CrossRef] [PubMed]
- Azad, U.P.; Singh, M.; Ghosh, S.; Singh, A.K.; Ganesan, V.; Singh, A.K.; Prakash, R. Facile synthesis of BSCF perovskite oxide as an efficient bifunctional oxygen electrocatalyst. Int. J. Hydrog. Energy 2018, 43, 20671–20679. [Google Scholar] [CrossRef]
- Cheng, X.; Fabbri, E.; Kim, B.; Nachtegaal, M.; Schmidt, T.J. Effect of ball milling on the electrocatalytic activity of Ba0.5Sr0.5Co0.8Fe0.2O3 towards the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 13130–13137. [Google Scholar] [CrossRef]
- May, K.J.; Carlton, C.E.; Stoerzinger, K.A.; Risch, M.; Suntivich, J.; Lee, Y.-L.; Grimaud, A.; Shao-Horn, Y. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 2012, 3, 3264–3270. [Google Scholar] [CrossRef]
- Zhu, Y.; Tahini, H.A.; Hu, Z.; Chen, Z.-G.; Zhou, W.; Komarek, A.C.; Lin, Q.; Lin, H.-J.; Chen, C.-T.; Zhong, Y.; et al. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater. 2020, 32, e1905025. [Google Scholar] [CrossRef]
- Sun, H.; Hu, Z.; Xu, X.; He, J.; Dai, J.; Lin, H.-J.; Chan, T.-S.; Chen, C.-T.; Tjeng, L.H.; Zhou, W.; et al. Ternary phase diagram-facilitated rapid screening of double perovskites as electrocatalysts for the oxygen evolution reaction. Chem. Mater. 2019, 31, 5919–5926. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Chen, Z.-G.; Chen, Y.; Su, C.; Tade, M.O.; Shao, Z. SrNb0.1Co0.7Fe0.2O3-δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew. Chem. Int. Ed. Engl. 2015, 127, 3969–3973. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, M.; Han, Y.; Luo, H.; Su, X.; Zhang, M.-T.; Lin, X.; Sun, J.; Wang, L.; Deng, L.; et al. Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution. Angew. Chem. Int. Ed. Engl. 2015, 127, 4952–4957. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Zhong, Y.; Miao, J.; Lin, B.; Zhou, W.; Shao, Z. Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing. Adv. Mater. Interfaces 2019, 6, 1801317. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Su, C.; Zhou, W.; Zhu, Y.; Chen, Y.; Shao, Z. Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction. Adv. Sci. 2016, 3, 1500187. [Google Scholar] [CrossRef] [PubMed]
- Omari, E.; Omari, M. Cu-doped GdFeO3 perovskites as electrocatalysts for the oxygen evolution reaction in alkaline media. Int. J. Hydrog. Energy 2019, 44, 28769–28779. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, X.; Zhang, L.; Zhou, F.; Liang, Y.; Wang, R. Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2018, 28, 1706523. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Dai, Z.; Tan, S.; Chen, D. Promoting hydrogen-evolution activity and stability of perovskite oxides via effectively lattice doping of molybdenum. Electrochim. Acta 2019, 312, 128–136. [Google Scholar] [CrossRef]
- He, B.; Tan, K.; Gong, Y.; Wang, R.; Wang, H.; Zhao, L. Coupling amorphous cobalt hydroxide nanoflakes on Sr2Fe1.5Mo0.5O5+δ perovskite nanofibers to induce bifunctionality for water splitting. Nanoscale 2020, 12, 9048–9057. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.F.; Apperley, D.C.; Slater, P.R. Silicon doping in Ba2In2O5: Example of a beneficial effect of silicon incorporation on oxide ion/proton conductivity. Chem. Mater. 2010, 22, 5945–5948. [Google Scholar] [CrossRef]
- Li, M.; Zhou, W.; Xu, X.; Zhu, Z. SrCo0.85Fe0.1P0.05O3−δ perovskite as a cathode for intermediate-temperature solid oxide fuel cells. J. Mater. Chem. A 2013, 1, 13632–13639. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhou, W.; Zhong, Y.; Guan, D.; Shao, Z. Earth-abundant silicon for facilitating water oxidation over iron-based perovskite electrocatalyst. Adv. Mater. Interfaces 2018, 5, 1701693. [Google Scholar] [CrossRef]
- Shin, J.F.; Orera, A.; Apperley, D.C.; Slater, P.R. Oxyanion doping strategies to enhance the ionic conductivity in Ba2In2O5. J. Mater. Chem. 2011, 21, 874–879. [Google Scholar] [CrossRef]
- Porras-Vazquez, J.M.; Kemp, T.F.; Hanna, J.V.; Slater, P.R. Synthesis and characterisation of oxyanion-doped manganites for potential application as SOFC cathodes. J. Mater. Chem. 2012, 22, 8287–8293. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, L.; Guo, W.; Gong, C.; Yang, J. Enhancing oxygen and hydrogen evolution activities of perovskite oxide LaCoO3 via effective doping of platinum. RSC Adv. 2019, 9, 35646–35654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Lin, Y.; Yu, X.; Xu, W.; Salas, T.; Smallidge, H.; Zhou, M.; Luo, H. La0.8Sr0.2MnO3-based perovskite nanoparticles with the A-site deficiency as high performance bifunctional oxygen catalyst in alkaline solution. ACS Appl. Mater. Interfaces 2017, 9, 23820–23827. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, D.; Lu, Q.; Meng, T.; Yan, M.; Fan, L.; Xing, Z.; Yang, X. Identifying the activation mechanism and boosting electrocatalytic activity of layered perovskite ruthenate. Small 2020, 16, e1906380. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wu, X.; Guan, D.; Hu, Z.; Weng, S.C.; Sun, H.; Song, Y.; Ran, R.; Zhou, W.; Ni, M.; et al. Monoclinic SrIrO3: An easily synthesized conductive perovskite oxide with outstanding performance for overall water splitting in alkaline solution. Chem. Mater. 2020, 32, 4509–4517. [Google Scholar] [CrossRef]
- Yamamoto, T.; Yoshii, R.; Bouilly, G.; Kobayashi, Y.; Fujita, K.; Kususe, Y.; Matsushita, Y.; Tanaka, K.; Kageyama, H. An antiferro-to-ferromagnetic transition in EuTiO3-xHx induced by hydride substitution. Inorg. Chem. 2015, 54, 1501–1507. [Google Scholar] [CrossRef]
- Li, F.F.; Liu, D.R.; Gao, G.M.; Xue, B.; Jiang, Y.S. Improved visible-light photocatalytic activity of NaTaO3 with perovskite-like structure via sulfur anion doping. Appl. Catal. B Environ. 2015, 166, 104–111. [Google Scholar] [CrossRef]
- Yajima, T.; Takeiri, F.; Aidzu, K.; Akamatsu, H.; Fujita, K.; Yoshimune, W.; Ohkura, M.; Lei, S.; Gopalan, V.; Tanaka, K.; et al. A labile hydride strategy for the synthesis of heavily nitridized BaTiO3. Nat. Chem. 2015, 7, 1017–1023. [Google Scholar] [CrossRef]
- Dai, H.X.; Ng, C.F.; Au, C. Perovskite-type halo-oxide La1−xSrxFeO3−δXσ (X=F, Cl) catalysts selective for the oxidation of ethane to ethene. J. Catal. 2000, 189, 52–62. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Huan, D.; Wang, L.; Shi, N.; Xie, Y.; Xia, C.; Peng, R.; Lu, Y. An excellent OER electrocatalyst of cubic SrCoO3−δ prepared by a simple F-doping strategy. J. Mater. Chem. A 2019, 7, 12538–12546. [Google Scholar] [CrossRef]
- Hayward, M.A.; Cussen, E.J.; Claridge, J.B.; Bieringer, M.; Rosseinsky, M.J.; Kiely, C.J.; Blundell, S.J.; Marshall, I.M.; Pratt, F.L. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7. Science 2002, 295, 1882–1884. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ding, X.; Wang, L.; Ding, D.; Zhang, S.; Yuan, G. Cation deficiency design: A simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst. Electrochim. Acta 2018, 259, 1004–1010. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Yu, J.; Chen, Y.; Liu, M.; Shao, Z. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691–1697. [Google Scholar] [CrossRef]
- Neagu, D.; Tsekouras, G.; Miller, D.N.; Ménard, H.; Irvine, J.T.S. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 2013, 5, 916–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, Q.A.; Majee, R.; Bhattacharyya, S. Bimetallic nanoparticle decorated perovskite oxide for state-of-the-art trifunctional electrocatalysis. J. Mater. Chem. A 2019, 7, 19453–19464. [Google Scholar] [CrossRef]
- Bloed, C.; Vuong, J.; Enriquez, A.; Raghavan, S.; Tran, I.; Derakhshan, S.; Tavassol, H. Oxygen vacancy and chemical ordering control oxygen evolution activity of Sr2–xCaxFe2O6−δ Perovskites. ACS Appl. Energy Mater. 2019, 2, 6140–6145. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Chen, D.; Liu, J.; Zhang, Z.; Shao, Z.; Ciucci, F. Water splitting with an enhanced bifunctional double perovskite. ACS Catal. 2018, 8, 364–371. [Google Scholar] [CrossRef]
- Kang, S.M.; Park, S.; Kim, D.; Park, S.Y.; Ruoff, R.S.; Lee, H. Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Adv. Funct. Mater. 2011, 21, 108–112. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, K.; Zuo, J.; Qian, Q.; Xu, Y.; Liu, X.; Xue, H.; Chen, Q. Selective corrosion of LaCoO3 by NaOH: Structural evolution and enhanced activity for benzene oxidation. Catal. Sci. Technol. 2017, 7, 496–501. [Google Scholar] [CrossRef]
- Yang, J.; Shi, L.; Li, L.; Fang, Y.; Pan, C.; Zhu, Y.; Liang, Z.; Hoang, S.; Li, Z.; Guo, Y. Surface modification of macroporous La0.8Sr0.2CoO3 perovskite oxides integrated monolithic catalysts for improved propane oxidation. Catal. Today 2021, 376, 168–176. [Google Scholar] [CrossRef]
- Yan, S.; Xue, Y.; Li, S.; Shao, G.; Liu, Z. Enhanced bifunctional catalytic activity of manganese oxide/perovskite hierarchical core-shell materials by adjusting the interface for metal-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 25870–25881. [Google Scholar] [CrossRef]
- Li, W.; Yin, Y.; Xu, K.; Li, F.; Maliutina, K.; Wu, Q.; Li, C.; Zhu, B.; Fan, L. Enhancement of oxygen evolution activity of perovskite (La0.8Sr0.2)0.95MnO3-δ electrode by Co phase surface modification. Catal. Today 2021, 364, 148–156. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, X.; Li, Z.; Xu, M.; Lu, Y.; Liu, S.; Zhang, Y.; Sun, C. Perovskite Sr0.9Y0.1CoO3−δ nanorods modified with CoO nanoparticles as a bifunctional catalyst for rechargeable Li-O2 batteries. ACS Appl. Energy Mater. 2018, 1, 5557–5566. [Google Scholar] [CrossRef]
- Cheng, X.; Kim, B.-J.; Fabbri, E.; Schmidt, T.J. Co/Fe oxyhydroxides supported on perovskite oxides as oxygen evolution reaction catalyst systems. ACS Appl. Mater. Interfaces 2019, 11, 34787–34795. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, N.; Zhang, R.; Zhu, Z.; Lin, J.; Zhang, K.; Zhao, C. Surface reconstruction of La0.8Sr0.2Co0.8Fe0.2O3−δ for superimposed OER performance. ACS Appl. Mater. Interfaces 2019, 11, 47858–47867. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, R.; Chen, X.; Wu, J.; Xie, Y.; Wang, X.; Ma, K.; Wang, L.; Zhang, Z.; Liao, Q.; et al. A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts. Adv. Energy Mater. 2021, 11, 2003755. [Google Scholar] [CrossRef]
- Grimaud, A.; Demortière, A.; Saubanère, M.; Dachraoui, W.; Duchamp, M.; Doublet, M.L.; Tarascon, J.M. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2017, 2, 16189. [Google Scholar] [CrossRef]
- Lee, J.G.; Myung, J.H.; Naden, A.B.; Jeon, O.S.; Shul, Y.G.; Irvine, J.T.S. Replacement of Ca by Ni in a perovskite titanate to yield a novel perovskite exsolution architecture for oxygen-evolution reactions. Adv. Energy Mater. 2020, 10, 1903693. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, Z.; You, T.L.; Wang, J.; Xie, L.; He, J.; Ciucci, F. Energetics of nanoparticle exsolution from perovskite oxides. J. Phys. Chem. Lett. 2018, 9, 3772–3778. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Tao, H.B.; Liu, J.; Sun, Y.F.; Chen, J.; Hua, B.; Thundat, T.; Luo, J.L. A rational design for enhanced oxygen reduction: Strongly coupled silver nanoparticles and engineered perovskite nanofibers. Nano Energy 2017, 38, 392–400. [Google Scholar] [CrossRef]
- Jiang, Y.; Geng, Z.; Yuan, L.; Sun, Y.; Cong, Y.; Huang, K.; Wang, L.; Zhang, W. Nanoscale architecture of RuO2/La0.9Fe0.92Ru0.08–xO3−δ composite via manipulating the exsolution of low Ru-substituted A-site deficient perovskite. ACS Sustain. Chem. Eng. 2018, 6, 11999–12005. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, L.; Zhen, D.; Yoo, S.; Ding, Y.; Chen, D.; Chen, Y.; Zhang, Q.; Doyle, B.; Xiong, X.; et al. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat. Commun. 2017, 8, 14586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Jeon, Y.; Hata, S.; Park, J.I.; Akiyoshi, R.; Saito, H.; Teraoka, Y.; Shul, Y.G.; Einaga, H. Three-dimensional arrangements of perovskite-type oxide nano-fiber webs for effective soot oxidation. Appl. Catal. B 2016, 191, 157–164. [Google Scholar] [CrossRef]
Perovskite Materials | Morphology | Overpotential at 10 mA cm−2 for OER (mV) | Tafel Slope for OER (mV dec−1) | Ref. |
---|---|---|---|---|
V-LCO/Co3O4 | nanosheets with holes | 354 | 73 | [19] |
Sr2Fe0.8Co0.2Mo0.6Co0.4O6−δ | particles | 345 | 60 | [47] |
IrOx/SrIrO3 | thin films | 270 | --- | [61] |
(PrBa0.5Sr0.5)0.95Co1.5Fe0.5O5+δ/3DNG | mesoporous | 320 | 74 | [68] |
BSCF|LSMO|NSTO | thin films | 330 | 50 | [84] |
Mg-doped LaNiO3 | nanofibers | 450 | 95 | [88] |
hexagonal Ba4Sr4(Co0.8Fe0.2)4O15 | --- | 340 | 47 | [97] |
LaCo0.94Pt0.06O3−δ | particles | 454 | 86 | [112] |
SrCoO2.85−δF0.15 | --- | 380 | 60 | [120] |
LSCF-2 | nanoparticles | 248 | 51 | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, C.; Zhang, W.; Lu, Q.; Guo, E.; Yang, Z.; Chen, J.; He, X.; Luo, J. Recent Advances in Perovskite Catalysts for Efficient Overall Water Splitting. Catalysts 2022, 12, 601. https://doi.org/10.3390/catal12060601
Si C, Zhang W, Lu Q, Guo E, Yang Z, Chen J, He X, Luo J. Recent Advances in Perovskite Catalysts for Efficient Overall Water Splitting. Catalysts. 2022; 12(6):601. https://doi.org/10.3390/catal12060601
Chicago/Turabian StyleSi, Conghui, Wenchao Zhang, Qifang Lu, Enyan Guo, Zhou Yang, Jiyun Chen, Xinya He, and Jing Luo. 2022. "Recent Advances in Perovskite Catalysts for Efficient Overall Water Splitting" Catalysts 12, no. 6: 601. https://doi.org/10.3390/catal12060601
APA StyleSi, C., Zhang, W., Lu, Q., Guo, E., Yang, Z., Chen, J., He, X., & Luo, J. (2022). Recent Advances in Perovskite Catalysts for Efficient Overall Water Splitting. Catalysts, 12(6), 601. https://doi.org/10.3390/catal12060601