Synthesis, Characterization, and Photocatalytic Investigation of CuFe2O4 for the Degradation of Dyes under Visible Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Copper Ferrites
2.2. Characterization
2.3. Photocatalytic Test
3. Results and Discussion
3.1. XRD Analysis
3.2. FTIR Analysis
3.3. SEM-FEG Analysis
3.4. TEM (HRTEM) Analysis
3.5. BET Analysis
3.6. DRS Analysis
3.7. Photocatalytic Tests
3.8. Photocatalytic Mechanism of CuFe2O4
4. Conclusions
- 1.
- The calcined samples at 400 to 600 °C showed a cubic structure and a secondary phase of Fe2O3. From 700 to 1100 °C, they presented a tetragonal structure; in specimens treated at 700 and 800 °C, the Fe2O3 phase was still present but disappeared at 900 °C. The CuFe2O4 photocatalysts had crystal sizes around 8.2 to 49.8 nm. The SEM micrographs showed nearly spherical particles in the form of porous flakes and high agglomeration. The TEM images (HRTEM) also indicate the formation of spherical particles and lattice fringes corresponding to the (311), (111), (310), and (440) planes.
- 2.
- The infrared spectra confirmed the presence of ferrites with absorption bands in the range of 400 to 1100 cm−1 that correspond to the metal–oxygen bond in the tetrahedral and octahedral sites. The BET analysis revealed the surface area and pore size distribution of the samples, in which that at 400°C had a smaller surface area compared to that at 1100 °C. The optical responses of the CuFe2O4 samples showed their absorption in the visible spectrum, with energy gap values ranging from 1.49 to 1.58 eV.
- 3.
- Photocatalysts were used in the photocatalytic tests with visible light irradiation using synthetic green malachite and rhodamine B dyes. The samples showed adsorption in the photocatalysis experiments. The dye solution’s degradation rate was 56.60% and 84.30% for the CuFe2O4 photocatalyst treated at 400 °C using green malachite and rhodamine B, respectively.
- 4.
- The results show that the 400 °C sample had a higher photocatalytic efficiency than those heat-treated at higher temperatures for both dyes. This may be associated with the secondary phase Fe2O3 and the smaller size of the crystallites.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, K.H.; Yuan, L.S.; Cheng, C.K.; Chen, K.; Fang, C. TiO2 and ZnO photocatalytic treatment of palm oil mill effluent (POME) and feasibility of renewable energy generation: A short review. J. Clean. Prod. 2019, 233, 209–225. [Google Scholar] [CrossRef]
- Ismail, M.; Akhtar, K.; Khan, M.I.; Kamal, T.; Khan, M.A.; Asiri, A.M.; Seo, J.; Khan, S.B. Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des. 2019, 25, 3645–3663. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Batoo, K.M.; Raslan, E.H.; Adil, S.F.; Kumar, G. Structural and magnetic study of Mn0.5Zn0.5CuxFe2−xO4 nanoferrites synthesized via solution combustion method. Vacuum 2018, 157, 422–427. [Google Scholar] [CrossRef]
- Malato, S.; Fernandez-Ibañez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Li, H.; Ai, Z.; Zhang, L. Surface structure-dependent photocatalytic O2 activation for pollutant removal with bismuth oxyhal-ides. Chem. Commun. 2020, 56, 15282–15296. [Google Scholar] [CrossRef] [PubMed]
- Casbeer, E.; Sharma, V.; Li, X.-Z. Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Purif. Technol. 2012, 87, 1–14. [Google Scholar] [CrossRef]
- Pardeshi, S.K.; Pawar, R.Y. SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene. J. Mol. Catal. A Chem. 2011, 334, 35–43. [Google Scholar] [CrossRef]
- Zhan, G.; Li, J.; Hu, Y.; Zhao, S.; Cao, S.; Jia, F.; Zhang, L. The surface hydroxyl and oxygen vacancy dependent Cr(vi) adsorption performance of BiOCl. Environ. Sci. Nano 2020, 7, 1454–1463. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, G.; Gan, H.; Zhang, Y. Micro/nano-structured CaWO4/Bi2WO6 composite: Synthesis, characterization and photocatalytic properties for degradation of organic contaminants. Dalton Trans. 2012, 41, 12697–12703. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, G.; Liu, J.; Zhang, Y. Hierarchically structured α-Fe2O3/Bi2WO6 composite for photocatalytic degradation of organic contaminants under visible light irradiation. RSC Adv. 2013, 3, 2963–2970. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, X.; Liu, X.; Ling, C.; Shen, W.; Zhang, L. Visible light promoted Fe3S4 Fenton oxidation of atrazine. Appl. Catal. B Environ. 2020, 277, 119229. [Google Scholar] [CrossRef]
- Mishra, M.; Chun, D.-M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015, 498, 126–141. [Google Scholar] [CrossRef]
- Sun, H.; Xie, G.; He, D.; Zhang, L. Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling. Appl. Catal. B Environ. 2020, 267, 118383. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Jiang, Y.; Shen, W.; Jia, F.; Wang, S.; Liao, X.; Zhang, L. Rapid Aerobic Inactivation and Facile Removal of Escherichia coli with Amorphous Zero-Valent Iron Microspheres: Indispensable Roles of Reactive Oxygen Species and Iron Corrosion Products. Environ. Sci. Technol. 2019, 53, 3707–3717. [Google Scholar] [CrossRef]
- Hu, Y.; Zhan, G.; Peng, X.; Liu, X.; Ai, Z.; Jia, F.; Cao, S.; Quan, F.; Shen, W.; Zhang, L. Enhanced Cr(VI) removal of zero-valent iron with high proton conductive FeC2O4·2H2O shell. Chem. Eng. J. 2020, 389, 124414. [Google Scholar] [CrossRef]
- Xu, T.; Zhu, R.; Shang, H.; Xia, Y.; Liu, X.; Zhang, L. Photochemical behavior of ferrihydrite-oxalate system: Interfacial reaction mechanism and charge transfer process. Water Res. 2019, 159, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Tolani, S.C.; Golhar, A.R.; Rewatkar, K.G. A review of morphological, structural behaviour and technological applications of ferrites. AIP Conf. Proc. 2019, 2104, 030032. [Google Scholar] [CrossRef]
- Jacobo, S.E.; Bercoff, P.G. Structural and electromagnetic properties of yttrium-substituted Ni–Zn ferrites. Ceram. Int. 2016, 42, 7664–7668. [Google Scholar] [CrossRef]
- Lakhani, V.; Pathak, T.; Vasoya, N.; Modi, K. Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci. 2011, 13, 539–547. [Google Scholar] [CrossRef]
- Verma, K.; Kumar, A.; Varshney, D.; Verma, K.; Kumar, A.; Varshney, D. Effect of Zn and Mg doping on structural, dielectric and magnetic properties of tetragonal CuFe2O4. Curr. Appl. Phys. 2013, 13, 467–473. [Google Scholar] [CrossRef]
- Manikandan, M.; Manimuthu, P.; Venkateswaran, C. Structural and magnetic properties of MgFe2O4 ceramic. AIP Conf. Proc. 2014, 1576, 194–196. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, C.; Bi, H.; Liu, Y.; Yan, Q. Magnetically separable CuFe2O4/AgBr composite photocatalysts: Preparation, characterization, photocatalytic activity and photocatalytic mechanism under visible light. Appl. Surf. Sci. 2017, 392, 701–707. [Google Scholar] [CrossRef]
- Tasca, J.E.; Quincoces, C.E.; Lavat, A.; Alvarez, A.M.; González, M.G. Preparation and characterization of CuFe2O4 bulk catalysts. Ceram. Int. 2011, 37, 803–812. [Google Scholar] [CrossRef]
- Köferstein, R.; Walther, T.; Hesse, D.; Ebbinghaus, S.G. Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process. J. Solid State Chem. 2014, 213, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Nedkov, I.; Vandenberghe, R.; Marinova, T.; Thailhades, P.; Merodiiska, T.; Avramova, I. Magnetic structure and collective Jahn–Teller distortions in nanostructured particles of CuFe2O4. Appl. Surf. Sci. 2006, 253, 2589–2596. [Google Scholar] [CrossRef]
- Rani, B.J.; Saravanakumar, B.; Ravi, G.; Ganesh, V.; Ravichandran, S.; Yuvakkumar, R. Structural, optical and magnetic properties of CuFe2O4 nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 1975–1984. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Xu, H.; Wen, Q. Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A. Chem. Eng. J. 2020, 389, 124345. [Google Scholar] [CrossRef]
- Fotukian, S.M.; Barati, A.; Soleymani, M.; Alizadeh, A.M. Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J. Alloys Compd. 2020, 816, 152548. [Google Scholar] [CrossRef]
- Otari, S.V.; Patel, S.K.S.; Kim, S.-Y.; Haw, J.R.; Kalia, V.C.; Kim, I.-W.; Lee, J.-K. Copper Ferrite Magnetic Nanoparticles for the Immobilization of Enzyme. Indian J. Microbiol. 2019, 59, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Kar, M.K.A.; Fazaeli, R.; Manteghi, F.; Ghahari, M. Structural, Optical, and Isothermic Studies of CuFe2O4 and Zn-Doped CuFe2O4 Nanoferrite as a Magnetic Catalyst for Photocatalytic Degradation of Direct Red 264 Under Visible Light Irradiation. Environ. Prog. Sustain. Energy 2019, 38, 13109. [Google Scholar] [CrossRef]
- Aruna, S.T.; Mukasyan, A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 2008, 12, 44–50. [Google Scholar] [CrossRef]
- Manukyan, K.V.; Cross, A.; Roslyakov, S.; Rouvimov, S.; Rogachev, A.S.; Wolf, E.E.; Mukasyan, A.S. Solution combustion synthesis of Nanocrystalline metallic materials: Mechanistic studies. J. Phys. Chem. C 2013, 117, 24417–24427. [Google Scholar] [CrossRef]
- Patil, R.; Delekar, S.; Mane, D.; Hankare, P. Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite. Results Phys. 2013, 3, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Adiga, K.; Verneker, V.P. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame 1981, 40, 71–79. [Google Scholar] [CrossRef]
- Wen, W.; Wu, J.-M. Nanomaterials via solution combustion synthesis: A step nearer to controllability. RSC Adv. 2014, 4, 58090–58100. [Google Scholar] [CrossRef]
- Pourgolmohammad, B.; Masoudpanah, S.; Aboutalebi, M. Effects of the fuel type and fuel content on the specific surface area and magnetic properties of solution combusted CoFe2O4 nanoparticles. Ceram. Int. 2017, 43, 8262–8268. [Google Scholar] [CrossRef]
- Rajeshwar, K.; De Tacconi, N.R. Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation. Chem. Soc. Rev. 2009, 38, 1984–1998. [Google Scholar] [CrossRef]
- Oliveira, T.P.; Marques, G.N.; Castro, M.A.M.; Costa, R.C.V.; Rangel, J.H.G.; Rodrigues, S.F.; dos Santos, C.C.; Oliveira, M.M. Synthesis and photocatalytic investigation of ZnFe2O4 in the degradation of organic dyes under visible light. J. Mater. Res. Technol. 2020, 9, 15001–15015. [Google Scholar] [CrossRef]
- Vosoughifar, M. Preparation and application of copper ferrite nanoparticles for degradation of methyl orange. J. Mater. Sci. Mater. Electron. 2016, 27, 10449–10453. [Google Scholar] [CrossRef]
- Manikandan, V.; Vanitha, A.; Kumar, E.R.; Chandrasekaran, J. Effect of in substitution on structural, dielectric and magnetic properties of CuFe2O4 nanoparticles. J. Magn. Magn. Mater. 2017, 432, 477–483. [Google Scholar] [CrossRef]
- Trench, A.B.; Machado, T.R.; Gouveia, A.F.; Assis, M.; da Trindade, L.G.; Santos, C.; Perrin, A.; Perrin, C.; Oliva, M.; Andrés, J.; et al. Connecting structural, optical, and electronic properties and photocatalytic activity of Ag3PO4: Mo complemented by DFT calculations. Appl. Catal. B Environ. 2018, 238, 198–211. [Google Scholar] [CrossRef]
- Li, X.; Dong, P.; Liu, C.; Yu, X.; Zhao, J.; Sun, S.; Liu, J.; Zhang, Y. The impact of the crystal structure and morphology on the electrochemical performance for CuFe2O4 in sodium ion batteries. Ceram. Int. 2018, 44, 18471–18477. [Google Scholar] [CrossRef]
- Selima, S.; Khairy, M.; Mousa, M. Comparative studies on the impact of synthesis methods on structural, optical, magnetic and catalytic properties of CuFe2O4. Ceram. Int. 2019, 45, 6535–6540. [Google Scholar] [CrossRef]
- Kongkaew, T.; Sakurai, K. Low-temperature Synthesis of Cubic Phase CuFe2O4 Powder. Chem. Lett. 2017, 46, 1493–1496. [Google Scholar] [CrossRef] [Green Version]
- Selvan, R.K.; Augustin, C.; Berchmans, L.; Saraswathi, R. Combustion synthesis of CuFe2O4. Mater. Res. Bull. 2003, 38, 41–54. [Google Scholar] [CrossRef]
- Jiao, H.; Jiao, G.; Wang, J. Preparation and Magnetic Properties of CuFe2O4 Nanoparticles. Synth. React. Inorg. Met. Nano-Metal Chem. 2013, 43, 131–134. [Google Scholar] [CrossRef]
- Chatterjee, B.K.; Bhattacharjee, K.; Dey, A.; Ghosh, C.K.; Chattopadhyay, K.K. Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: Orientation of magnetic easy axis. Dalton Trans. 2014, 43, 7930–7944. [Google Scholar] [CrossRef]
- Prasad, B.D.; Nagabhushan, B.; Nagabhushana, H.; Rudraswamy, B.; Jnaneshwara, D.; Shivakumara, C.; Shivaprakash, N.; Chakradar, R.; Prakash, A.G. Electrical Properties of Nano Zinc Ferrites Prepared by Solution Combustion and Hydrothermal Methods. Mater. Sci. Forum 2012, 710, 721–726. [Google Scholar] [CrossRef]
- Huang, Z.; Yin, G.; Liao, X.; Yao, Y.; Kang, Y. Preparation and magnetic properties of Cu-ferrite nanorods and nanowires. J. Colloid Interface Sci. 2008, 317, 530–535. [Google Scholar] [CrossRef]
- Shetty, K.; Renuka, L.; Nagaswarupa, H.; Nagabhushana, H.; Anantharaju, K.; Rangappa, D.; Prashantha, S.; Ashwini, K. A comparative study on CuFe2O4, ZnFe2O4 and NiFe2O4: Morphology, Impedance and Photocatalytic studies. Mater. Today Proc. 2017, 4, 11806–11815. [Google Scholar] [CrossRef]
- Kombaiah, K.; Vijaya, J.J.; Kennedy, L.J.; Bououdina, M.; Al-Najar, B. Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies. J. Phys. Chem. Solids 2018, 115, 162–171. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Liu, D.; Li, L.; Liu, W.; Liu, S.; Feng, C. Construction of Z-scheme CuFe2O4/MnO2 photocatalyst and activating peroxymonosulfate for phenol degradation: Synergistic effect, degradation pathways, and mechanism. Environ. Res. 2021, 200, 111736. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Masunga, N.; Mamba, B.B.; Getahun, Y.W.; El-Gendy, A.A.; Kefeni, K.K. Synthesis of single-phase superparamagnetic copper ferrite nanoparticles using an optimized coprecipitation method. Mater. Sci. Eng. B 2021, 272, 115368. [Google Scholar] [CrossRef]
- Joshi, S.; Kumar, M.; Chhoker, S.; Srivastava, G.; Jewariya, M.; Singh, V. Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 2014, 1076, 55–62. [Google Scholar] [CrossRef]
- Doneliene, J.; Fataraite-Urboniene, E.; Rudzikas, M.; Pakalka, S.; Danchova, N.; Ulbikas, J. Effect of Precursor Nature and Sol-Gel Synthesis Conditions on TiO2 Aerogel’s Structure. Molecules 2021, 26, 5090. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Naik, H.B.; Nagaraju, G.; Viswanath, R.; Rashmi, S.; Kumar, M.V. Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: Application to degradation of mixed dyes and antibacterial activities. Mater. Chem. Phys. 2018, 212, 351–362. [Google Scholar] [CrossRef]
- Surendra, B. Green engineered synthesis of Ag-doped CuFe2O4: Characterization, cyclic voltammetry and photocatalytic studies. J. Sci. Adv. Mater. Devices 2018, 3, 44–50. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, W.; Zhang, L.; Sun, S.; Gao, E. Magnetic ZnFe2O4 octahedra: Synthesis and visible light induced photocatalytic activities. Mater. Lett. 2013, 98, 124–127. [Google Scholar] [CrossRef]
- Hung, P.-H.; Vequizo, J.J.M.; Wu, R.-A.; Yamakata, A.; Tseng, W.J. Effect of CuFe2O4 ferrite on photocatalysis and carrier dynamics of electrospun α-Fe2O3 nanofibers by time-resolved transient absorption spectroscopy. Ceram. Int. 2019, 45, 15676–15680. [Google Scholar] [CrossRef]
- Cao, Z.; Zuo, C.; Wu, H. One step for synthesis of magnetic CuFe2O4 composites as photo-fenton catalyst for degradation organics. Mater. Chem. Phys. 2019, 237, 121842. [Google Scholar] [CrossRef]
- Li, D.; Qin, Q.; Duan, X.; Yang, J.; Guo, W.; Zheng, W. General One-pot template-free hydrothermal method to metal oxide hollow spheres and their photocatalytic activities and lithium storage properties. ACS Appl. Mater. Interfaces 2013, 5, 9095–9100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Wang, L.; Zhang, B.; Xie, Y.; Wang, G. Enhanced photocatalytic performance of polyvinylidene fluoride membrane by doped CuFe2O4 nanocrystals for water treatment. J. Sol-Gel Sci. Technol. 2020, 93, 452–461. [Google Scholar] [CrossRef]
Treatment Temperature of CuFe2O4 Sample (°C) | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
400 | 184.400 | 0.291 | 2.184 |
500 | 128.284 | 0.159 | 2.181 |
600 | 36.859 | 0.145 | 9.262 |
700 | 17.540 | 0.128 | 16.821 |
800 | 6.458 | 0.019 | 2.183 |
900 | 5.562 | 0.057 | 2.160 |
1000 | 4.970 | 0.010 | 2.417 |
1100 | 3.989 | 0.006 | 2.141 |
Material | Synthesis Method | Absorption | Band Gap (eV) | Light Source | Degradation (%) | Dye | Ref. |
---|---|---|---|---|---|---|---|
CuFe2O4 | Combustion | visible | 1.96–1.84 | Sun light | 83% | Malachite green | [53] |
1.9 | Xenon arc lamp | 94.5% | Malachite green | [50] | |||
1.49–1.58 | LED | 56.6–20.53% | Malachite green | This work |
Temperature (°C) | k × 10−2/min−1 | Discoloration (%) | |
---|---|---|---|
400 | 1.40 | 0.49 | 56.60 |
500 | 0.98 | 0.70 | 43.16 |
600 | 0.80 | 0.86 | 39.08 |
700 | 0.64 | 1.08 | 31.59 |
800 | 0.55 | 1.26 | 29.42 |
900 | 0.54 | 1.28 | 27.52 |
1000 | 0.42 | 1.65 | 20.94 |
1100 | 0.42 | 1.65 | 20.53 |
Temperature (°C) | k × 10−2/min−1 | Discoloration (%) | |
---|---|---|---|
400 | 2.30 | 0.30 | 84.30 |
500 | 0.55 | 1.26 | 28.97 |
600 | 0.46 | 1.50 | 25.67 |
700 | 0.40 | 1.73 | 24.07 |
800 | 0.17 | 4.07 | 11.02 |
900 | 0.14 | 4.95 | 8.23 |
1000 | 0.14 | 4.95 | 8.20 |
1100 | 0.13 | 5.33 | 7.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, T.P.; Rodrigues, S.F.; Marques, G.N.; Viana Costa, R.C.; Garçone Lopes, C.G.; Aranas, C., Jr.; Rojas, A.; Gomes Rangel, J.H.; Oliveira, M.M. Synthesis, Characterization, and Photocatalytic Investigation of CuFe2O4 for the Degradation of Dyes under Visible Light. Catalysts 2022, 12, 623. https://doi.org/10.3390/catal12060623
Oliveira TP, Rodrigues SF, Marques GN, Viana Costa RC, Garçone Lopes CG, Aranas C Jr., Rojas A, Gomes Rangel JH, Oliveira MM. Synthesis, Characterization, and Photocatalytic Investigation of CuFe2O4 for the Degradation of Dyes under Visible Light. Catalysts. 2022; 12(6):623. https://doi.org/10.3390/catal12060623
Chicago/Turabian StyleOliveira, Thayane Portela, Samuel Filgueiras Rodrigues, Gleison Neres Marques, Rayssa Cristina Viana Costa, Charlyanne Gabriela Garçone Lopes, Clodualdo Aranas, Jr., Alex Rojas, José Hilton Gomes Rangel, and Marcelo Moizinho Oliveira. 2022. "Synthesis, Characterization, and Photocatalytic Investigation of CuFe2O4 for the Degradation of Dyes under Visible Light" Catalysts 12, no. 6: 623. https://doi.org/10.3390/catal12060623
APA StyleOliveira, T. P., Rodrigues, S. F., Marques, G. N., Viana Costa, R. C., Garçone Lopes, C. G., Aranas, C., Jr., Rojas, A., Gomes Rangel, J. H., & Oliveira, M. M. (2022). Synthesis, Characterization, and Photocatalytic Investigation of CuFe2O4 for the Degradation of Dyes under Visible Light. Catalysts, 12(6), 623. https://doi.org/10.3390/catal12060623