Magnetic Sulfonated Melamine-Formaldehyde Resin as an Efficient Catalyst for the Synthesis of Antioxidant and Antimicrobial Pyrazolone Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
- M (NaOH) = molarity of standard NaOH solution (mol/L);
- V (NaOH) = volume of NaOH solution used to neutralize the polymer solution (mL);
- W = sample mass (g);
- 292 = molecular weight of SMF repeat unit; and
- 81 = molecular weight of the –SO3H
2.2. Catalytic Activity of MSMF in the Synthesis of 3-Hydroxynaphthalene-1, 4-dione, and 4-[(Indol-3-yl)-arylmethyl]-1-phenyl-3-methyl-5-pyrazolones
Entry | Product | Product | Time Min. | Yield % b | M.P. (°C) | Ref. | |
---|---|---|---|---|---|---|---|
Observed | Reported | ||||||
1 | 4a | 30 | 94 | 266–267 | 266–268 | [26] | |
2 | 4b | 25 | 93 | 263–264 | 262–264 | [26] | |
3 | 4c | 30 | 90 | 264–267 | 264–264 | [26] | |
4 | 4d | 25 | 92 | 280–281 | 278–280 | [26] | |
5 | 4e | 20 | 95 | 245–247 | 246–248 | [26] | |
6 | 4f | 20 | 90 | 253–255 | 252–254 | [26] | |
7 | 4g | 25 | 90 | 230–232 | 231–233 | [26] | |
8 | 4h | 25 | 87 | 226–227 | 224–228 | [26] | |
9 | 4i | 20 | 90 | 211–213 | 214–216 | [26] | |
10 | 4j | 35 | 85 | 191–193 | NR | ||
11 | 4k | 20 | 92 | 232–234 | NR | ||
12 | 4l | 15 | 95 | 235–236 | NR | ||
13 | 4m | 20 | 90 | 275–276 | 272–274 | [26] | |
14 | 4n | 35 | 80 | 233–235 | NR |
Entry | Catalyst | Condition | Yield % | Time Min. | Ref. |
---|---|---|---|---|---|
1 | MSFM a (0.06 g) | H2O/50 °C | 94 | 30 | This study |
2 | p-Toluene sulfonic acid (10 mol%) | H2O/Reflux | 80 | 30 | [29] |
3 | MgCl2 (20 mol%) | Ethylene glycol/100 °C | 88 | 30 | [30] |
4 | - | H2O, MW, 100 °C | 85 | 7 | [31] |
5 | β-Cyclodextrin-supported sulfonic acid | H2O, 30 °C | 92 | 40 | [26] |
3. Experimental Procedures
3.1. Materials
3.2. Preparation of Fe3O4 Magnetic Nanoparticles
3.3. Synthesis of Magnetic Sulfonated Melamine–Formaldehyde Resin
3.4. General Procedure for the Synthesis of 3-Methyl-1-phenyl-1H-pyrazol-5-ol
3.5. Synthesis of 3-Hydroxynaphthalene-1, 4-dione (Benzylpyrazolyl Naphthoquinone) Derivatives
3.6. Synthesis of 4-[(Indol-3-yl)-arylmethyl]-1-phenyl-3-methyl-5-pyrazolones
3.7. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsalme, A.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Heteropoly acids as catalysts for liquid-phase esterification and transesterification. Appl. Catal. A Gen. 2008, 349, 170–176. [Google Scholar] [CrossRef]
- Mirani Nezhad, S.; Nazarzadeh Zare, E.; Davarpanah, A.; Pourmousavi, S.A.; Ashrafizadeh, M.; Kumar, A.P. Ionic Liquid-Assisted Fabrication of Bioactive Heterogeneous Magnetic Nanocatalyst with Antioxidant and Antibacterial Activities for the Synthesis of Polyhydroquinoline Derivatives. Molecules 2022, 27, 1748. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Qi, C. Synthesis of novel carbon/silica composites based strong acid catalyst and its catalytic activities for acetalization. Bull. Mater. Sci. 2012, 35, 419–424. [Google Scholar] [CrossRef]
- Mirani Nezhad, S.; Pourmousavi, S.; Nazarzadeh Zare, E. ASynthesis of Polyhydroquinolines and 2-Amino-4H-Chromenes and their Alkylene Bridging Derivatives using Sulfonic acid Functionalized Heterogeneous Nanocatalyst Based on Modified Poly (Styrene-alt-Maleic Anhydride), Lett. Org. Chem. 2022, 19, 542–557. [Google Scholar]
- Su, F.; Guo, Y. Advancements in solid acid catalysts for biodiesel production. Green Chem. 2014, 266, 112–119. [Google Scholar] [CrossRef]
- Baig, R.B.N.; Verma, S.; Nadagouda, M.N.; Varma, R.S. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride. Sci. Rep. 2016, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jorge, E.Y.C.; Lima, C.G.S.; Lima, T.M.; Marchini, L.; Gawande, M.B.; Tomanec, O.; Varma, R.S.; Paixao, M.W. Sulfonated dendritic mesoporous silica nanospheres: A metal-free Lewis acid catalyst for the upgrading of carbohydrates. Green Chem. 2020, 22, 1754–1762. [Google Scholar] [CrossRef]
- Chiroli, V.; Benaglia, M.; Puglisi, A.; Porta, R.; Jumde, R.P.; Mandoli, A. A chiral organocatalytic polymer-based monolithic reactor. Green Chem. 2014, 16, 2798–2806. [Google Scholar] [CrossRef] [Green Version]
- Merline, D.J.; Vukusic, S.; Abdala, A.A. Melamine formaldehyde: Curing studies and reaction mechanism. Polym. J. 2013, 45, 413–419. [Google Scholar] [CrossRef]
- Lv, Z.; Sun, Q.; Meng, X.; Xiao, F.S. Superhydrophilic mesoporous sulfonated melamine-formaldehyde resin supported palladium nanoparticles as an efficient catalyst for biofuel upgrade. J. Mater. Chem. A 2013, 1, 8630–8635. [Google Scholar] [CrossRef]
- Bui, T.Q.; Konwar, L.J.; Samikannu, A.; Nikjoo, D.; Mikkola, J.P. Mesoporous Melamine-Formaldehyde Resins as Efficient Heterogeneous Catalysts for Continuous Synthesis of Cyclic Carbonates from Epoxides and Gaseous CO2. ACS Sustain. Chem. Eng. 2020, 8, 12852–12869. [Google Scholar] [CrossRef]
- Zarnaghash, N.; Rezaei, R.; Hayati, P.; Doroodmand, M.M. Selective ultrasonic assisted synthesis of iron oxide mesoporous structures based on sulfonated melamine formaldehyde and survey of nanorod/sphere, sphere and core/shell on their catalysts properties for the Biginelli reaction. Mater. Sci. Eng. C 2019, 104, 109975. [Google Scholar] [CrossRef]
- Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P.; et al. Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect. Eur. J. Med. Chem. 2020, 186, 111893. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.R.S.; Salvador, R.R.S. Pyrazole carbohydrazide derivatives of pharmaceutical interest. Pharmaceuticals 2012, 5, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.H.; Wang, X.K.; Liang, Y.J.; Shi, Z.; Zhang, J.Y.; Chen, L.M.; Fu, L. A cell-based screen for anticancer activity of 13 pyrazolone derivatives. Chin. J. Cancer 2010, 29, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekharan, N.V.; Dai, H.; Roos, K.L.T.; Evanson, N.K.; Tomsik, J.; Elton, T.S.; Simmons, D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc. Natl. Acad. Sci. USA 2002, 99, 13926–13931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laporte, J.R.; Carné, X.; Vidal, X.; Moreno, V.; Juan, J. Upper gastrointestinal bleeding in relation to previous use of analgesics and non-steroidal anti-inflammatory drugs. Lancet 1991, 337, 85–89. [Google Scholar] [CrossRef]
- Lapchak, P.A. A critical assessment of edaravone acute ischemic stroke efficacy trials: Is edaravone an effective neuroprotective therapy? Exp. Opin. Pharmacother. 2010, 11, 1753–1763. [Google Scholar] [CrossRef] [PubMed]
- Meiattini, F.; Prencipe, L.; Bardelli, F.; Giannini, G.; Tarli, P. The 4-hydroxybenzoate/4-aminophenazone chromogenic system used in the enzymic determination of serum cholesterol. Clin. Chem. 1978, 24, 2161–2165. [Google Scholar] [CrossRef]
- Boyers, D.; Jia, X.; Crowther, M.; Jenkinson, D.; Fraser, C.; Mowatt, G. Eltrombopag for the treatment of chronic idiopathic (immune) thrombocytopenic purpura (ITP). Health Technol. Assess. 2011, 15 (Suppl. 1), 23–32. [Google Scholar] [CrossRef]
- Himly, M.; Jahn-Schmid, B.; Pittertschatscher, K.; Bohle, B.; Grubmayr, K.; Ferreira, F.; Ebner, H.; Ebner, C. Ig E-mediated immediate-type hypersensitivity to the pyrazolone drug propyphenazone. J. Allergy Clin. Immunol. 2003, 111, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.J.; Xing, G.Y.; Qi, C.Z. Synthesis of melamine-formaldehyde resin functionalised with sulphonic groups and its catalytic activities. Chem. Pap. 2014, 68, 983–988. [Google Scholar] [CrossRef]
- Yuan, L.; Liang, G.Z.; Xie, J.Q.; He, S.B. Synthesis and characterization of microencapsulated dicyclopentadiene with melamine-formaldehyde resins. Colloid Polym. Sci. 2007, 285, 781–791. [Google Scholar] [CrossRef]
- Ullah, S.; Bustam, M.A.; Nadeem, M.; Naz, M.Y.; Tan, W.L.; Shariff, A.M. Synthesis and thermal degradation studies of melamine formaldehyde resins. Sci. World J. 2014, 2014, 940502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unnikrishnan, L.; Nayak, S.K.; Mohanty, S.; Sarkhel, G. Polyethersulfone membranes: The effect of sulfonation on the properties. Polym. -Plast. Technol. Eng. 2010, 49, 1419–1427. [Google Scholar] [CrossRef]
- Patil, A.; Gajare, S.; Rashinkar, G.; Salunkhe, R. β-CD-SO3H: Synthesis, Characterization and Its Application for the Synthesis of Benzylpyrazolyl Naphthoquinone and Pyrazolo Pyranopyrimidine Derivatives in Water. Catal. Lett. 2020, 150, 127–137. [Google Scholar] [CrossRef]
- Khan, M.S.; Khan, Z.H. Ab initio and semiempirical study of structure and electronic spectra of hydroxy substituted naphthoquinones. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Leyva, E.; López, L.I.; Loredo-Carrillo, S.E.; Rodríguez-Kessler, M.; Montes-Rojas, A. Synthesis, spectral and electrochemical characterization of novel 2-(fluoroanilino)-1,4-naphthoquinones. J. Fluor. Chem. 2011, 132, 94–101. [Google Scholar] [CrossRef]
- Lakshmanan, S.; Ramalakshmi, N. One-pot, four-component synthesis of benzylpyrazolyl naphthoquinone derivatives and molecular docking studies. Synth. Commun. 2016, 46, 2045–2052. [Google Scholar] [CrossRef]
- Fu, Z.; Qian, K.; Li, S.; Shen, T.; Song, Q. MgCl2 catalyzed one-pot synthesis of 2-hydroxy-3-((5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)(phenyl)methyl)naphthalene-1,4-dione derivatives in EG. Tetrahedron Lett. 2016, 57, 1104–1108. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.L.; Ding, J.; Shi, F.; Liu, Y.P.; Jiang, B.; Ma, N.; Tu, S.J. Green Synthesis of 3-Hydroxynaphthalene-1,4-dione Derivatives via Microwave-Assisted Three-Component Reactions in Neat WaterNo Title. J. Heterocycl. Chem. 2012, 49, 521–525. [Google Scholar] [CrossRef]
- Xia, M.; Lu, Y. Solid-state synthesis of 4-[(indol-3-yl)-arylmethyl]-1-phenyl-3-methyl-5- pyrazolones by catalysis of molecular iodine. Synth. Commun. 2006, 36, 2389–2399. [Google Scholar] [CrossRef]
- Li, X.L.; Wang, Y.M.; Tian, B.; Matsuura, T.; Meng, J.B. The Solid-State Michael Addition of 3-Methyl-1-phenyl-5-pyrazolone. J. Heterocycl. Chem. 1998, 35, 129–134. [Google Scholar] [CrossRef]
Sample | C% | H% | N% | O% | S% |
---|---|---|---|---|---|
SMF | 24.23 (25.36) | 2.98 (3.19) | 28.31 (29.57) | 25.92 (22.52) | 11.09 (11.28) |
MSMF | 21.08 (21.20) | 2.45 (2.69) | 23.74 (24.91) | 26.30 (22.97) | 9.28 (9.51) |
Entry | Solvent | Catalyst c g | Temp. °C | Time Min. | Yield % b |
---|---|---|---|---|---|
1 | EtOH | 0.04 | 50 | 60 | 65 |
2 | H2O | 0.04 | 50 | 40 | 90 |
3 | THF | 0.04 | 50 | 180 | 45 |
4 | CHCl3 | 0.04 | 50 | 180 | 60 |
5 | Solvent-free | 0.04 | 50 | 120 | 65 |
6 | H2O | 0.04 | r.t | 75 | 50 |
7 | H2O | 0.04 | 80 | 30 | 92 |
8 | H2O | 0.03 | 50 | 60 | 80 |
9 | H2O | 0.06 | 50 | 30 | 94 |
10 | H2O | 0.07 | 50 | 30 | 94 |
Entry | Solvent | Catalyst c g | Temp. °C | Time Min. | Yield % b |
---|---|---|---|---|---|
1 | EtOH/H2O | 0.03 | 30 | 120 | 70 |
2 | H2O | 0.03 | 30 | 180 | 50 |
3 | THF | 0.03 | 30 | 180 | 30 |
4 | EtOH | 0.03 | 30 | 90 | 75 |
5 | CHCl3 | 0.03 | 30 | 180 | 30 |
6 | Solvent-free | 0.03 | 30 | 180 | 30 |
7 | EtOH | 0.03 | r.t | 120 | 50 |
8 | EtOH | 0.03 | 60 | 80 | 40 |
9 | EtOH | 0.03 | 80 | 80 | 30 |
10 | EtOH | 0.05 | 30 | 80 | 87 |
11 | EtOH | 0.07 | 30 | 80 | 88 |
Entry | Product | Code | Time Min. | Yield % b | M.P. (°C) | Ref. | |
---|---|---|---|---|---|---|---|
Observed | Reported | ||||||
1 | 6a | 80 | 87 | 231–233 | 235–236 | [32] | |
2 | 6b | 60 | 90 | 180–183 | 173–175 | [32] | |
3 | 6c | 70 | 87 | 181–183 | 180–182 | [32] | |
4 | 6d | 65 | 88 | 151–153 | 170–171 | [32] | |
5 | 6e | 50 | 93 | 183–185 | 184–186 | [32] | |
6 | 6f | 60 | 90 | 238–239 | 242–244 | [32] | |
7 | 6g | 65 | 89 | 194–196 | 206 | [33] | |
8 | 6h | 70 | 89 | 164–166 | 161–163 | [32] | |
9 | 6i | 60 | 91 | 195–197 | 191–193 | [32] | |
10 | 6j | 50 | 90 | 242–244 | NR | ||
11 | 6k | 90 | 85 | 244–246 | 246 | [33] | |
12 | 6l | 70 | 87 | 210–212 | NR | ||
13 | 6m | 50 | 83 | 193–195 | NR | ||
14 | 6n | 35 | 90 | 231–233 | NR | ||
15 | 6o | 40 | 91 | 185–187 | NR | ||
16 | 6p | 50 | 85 | 185–187 | NR |
Entry | Compound | Inhibition Zone (mm) | |
---|---|---|---|
Staphylococcus aureus Gram-Positive (+) | Escherichia coli Gram-Negative (−) | ||
1 | Fe3O4 NPs | 16 ± 1.2 | NE a |
2 | SMF | NE | 12 ± 1.7 |
3 | MSMF | 40 ± 1.2 | 27 ± 1.7 |
4 | 4a | 11 ± 0.6 | 8 ± 07 |
5 | 4b | 11 ± 0.7 | 10 ± 1.2 |
6 | 4d | 11 ± 1.0 | NE |
7 | 4i | 15 ± 1.0 | 9 ± 07 |
8 | 6e | 10 ± 1.0 | NE |
9 | 6o | NE | NE |
10 | 6m | 14 ± 0.7 | NE |
11 | 6p | NE | NE |
12 | Gentamicin | 26 ± 1.2 | 19.6 ± 0.7 |
13 | Chloramphenicol | 22.3 ± 1.7 | 20.7 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nezhad, S.M.; Pourmousavi, S.A.; Zare, E.N.; Heidari, G.; Makvandi, P. Magnetic Sulfonated Melamine-Formaldehyde Resin as an Efficient Catalyst for the Synthesis of Antioxidant and Antimicrobial Pyrazolone Derivatives. Catalysts 2022, 12, 626. https://doi.org/10.3390/catal12060626
Nezhad SM, Pourmousavi SA, Zare EN, Heidari G, Makvandi P. Magnetic Sulfonated Melamine-Formaldehyde Resin as an Efficient Catalyst for the Synthesis of Antioxidant and Antimicrobial Pyrazolone Derivatives. Catalysts. 2022; 12(6):626. https://doi.org/10.3390/catal12060626
Chicago/Turabian StyleNezhad, Shefa Mirani, Seied Ali Pourmousavi, Ehsan Nazarzadeh Zare, Golnaz Heidari, and Pooyan Makvandi. 2022. "Magnetic Sulfonated Melamine-Formaldehyde Resin as an Efficient Catalyst for the Synthesis of Antioxidant and Antimicrobial Pyrazolone Derivatives" Catalysts 12, no. 6: 626. https://doi.org/10.3390/catal12060626
APA StyleNezhad, S. M., Pourmousavi, S. A., Zare, E. N., Heidari, G., & Makvandi, P. (2022). Magnetic Sulfonated Melamine-Formaldehyde Resin as an Efficient Catalyst for the Synthesis of Antioxidant and Antimicrobial Pyrazolone Derivatives. Catalysts, 12(6), 626. https://doi.org/10.3390/catal12060626