Activated Bentonite Nanocomposite for the Synthesis of Solketal from Glycerol in the Liquid Phase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Catalytic Activity
2.2.1. Temperature Effect
2.2.2. Catalytic Stability
2.2.3. Kinetic Model
3. Materials and Methods
3.1. Preparation of an Activated Bentonite Nanocomposite (CBA)
3.2. Characterization of Materials
3.3. Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonçalves, V.L.C.; Pinto, B.P.; Silva, J.C.; Mota, C.J.A. Acetylation of Glycerol Catalyzed by Different Solid Acids. Catal. Today 2008, 133–135, 673–677. [Google Scholar] [CrossRef]
- Gonçalves, M.; Rodrigues, R.; Galhardo, T.S.; Carvalho, W.A. Highly Selective Acetalization of Glycerol with Acetone to Solketal over Acidic Carbon-Based Catalysts from Biodiesel Waste. Fuel 2016, 181, 46–54. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Phung, T.K.; Hossain, M.A.; Chowdhury, E.; Tulaphol, S.; Lalvani, S.B.; O’Toole, M.; Willing, G.A.; Jasinski, J.B.; Crocker, M.; et al. Hydrophobic Functionalization of HY Zeolites for Efficient Conversion of Glycerol to Solketal. Appl. Catal. A Gen. 2020, 592, 117369. [Google Scholar] [CrossRef]
- Esposito, R.; Raucci, U.; Cucciolito, M.E.; Di Guida, R.; Scamardella, C.; Rega, N.; Ruffo, F. Iron(III) Complexes for Highly Efficient and Sustainable Ketalization of Glycerol: A Combined Experimental and Theoretical Study. ACS Omega 2019, 4, 688–698. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.; Zuhairi Abdullah, A.; Ahmed, M.; Khan, J.; Shahadat, M.; Umar, K.; Alim, M.A. A Review on Recent Developments and Progress in Sustainable Acrolein Production through Catalytic Dehydration of Bio-Renewable Glycerol. J. Clean. Prod. 2022, 341, 130876. [Google Scholar] [CrossRef]
- Fatimah, I.; Sahroni, I.; Fadillah, G.; Musawwa, M.M.; Mahlia, T.M.I.; Muraza, O. Glycerol to Solketal for Fuel Additive: Recent. Energies 2019, 12, 2872. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, I.; Faria, R.P.V.; Rodrigues, A.E. Continuous Valorization of Glycerol into Solketal: Recent Advances on Catalysts, Processes, and Industrial Perspectives. Sustain. Chem. 2021, 2, 286–324. [Google Scholar] [CrossRef]
- Hidalgo-Carrillo, J.; Estévez-Toledano, R.C.; López-Tenllado, F.J.; Bautista, F.M.; Urbano, F.J.; Marinas, A. Fourth Generation Synthesis of Solketal by Glycerol Acetalization with Acetone: A Solar-Light Photocatalytic Approach. J. Taiwan Inst. Chem. Eng. 2021, 125, 297–303. [Google Scholar] [CrossRef]
- Oliveira, P.A.; Souza, R.O.M.A.; Mota, C.J.A. Atmospheric Pressure Continuous Production of Solketal from the Acid-Catalyzed Reaction of Glycerol with Acetone. J. Braz. Chem. Soc. 2016, 27, 1832–1837. [Google Scholar] [CrossRef]
- da Silva, M.J.; Teixeira, M.G.; Chaves, D.M.; Siqueira, L. An Efficient Process to Synthesize Solketal from Glycerol over Tin (II) Silicotungstate Catalyst. Fuel 2020, 281, 118724. [Google Scholar] [CrossRef]
- Mota, C.J.A.; Da Silva, C.X.A.; Rosenbach, N.; Costa, J.; Da Silva, F. Glycerin Derivatives as Fuel Additives: The Addition of Glycerol/Acetone Ketal (Solketal) in Gasolines. Energy Fuels 2010, 24, 2733–2736. [Google Scholar] [CrossRef]
- Ozorio, L.P.; Pianzolli, R.; Mota, M.B.S.; Mota, C.J.A. Reactivity of Glycerol/Acetone Ketal (Solketal) and Glycerol/Formaldehyde Acetals toward Acid-Catalyzed Hydrolysis. J. Braz. Chem. Soc. 2012, 23, 931–937. [Google Scholar] [CrossRef] [Green Version]
- Nanda, M.R.; Zhang, Y.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Xu, C. Catalytic Conversion of Glycerol for Sustainable Production of Solketal as a Fuel Additive: A Review. Renew. Sustain. Energy Rev. 2016, 56, 1022–1031. [Google Scholar] [CrossRef]
- Zahid, I.; Ayoub, M.; Abdullah, B.B.; Nazir, M.H.; Ameen, M.; Zulqarnain; Mohd Yusoff, M.H.; Inayat, A.; Danish, M. Production of Fuel Additive Solketal via Catalytic Conversion of Biodiesel-Derived Glycerol. Ind. Eng. Chem. Res. 2020, 59, 20961–20978. [Google Scholar] [CrossRef]
- Esteban, J.; Vorholt, A.J.; Behr, A.; Ladero, M.; Garcia-ochoa, F. Liquid − Liquid Equilibria for the System Acetone + Solketal +. J. Chem. Eng. Data 2014, 59, 2850–2855. [Google Scholar] [CrossRef]
- Cornejo, A.; Campoy, M.; Barrio, I.; Navarrete, B.; Lázaro, J. Solketal Production in a Solvent-Free Continuous Flow Process: Scaling from Laboratory to Bench Size. React. Chem. Eng. 2019, 4, 1803–1813. [Google Scholar] [CrossRef]
- Catuzo, G.L.; Santilli, C.V.; Martins, L. Hydrophobic-Hydrophilic Balance of ZSM-5 Zeolites on the Two-Phase Ketalization of Glycerol with Acetone. Catal. Today 2020, 381, 215–223. [Google Scholar] [CrossRef]
- Rodrigues, R.; Santos, M.S.; Nunes, R.S.; Carvalho, W.A.; Labuto, G. Solvent-Free Solketal Production from Glycerol Promoted by Yeast Activated Carbons. Fuel 2021, 299, 120923. [Google Scholar] [CrossRef]
- Fernández, P.; Fraile, J.M.; García-Bordejé, E.; Pires, E. Sulfonated Hydrothermal Carbons from Cellulose and Glucose as Catalysts for Glycerol Ketalization. Catalysts 2019, 9, 804. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhang, G.; Zhang, Q. Preparation of the WOX/MCM-41 Solid Acid Catalyst and the Catalytic Performance for Solketal Synthesis. ACS Omega 2021, 6, 3875–3883. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Panchenko, V.N.; Krupskaya, V.V.; Gil, A.; Vicente, M.A. Effect of Nitric Acid Modification of Montmorillonite Clay on Synthesis of Solketal from Glycerol and Acetone. Catal. Commun. 2017, 90, 65–69. [Google Scholar] [CrossRef]
- Moreira, M.N.; Faria, R.P.V.; Ribeiro, A.M.; Rodrigues, A.E. Solketal Production from Glycerol Ketalization with Acetone: Catalyst Selection and Thermodynamic and Kinetic Reaction Study. Ind. Eng. Chem. Res. 2019, 58, 17746–17759. [Google Scholar] [CrossRef]
- Nanda, M.R.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Poirier, M.A.; Xu, C.C. Thermodynamic and Kinetic Studies of a Catalytic Process to Convert Glycerol into Solketal as an Oxygenated Fuel Additive. Fuel 2014, 117, 470–477. [Google Scholar] [CrossRef]
- Komadel, P. Chemically Modified Smectites. Clay Miner. 2003, 38, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Komadel, P. Acid Activated Clays: Materials in Continuous Demand. Appl. Clay Sci. 2016, 131, 84–99. [Google Scholar] [CrossRef]
- Jeenpadiphat, S.; Tungasmita, D.N. Esterification of Oleic Acid and High Acid Content Palm Oil over an Acid-Activated Bentonite Catalyst. Appl. Clay Sci. 2014, 87, 272–277. [Google Scholar] [CrossRef]
- Tangestanifard, M.; Ghaziaskar, H.S. Arenesulfonic Acid-Functionalized Bentonite as Catalyst in Glycerol Esterification with Acetic Acid. Catalysts 2017, 7, 211. [Google Scholar] [CrossRef] [Green Version]
- Rabie, A.M.; Mohammed, E.A.; Negm, N.A. Feasibility of Modified Bentonite as Acidic Heterogeneous Catalyst in Low Temperature Catalytic Cracking Process of Biofuel Production from Nonedible Vegetable Oils. J. Mol. Liq. 2018, 254, 260–266. [Google Scholar] [CrossRef]
- Vilcocq, L.; Spinola, V.; Moniz, P.; Duarte, L.C.; Carvalheiro, F.; Fernandes, C.; Castilho, P. Acid-Modified Clays as Green Catalysts for the Hydrolysis of Hemicellulosic Oligosaccharides. Catal. Sci. Technol. 2015, 5, 4072–4080. [Google Scholar] [CrossRef] [Green Version]
- Elfadly, A.M.; Zeid, I.F.; Yehia, F.Z.; Abouelela, M.M.; Rabie, A.M. Production of Aromatic Hydrocarbons from Catalytic Pyrolysis of Lignin over Acid-Activated Bentonite Clay. Fuel Process. Technol. 2017, 163, 663–669. [Google Scholar] [CrossRef]
- Bendou, S.; Amrani, M. Effect of Hydrochloric Acid on the Structural of Sodic-Bentonite Clay. J. Miner. Mater. Charact. Eng. 2014, 2, 404–413. [Google Scholar] [CrossRef]
- Legarto, C.M.; Scian, A.; Lombardi, M.B. Preparation and Characterization of Bentonite Nanocomposites via Sol–Gel Process. SN Appl. Sci. 2019, 1, 770. [Google Scholar] [CrossRef] [Green Version]
- Legarto, M.C.; Benito, D.; Scian, A.; Lombardi, M.B. Obtention and Characterization of a Hybrid Nanocomposite Monolith by Sol–Gel Process. Bol. Soc. Esp. Ceram. Vidr. 2021, 1–11, in press. [Google Scholar] [CrossRef]
- Alabarse, F.G.; Conceição, R.V.; Balzaretti, N.M.; Schenato, F.; Xavier, A.M. In-Situ FTIR Analyses of Bentonite under High-Pressure. Appl. Clay Sci. 2011, 51, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Andrini, L.; Moreira Toja, R.; Gauna, M.R.; Conconi, M.S.; Requejo, F.G.; Rendtorff, N.M. Extended and Local Structural Characterization of a Natural and 800 °C Fired Na-Montmorillonite–Patagonian Bentonite by XRD and Al/Si XANES. Appl. Clay Sci. 2017, 137, 233–240. [Google Scholar] [CrossRef]
- Fernández, M.; Alba, M.D.; Torres Sánchez, R.M. Effects of Thermal and Mechanical Treatments on Montmorillonite Homoionized with Mono- and Polyvalent Cations: Insight into the Surface and Structural Changes. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 423, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kaufhold, S.; Dohrmann, R.; Klinkenberg, M.; Siegesmund, S.; Ufer, K. N2-BET Specific Surface Area of Bentonites. J. Colloid Interface Sci. 2010, 349, 275–282. [Google Scholar] [CrossRef]
- Laird, D.A. Layer Charge Influences on the Hydration of Expandable 2:1 Phyllosilicates. Clays Clay Miner. 1999, 47, 630–636. [Google Scholar] [CrossRef]
- Cid, R.; Pecchi, G. Potentiometric Method for Determining the Number and Relative Strength of Acid Sites in Colored Catalysts. Appl. Catal. A Gen. 1985, 14, 15–21. [Google Scholar] [CrossRef]
- Liu, D.; Yuan, P.; Liu, H.; Cai, J.; Tan, D.; He, H.; Zhu, J.; Chen, T. Quantitative Characterization of the Solid Acidity of Montmorillonite Using Combined FTIR and TPD Based on the NH3 Adsorption System. Appl. Clay Sci. 2013, 80–81, 407–412. [Google Scholar] [CrossRef]
- Azzouz, A.; Nistor, D.; Miron, D.; Ursu, A.V.; Sajin, T.; Monette, F.; Niquette, P.; Hausler, R. Assessment of Acid-Base Strength Distribution of Ion-Exchanged Montmorillonites through NH3 and CO2-TPD Measurements. Thermochim. Acta 2006, 449, 27–34. [Google Scholar] [CrossRef]
- Tong, D.S.; Zheng, Y.M.; Yu, W.H.; Wu, L.M.; Zhou, C.H. Catalytic Cracking of Rosin over Acid-Activated Montmorillonite Catalysts. Appl. Clay Sci. 2014, 100, 123–128. [Google Scholar] [CrossRef]
- da Silva, C.X.A.; Gonçalves, V.L.C.; Mota, C.J.A. Water-Tolerant Zeolite Catalyst for the Acetalisation of Glycerol. Green Chem. 2009, 11, 38–41. [Google Scholar] [CrossRef]
- Manjunathan, P.; Maradur, S.P.; Halgeri, A.B.; Shanbhag, G.V. Room Temperature Synthesis of Solketal from Acetalization of Glycerol with Acetone: Effect of Crystallite Size and the Role of Acidity of Beta Zeolite. J. Mol. Catal. A Chem. 2015, 396, 47–54. [Google Scholar] [CrossRef]
- Sandesh, S.; Halgeri, A.B.; Shanbhag, G.V. Utilization of Renewable Resources: Condensation of Glycerol with Acetone at Room Temperature Catalyzed by Organic-Inorganic Hybrid Catalyst. J. Mol. Catal. A Chem. 2015, 401, 73–80. [Google Scholar] [CrossRef]
- Vannucci, J.A.; Nichio, N.N.; Pompeo, F. Solketal Synthesis from Ketalization of Glycerol with Acetone: A Kinetic Study over a Sulfated Zirconia Catalyst. Catal. Today 2020, 372, 238–245. [Google Scholar] [CrossRef]
- Esteban, J.; Ladero, M.; García-Ochoa, F. Kinetic Modelling of the Solventless Synthesis of Solketal with a Sulphonic Ion Exchange Resin. Chem. Eng. J. 2015, 269, 194–202. [Google Scholar] [CrossRef]
- Faria, R.P.V.; Pereira, C.S.M.; Silva, V.M.T.M.; Loureiro, J.M.; Rodrigues, A.E. Glycerol Valorisation as Biofuels: Selection of a Suitable Solvent for an Innovative Process for the Synthesis of GEA. Chem. Eng. J. 2013, 233, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Faria, R.P.V.; Pereira, C.S.M.; Silva, V.M.T.M.; Loureiro, J.M.; Rodrigues, A.E. Glycerol Valorization as Biofuel: Thermodynamic and Kinetic Study of the Acetalization of Glycerol with Acetaldehyde. Ind. Eng. Chem. Res. 2013, 52, 1538–1547. [Google Scholar] [CrossRef]
- Rossa, V.; Pessanha, Y.D.S.P.; Díaz, G.C.; Câmara, L.D.T.; Pergher, S.B.C.; Aranda, D.A.G. Reaction Kinetic Study of Solketal Production from Glycerol Ketalization with Acetone. Ind. Eng. Chem. Res. 2017, 56, 479–488. [Google Scholar] [CrossRef]
- Perez, F.M.; Nichio, N.; Pompeo, F. Thermodynamic Assessment of Chemical Equilibrium for the Synthesis of Solketal in the Liquid Phase. Chem. Eng. Technol. 2021, 44, 1356–1363. [Google Scholar] [CrossRef]
- Lombardi, B.; Baschini, M.; Torres Sánchez, R.M. Bentonite Deposits of Northern Patagonia. Appl. Clay Sci. 2003, 22, 309–312. [Google Scholar] [CrossRef]
- Carr, D.S.; Harris, B.L. Solutions for Maintaining Constant Relative Humidity Solubilities of Aliphatic Dicarboxylic Acids in Water. Ind. Eng. Chem. 1949, 41, 2014–2015. [Google Scholar] [CrossRef]
Solid | Si | Al | Na | Mg |
---|---|---|---|---|
B | 75.4 | 18.9 | 3.0 | 2.7 |
CB | 83.4 | 12.2 | 2.6 | 1.8 |
CBA | 84.4 | 13.0 | 0 | 2.6 |
Solid | ESSA (m2 g−1) | TSSA (m2 g−1) | TSSA–ESSA * (m2 g−1) | Ei (mV) |
---|---|---|---|---|
B | 110 | 1187 | 1077 | −62.7 |
BA | 90 | 900 | 810 | 487.6 |
CB | 95 | 464 | 369 | −62.7 |
CBA | 92 | 450 | 358 | 496.3 |
Solid | Catalyst Amount (mg) | Converted Moles of Glycerol Per Gram of Bentonite | Solketal Selectivity (%) |
---|---|---|---|
B | 50 | 0 | 0 |
BA | 100 | 0 | 0 |
CB | 10 | 1.304 | 96 |
CBA | 20 | 1.348 | 97 |
Temperature (°C) | Reaction Rate at 15 min (mol L−1 g−1 min−1) | Glycerol Conversion at 240 min | Solketal Selectivity at 240 min (%) |
---|---|---|---|
40 | 0.048 | 30 | 94 |
60 | 0.165 | 80 | 98 |
80 | 0.256 | 71 | 97 |
100 | 0.901 | 65 | 96 |
Catalyst | Time | Initial Moles of Glycerol | T (°C) | A/G | Catalyst Amount (% Wt.) | Glycerol Conversion | Ref. |
---|---|---|---|---|---|---|---|
K-10 | 30 | 0.0543 | 70 | 1.2 | 60 | 85 | [43] |
K-10 | 30 | 0.0543 | 70 | 1.2 | 60 | 85 | [43] |
K-10 | 30 | 0.0270 | Room | 2 | 5 | 25 | [44] |
K-10 | 30 | NR | 30 | 6 | 3 | 75 | [45] |
B0.5 | 30 | 0.0115 | 50 | 2.5 | 3 | 54 | [21] |
CBA | 30 | 0.0217 | 60 | 6 | 0.25 | 21 | This work |
CBA | 160 | 0.0217 | 60 | 6 | 0.25 | 74 | This work |
Step | Reaction |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Parameter | 60 °C | 80 °C | 100 °C |
---|---|---|---|
k [mol g−1 L−1 sec−1] | 0.0905 ± 0.0538 | 0.122 ± 0.0434 | 0.507 ± 0.161 |
0.626 ± 0.0889 | 0.302 ± 0.0136 | 0.198 ± 0.00424 | |
1.271 ± 0.630 | 1.157 ± 0.349 | 1.100 ± 0.3078 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez, F.M.; Legarto, C.; Lombardi, M.B.; Santori, G.F.; Pompeo, F.; Nichio, N.N. Activated Bentonite Nanocomposite for the Synthesis of Solketal from Glycerol in the Liquid Phase. Catalysts 2022, 12, 673. https://doi.org/10.3390/catal12060673
Perez FM, Legarto C, Lombardi MB, Santori GF, Pompeo F, Nichio NN. Activated Bentonite Nanocomposite for the Synthesis of Solketal from Glycerol in the Liquid Phase. Catalysts. 2022; 12(6):673. https://doi.org/10.3390/catal12060673
Chicago/Turabian StylePerez, Federico M., Celeste Legarto, María B. Lombardi, Gerardo F. Santori, Francisco Pompeo, and Nora N. Nichio. 2022. "Activated Bentonite Nanocomposite for the Synthesis of Solketal from Glycerol in the Liquid Phase" Catalysts 12, no. 6: 673. https://doi.org/10.3390/catal12060673
APA StylePerez, F. M., Legarto, C., Lombardi, M. B., Santori, G. F., Pompeo, F., & Nichio, N. N. (2022). Activated Bentonite Nanocomposite for the Synthesis of Solketal from Glycerol in the Liquid Phase. Catalysts, 12(6), 673. https://doi.org/10.3390/catal12060673