Synergistic Mechanism of Photocatalysis and Photo-Fenton by Manganese Ferrite and Graphene Nanocomposite Supported on Wood Ash with Real Sunlight Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Nanophotocatalysts
2.3. Nanophotocatalysts Characterization
2.4. Photocatalytic Activity
3. Results and Discussion
3.1. Nanophotocatalysts Characterization
3.1.1. SEM and TEM Analysis
3.1.2. X-ray Diffraction (XRD)
3.1.3. FTIR
3.1.4. Zeta Potential Analysis
3.1.5. BET Analysis
3.2. Photocatalytic Efficiency
3.2.1. Efficiency of Different Photocatalysts
3.2.2. Decolorization in Different Reactions Conditions
3.2.3. Effect of Photocatalyst Concentration
3.2.4. Effect of H2O2
3.2.5. Effect of pH
3.2.6. Mechanism and Kinetic Analysis
3.2.7. Stability and Reusability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Wu, Y. Sol-Gel Synthesized Magnetic MnFe2O4 Spinel Ferrite Nanoparticles as Novel Catalyst for Oxidative Degradation of Methyl Orange. J. Nanomater. 2013, 2013, 2. [Google Scholar] [CrossRef] [Green Version]
- Boczkaj, G.; Fernandes, A. Wastewater Treatment by Means of Advanced Oxidation Processes at Basic PH Conditions: A Review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar] [CrossRef]
- Poulopoulos, S.G.; Ulykbanova, G.; Philippopoulos, C.J. Photochemical Mineralization of Amoxicillin Medicinal Product by Means of UV, Hydrogen Peroxide, Titanium Dioxide and Iron. Environ. Technol. 2020, 42, 2941–2949. [Google Scholar] [CrossRef]
- Tufail, A.; Price, W.E.; Hai, F.I. A Critical Review on Advanced Oxidation Processes for the Removal of Trace Organic Contaminants: A Voyage from Individual to Integrated Processes. Chemosphere 2020, 260, 127460. [Google Scholar] [CrossRef]
- Ike, I.A.; Lee, Y.; Hur, J. Impacts of Advanced Oxidation Processes on Disinfection Byproducts from Dissolved Organic Matter upon Post-Chlor(Am)Ination: A Critical Review. Chem. Eng. J. 2019, 375, 121929. [Google Scholar] [CrossRef]
- Villanueva-Rodríguez, M.; Bello-Mendoza, R.; Hernández-Ramírez, A.; Ruiz-Ruiz, E.J. Degradation of Anti-Inflammatory Drugs in Municipal Wastewater by Heterogeneous Photocatalysis and Electro-Fenton Process. Environ. Technol. 2019, 40, 2436–2445. [Google Scholar] [CrossRef]
- Bayan, E.M.; Pustovaya, L.E.; Volkova, M.G. Recent Advances in TiO2-Based Materials for Photocatalytic Degradation of Antibiotics in Aqueous Systems. Environ. Technol. Innov. 2021, 24, 101822. [Google Scholar] [CrossRef]
- Melinte, V.; Stroea, L.; Chibac-Scutaru, A.L. Polymer Nanocomposites for Photocatalytic Applications. Catalysts 2019, 9, 986. [Google Scholar] [CrossRef] [Green Version]
- An, H.-R.; Park, S.Y.; Kim, H.; Lee, C.Y.; Choi, S.; Lee, S.C.; Seo, S.; Park, E.C.; Oh, Y.-K.; Song, C.-G.; et al. Advanced Nanoporous TiO2 Photocatalysts by Hydrogen Plasma for Efficient Solar-Light Photocatalytic Application. Sci. Rep. 2016, 6, 29683. [Google Scholar] [CrossRef]
- Kanakaraju, D.; bin Ya, M.H.; Lim, Y.-C.; Pace, A. Combined Adsorption/Photocatalytic Dye Removal by Copper-Titania-Fly Ash Composite. Surf. Interfaces 2020, 19, 100534. [Google Scholar] [CrossRef]
- Mushtaq, F.; Zahid, M.; Mansha, A.; Bhatti, I.A.; Mustafa, G.; Nasir, S.; Yaseen, M. MnFe2O4/Coal Fly Ash Nanocomposite: A Novel Sunlight-Active Magnetic Photocatalyst for Dye Degradation. Int. J. Environ. Sci. Technol. 2020, 17, 4233–4248. [Google Scholar] [CrossRef]
- Gomes, A.I.; Silva, T.F.C.V.; Duarte, M.A.; Boaventura, R.A.R.; Vilar, V.J.P. Cost-Effective Solar Collector to Promote Photo-Fenton Reactions: A Case Study on the Treatment of Urban Mature Leachate. J. Clean. Prod. 2018, 199, 369–382. [Google Scholar] [CrossRef]
- Huang, X.; Liu, L.; Xi, Z.; Zheng, H.; Dong, W.; Wang, G. One-Pot Solvothermal Synthesis of Magnetically Separable RGO/MnFe2O4 Hybrids as Efficient Photocatalysts for Degradation of MB under Visible Light. Mater. Chem. Phys. 2019, 231, 68–74. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, Y.; Lu, F.; Wei, F.; Wang, X.; Wang, S. Magnetic Recoverable MnFe2O4 and MnFe2O4-Graphene Hybrid as Heterogeneous Catalysts of Peroxymonosulfate Activation for Efficient Degradation of Aqueous Organic Pollutants. J. Hazard. Mater. 2014, 270, 61–70. [Google Scholar] [CrossRef]
- Priya, B.; Raizada, P.; Singh, N.; Thakur, P.; Singh, P. Adsorptional Photocatalytic Mineralization of Oxytetracycline and Ampicillin Antibiotics Using Bi2O3/BiOCl Supported on Graphene Sand Composite and Chitosan. J. Colloid Interface Sci. 2016, 479, 271–283. [Google Scholar] [CrossRef]
- Pouran, S.R.; Raman, A.A.A.; Daud, W. Review on the Application of Modified Iron Oxides as Heterogeneous Catalysts in Fenton Reactions. J. Clean. Prod. 2013, 64, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Talwar, S.; Verma, A.K.; Sangal, V.K. Synergistic Degradation Employing Photocatalysis and Photo-Fenton Process of Real Industrial Pharmaceutical Effluent Utilizing the Iron-Titanium Dioxide Composite. Process Saf. Environ. Prot. 2021, 146, 564–576. [Google Scholar] [CrossRef]
- Liu, B.; Tian, L.; Wang, R.; Yang, J.; Guan, R.; Chen, X. Pyrrolic-N-Doped Graphene Oxide/Fe2O3 Mesocrystal Nanocomposite: Efficient Charge Transfer and Enhanced Photo-Fenton Catalytic Activity. Appl. Surf. Sci. 2017, 422, 607–615. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, H.; Zhang, H.; Jiang, J. A Promising Ag2CrO4/LaFeO3 Heterojunction Photocatalyst Applied to Photo-Fenton Degradation of RhB. Environ. Technol. 2020, 41, 1486–1503. [Google Scholar] [CrossRef]
- Park, C.M.; Kim, Y.M.; Kim, K.-H.; Wang, D.; Su, C.; Yoon, Y. Potential Utility of Graphene-Based Nano Spinel Ferrites as Adsorbent and Photocatalyst for Removing Organic/Inorganic Contaminants from Aqueous Solutions: A Mini Review. Chemosphere 2019, 221, 392–402. [Google Scholar] [CrossRef]
- Al-Hamadani, Y.A.J.; Lee, G.; Kim, S.; Park, C.M.; Jang, M.; Her, N.; Han, J.; Kim, D.-H.; Yoon, Y. Sonocatalytic Degradation of Carbamazepine and Diclofenac in the Presence of Graphene Oxides in Aqueous Solution. Chemosphere 2018, 205, 719–727. [Google Scholar] [CrossRef]
- Yamaguchi, N.U.; Bergamasco, R.; Hamoudi, S. Magnetic MnFe2O4–Graphene Hybrid Composite for Efficient Removal of Glyphosate from Water. Chem. Eng. J. 2016, 295, 391–402. [Google Scholar] [CrossRef]
- Zhao, G.; Wen, T.; Chen, C.; Wang, X. Synthesis of Graphene-Based Nanomaterials and Their Application in Energy-Related and Environmental-Related Areas. RSC Adv. 2012, 2, 9286–9303. [Google Scholar] [CrossRef]
- Yang, D.; Feng, J.; Jiang, L.; Wu, X.; Sheng, L.; Jiang, Y.; Wei, T.; Fan, Z. Photocatalyst Interface Engineering: Spatially Confined Growth of ZnFe2O4 within Graphene Networks as Excellent Visible-Light-Driven Photocatalysts. Adv. Funct. Mater. 2015, 25, 7080–7087. [Google Scholar] [CrossRef]
- Verma, R.; Samdarshi, S.K.; Sagar, K.; Konwar, B.K. Nanostructured Bi-Phasic TiO2 Nanoparticles Grown on Reduced Graphene Oxide with High Visible Light Photocatalytic Detoxification. Mater. Chem. Phys. 2017, 186, 202–211. [Google Scholar] [CrossRef]
- Karim, A.V.; Selvaraj, A. Graphene Composites in Photocatalytic Oxidation of Aqueous Organic Contaminants—A State of Art. Process Saf. Environ. Prot. 2021, 146, 136–160. [Google Scholar] [CrossRef]
- Gautam, S.; Shandilya, P.; Priya, B.; Singh, V.P.; Raizada, P.; Rai, R.; Valente, M.A.; Singh, P. Superparamagnetic MnFe2O4 Dispersed over Graphitic Carbon Sand Composite and Bentonite as Magnetically Recoverable Photocatalyst for Antibiotic Mineralization. Sep. Purif. Technol. 2017, 172, 498–511. [Google Scholar] [CrossRef]
- Lum, P.T.; Foo, K.Y.; Zakaria, N.A.; Palaniandy, P. Ash Based Nanocomposites for Photocatalytic Degradation of Textile Dye Pollutants: A Review. Mater. Chem. Phys. 2020, 241, 122405. [Google Scholar] [CrossRef]
- Ong, C.B.; Mohammad, A.W.; Ng, L.Y.; Mahmoudi, E.; Azizkhani, S.; Hayati Hairom, N.H. Solar Photocatalytic and Surface Enhancement of ZnO/RGO Nanocomposite: Degradation of Perfluorooctanoic Acid and Dye. Process Saf. Environ. Prot. 2017, 112, 298–307. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1957, 208, 1937. [Google Scholar] [CrossRef]
- Luciano, A.J.R.; de Sousa Soletti, L.; Ferreira, M.E.C.; Cusioli, L.F.; de Andrade, M.B.; Bergamasco, R.; Yamaguchi, N.U. Manganese Ferrite Dispersed over Graphene Sand Composite for Methylene Blue Photocatalytic Degradation. J. Environ. Chem. Eng. 2020, 8, 104191. [Google Scholar] [CrossRef]
- Lum, P.T.; Lim, K.Y.; Zakaria, N.A.; Foo, K.Y. A Novel Preparation of Visible Light Driven Durio Zibethinus Shell Ash Supported CuO Nanocomposite for the Photocatalytic Degradation of Acid Dye. J. Mater. Res. Technol. 2019, 9, 168–179. [Google Scholar] [CrossRef]
- Kim, H.J.; Joshi, M.K.; Pant, H.R.; Kim, J.H.; Lee, E.; Kim, C.S. One-Pot Hydrothermal Synthesis of Multifunctional Ag/ZnO/Fly Ash Nanocomposite. Colloids Surf. A Physicochem. Eng. Asp. 2015, 469, 256–262. [Google Scholar] [CrossRef]
- Chella, S.; Kollu, P.; Komarala, E.V.P.R.; Doshi, S.; Saranya, M.; Felix, S.; Ramachandran, R.; Saravanan, P.; Koneru, V.L.; Venugopal, V.; et al. Solvothermal Synthesis of MnFe2O4-Graphene Composite—Investigation of Its Adsorption and Antimicrobial Properties. Appl. Surf. Sci. 2015, 327, 27–36. [Google Scholar] [CrossRef]
- Mandal, B.; Panda, J.; Paul, P.K.; Sarkar, R.; Tudu, B. MnFe2O4 Decorated Reduced Graphene Oxide Heterostructures: Nanophotocatalyst for Methylene Blue Dye Degradation. Vacuum 2020, 173, 109150. [Google Scholar] [CrossRef]
- Chen, J.-W.; Yuan, B.; Shi, J.-W.; Yang, J.-C.E.; Fu, M.-L. Reduced Graphene Oxide and Titania Nanosheet Cowrapped Coal Fly Ash Microspheres Alternately as a Novel Photocatalyst for Water Treatment. Catal. Today 2018, 315, 247–254. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, B.; Liu, S.-Q.; Meng, Z.; Chen, Z.-G.; Zou, C.-Y.; Liu, C.-B.; Chen, F.; Zhou, X. Photo-Fenton Degradation of Ammonia via a Manganese–Iron Double-Active Component Catalyst of Graphene–Manganese Ferrite under Visible Light. Chem. Eng. J. 2016, 283, 266–275. [Google Scholar] [CrossRef]
- Wei, X.; Yi, H.; Lai, C.; Huo, X.; Ma, D.; Du, C. Synergistic Effect of Flower-like MnFe2O4/MoS2 on Photo-Fenton Oxidation Remediation of Tetracycline Polluted Water. J. Colloid Interface Sci. 2022, 608, 942–953. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Chen, T.; Tan, Y.; Liu, X.; Yuan, F.; Zheng, S.; Sun, Z. Enhanced Visible-Light-Assisted Peroxymonosulfate Activation over MnFe2O4 Modified g-C3N4/Diatomite Composite for Bisphenol A Degradation. Int. J. Min. Sci. Technol. 2021, 31, 1169–1179. [Google Scholar] [CrossRef]
- Palanisamy, G.; Vignesh, S.; Srinivasan, M.; Venkatesh, G.; Elavarasan, N.; Pazhanivel, T.; Ramasamy, P.; Shaikh, S.F.; Ubaidullah, M.; Reddy, V.R.M. Construction of Magnetically Recoverable Novel Z-Scheme La(OH)3/α-MnO2/MnFe2O4 Photocatalyst for Organic Dye Degradation under UV–Visible Light Illumination. J. Alloys Compd. 2022, 901, 163539. [Google Scholar] [CrossRef]
- Zhao, W.; Wei, Z.; Zhang, X.; Ding, M.; Huang, S. PH-Controlled MnFe2O4@SnS2 Nanocomposites for the Visible-Light Photo-Fenton Degradation. Mater. Res. Bull. 2020, 124, 110749. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, S.; Zhang, X.; Lu, C.; He, Y. Hydrothermal Synthesis and Photo-Fenton Degradation of Magnetic MnFe2O4/RGO Nanocomposites. J. Mater. Sci. Mater. Electron. 2020, 31, 5176–5186. [Google Scholar] [CrossRef]
- Xiong, P.; Hu, C.; Fan, Y.; Zhang, W.; Zhu, J.; Wang, X. Ternary Manganese Ferrite/Graphene/Polyaniline Nanostructure with Enhanced Electrochemical Capacitance Performance. J. Power Source 2014, 266, 384–392. [Google Scholar] [CrossRef]
- Kabir, M.H.; Kabir, M.F.; Nigar, F.; Ahmed, S.; Mustafa, A.I.; Ahsan, M. Preparation and Characterization of Rice Husk Ash (RHA)-TiO2/ZnO Composites and Its Application in Treating Effluents from Textile Industries. Bangladesh J. Sci. Ind. Res. 2013, 47, 445–448. [Google Scholar] [CrossRef] [Green Version]
- Blissett, R.S.; Rowson, N.A. A Review of the Multi-Component Utilisation of Coal Fly Ash. Fuel 2012, 97, 1–23. [Google Scholar] [CrossRef]
- Assad Munawar, M.; Hussain Khoja, A.; Hassan, M.; Liaquat, R.; Raza Naqvi, S.; Taqi Mehran, M.; Abdullah, A.; Saleem, F. Biomass Ash Characterization, Fusion Analysis and Its Application in Catalytic Decomposition of Methane. Fuel 2021, 285, 119107. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Mohammadi, R.; Peighambardoust, S.H.; Ramavandi, B. Application of Walnut Shell Ash/ZnO/K2CO3 as a New Composite Catalyst for Biodiesel Generation from Moringa Oleifera Oil. Fuel 2022, 311, 122624. [Google Scholar] [CrossRef]
- Singh, R.; Ladol, J.; Khajuria, H.; Sheikh, H.N. Nitrogen Doped Graphene Nickel Ferrite Magnetic Photocatalyst for the Visible Light Degradation of Methylene Blue. Acta Chim. Slov. 2017, 64, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Couto, Á.; Nogueira, G.; Sandoval, G.; Schwantes-Cezario, N.; Morales, G. Initial Study of Eucalyptus Wood Ash (EWA) as a Mineral Admixture in Concrete. DYNA 2019, 86, 264–270. [Google Scholar] [CrossRef]
- Febrero Garrido, L.; Granada, E.; Pérez, C.; Patiño, D.; Arce, E. Characterisation and Comparison of Biomass Ashes with Different Thermal Histories Using TG-DSC. J. Therm. Anal. Calorim. 2014, 118, 669–680. [Google Scholar] [CrossRef]
- Cerrato, J.M.; Blake, J.M.; Hirani, C.; Clark, A.L.; Ali, A.-M.S.; Artyushkova, K.; Peterson, E.; Bixby, R.J. Wildfires and Water Chemistry: Effect of Metals Associated with Wood Ash. Environ. Sci. Processes Impacts 2016, 18, 1078–1089. [Google Scholar] [CrossRef]
- Bodí, M.B.; Martin, D.; Balfour, V.; Santín, C.; Doerr, S.H.; Pereira, P.; Cerdà, A.; Mataix-Solera, J. Corrigendum to “Wildland Fire Ash: Production, Composition and Eco-Hydro-Geomorphic Effects”, Earth Sci. Rev. 130 (2014) [103–127]. Earth-Sci. Rev. 2014, 138, 103–127. [Google Scholar] [CrossRef]
- Misra, M.K.; Ragland, K.W.; Baker, A.J. Wood Ash Composition as a Function of Furnace Temperature. Biomass Bioenergy 1993, 4, 103–116. [Google Scholar] [CrossRef]
- Scheepers, G.P.; du Toit, B. Potential Use of Wood Ash in South African Forestry: A Review. South. For. 2016, 78, 255–266. [Google Scholar] [CrossRef]
- Goodarz Naseri, M.; Saion, E.B.; Ahangar, H.A.; Hashim, M.; Shaari, A.H. Synthesis and Characterization of Manganese Ferrite Nanoparticles by Thermal Treatment Method. J. Magn. Magn. Mater. 2011, 323, 1745–1749. [Google Scholar] [CrossRef]
- Dagar, A.; Narula, A. Visible-Light Induced Photodegradation of Organic Contaminants in Water Using Fe3O4 Nanoparticles Modified Polypyrrole/Fly Ash Cenosphere Composite. Russ. J. Phys. Chem. A 2018, 92, 2853–2860. [Google Scholar] [CrossRef]
- Shoueir, K.; El-Sheshtawy, H.; Misbah, M.; El-Hosainy, H.; El-Mehasseb, I.; El-Kemary, M. Fenton-like Nanocatalyst for Photodegradation of Methylene Blue under Visible Light Activated by Hybrid Green DNSA@Chitosan@MnFe2O4. Carbohydr. Polym. 2018, 197, 17–28. [Google Scholar] [CrossRef]
- Song, X.; Liu, H.; Cheng, L.; Qu, Y. Surface Modification of Coconut-Based Activated Carbon by Liquid-Phase Oxidation and Its Effects on Lead Ion Adsorption. Desalination 2010, 255, 78–83. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, L.; Xia, H.; Peng, J.; Shu, J.; Li, C.; Jiang, X.; Zhang, Q. Adsorption Behavior of Methylene Blue onto Waste-Derived Adsorbent and Exhaust Gases Recycling. RSC Adv. 2017, 7, 27331–27341. [Google Scholar] [CrossRef] [Green Version]
- Muttakin, M.; Mitra, S.; Thu, K.; Ito, K.; Saha, B.B. Theoretical Framework to Evaluate Minimum Desorption Temperature for IUPAC Classified Adsorption Isotherms. Int. J. Heat Mass Transf. 2018, 122, 795–805. [Google Scholar] [CrossRef]
- Rahman, M.M.; Muttakin, M.; Pal, A.; Shafiullah, A.Z.; Saha, B.B. A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms. Energies 2019, 12, 4565. [Google Scholar] [CrossRef] [Green Version]
- Adam, F.; Appaturi, J.N.; Thankappan, R.; Nawi, M.A.M. Silica–Tin Nanotubes Prepared from Rice Husk Ash by Sol–Gel Method: Characterization and Its Photocatalytic Activity. Appl. Surf. Sci. 2010, 257, 811–816. [Google Scholar] [CrossRef]
- Ata, S.; Shaheen, I.; Majid, F.; Bibi, I.; Ijaz-ul-Mohsin; Jilani, K.; Slimani, Y.; Iqbal, M. Hydrothermal Route for the Synthesis of Manganese Ferrite Nanoparticles and Photocatalytic Activity Evaluation for the Degradation of Methylene Blue Dye. Z. Für Phys. Chem. 2021, 235, 1433–1445. [Google Scholar] [CrossRef]
- Lai, C.; Huang, F.; Zeng, G.; Huang, D.; Qin, L.; Cheng, M.; Zhang, C.; Li, B.; Yi, H.; Liu, S.; et al. Fabrication of Novel Magnetic MnFe2O4/Bio-Char Composite and Heterogeneous Photo-Fenton Degradation of Tetracycline in near Neutral PH. Chemosphere 2019, 224, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Bathla, A.; Singla, D.; Pal, B. Highly Efficient CaCO3-CaO Extracted from Tap Water Distillation for Effective Adsorption and Photocatalytic Degradation of Malachite Green Dye. Mater. Res. Bull. 2019, 116, 1–7. [Google Scholar] [CrossRef]
- Farrera-Borjas, I.-A.; Tzompantzi, F.; Sánchez-Cantú, M.; Barrera-Rodríguez, A.; Tzompantzi-Flores, C.; Gómez, R.; Santolalla-Vargas, C. Photocatalytic Mineralization of Phenol by Sn-Modified Calcites. J. Photochem. Photobiol. A Chem. 2022, 429, 113913. [Google Scholar] [CrossRef]
- Zhu, Z.-S.; Yu, X.-J.; Qu, J.; Jing, Y.-Q.; Abdelkrim, Y.; Yu, Z.-Z. Preforming Abundant Surface Cobalt Hydroxyl Groups on Low Crystalline Flowerlike Co3(Si2O5)2(OH)2 for Enhancing Catalytic Degradation Performances with a Critical Nonradical Reaction. Appl. Catal. B Environ. 2020, 261, 118238. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M.; Kang, Z.; Wang, B.; Wang, B.; Jiang, F.; Wang, X.; Yang, D.-P.; Luque, R. NIR-Triggered Photocatalytic/Photothermal/Photodynamic Water Remediation Using Eggshell-Derived CaCO3/CuS Nanocomposites. Chem. Eng. J. 2020, 388, 124304. [Google Scholar] [CrossRef]
- Wang, N.N.; Hu, Q.; Hao, L.L.; Zhao, Q. Degradation of Acid Organic 7 by Modified Coal Fly Ash-Catalyzed Fenton-like Process: Kinetics and Mechanism Study. Int. J. Environ. Sci. Technol. 2019, 16, 89–100. [Google Scholar] [CrossRef]
- Peng, X.; Qu, J.; Tian, S.; Ding, Y.; Hai, X.; Jiang, B.; Wu, M.; Qiu, J. Green Fabrication of Magnetic Recoverable Graphene/MnFe2O4 Hybrids for Efficient Decomposition of Methylene Blue and the Mn/Fe Redox Synergetic Mechanism. RSC Adv. 2016, 6, 104549–104555. [Google Scholar] [CrossRef]
- Thines, K.R.; Abdullah, E.C.; Mubarak, N.M. Effect of Process Parameters for Production of Microporous Magnetic Biochar Derived from Agriculture Waste Biomass. Microporous Mesoporous Mater. 2017, 253, 29–39. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S. Plam Oil Empty Fruit Bunch Based Magnetic Biochar Composite Comparison for Synthesis by Microwave-Assisted and Conventional Heating. J. Anal. Appl. Pyrolysis 2016, 120, 521–528. [Google Scholar] [CrossRef]
- Ajibade, P.A.; Nnadozie, E.C. Synthesis and Structural Studies of Manganese Ferrite and Zinc Ferrite Nanocomposites and Their Use as Photoadsorbents for Indigo Carmine and Methylene Blue Dyes. ACS Omega 2020, 5, 32386–32394. [Google Scholar] [CrossRef] [PubMed]
- Iurascu, B.; Siminiceanu, I.; Vione, D.; Vicente, M.A.; Gil, A. Phenol Degradation in Water through a Heterogeneous Photo-Fenton Process Catalyzed by Fe-Treated Laponite. Water Res. 2009, 43, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M.A. Remediation of Wastewater Using Various Nano-Materials. Arab. J. Chem. 2019, 12, 4897–4919. [Google Scholar] [CrossRef] [Green Version]
- WANG, J.L.; XU, L.E.J.I.N. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- Wei, J.; Chen, Z.; Tong, Z. Engineering Z-Scheme Silver Oxide/Bismuth Tungstate Heterostructure Incorporated Reduced Graphene Oxide with Superior Visible-Light Photocatalytic Activity. J. Colloid Interface Sci. 2021, 596, 22–33. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Chen, Y.; Zhou, Y.; Ding, L.; Liang, H.; Li, X. Degradation of Tetracycline Hydrochloride by Coupling of Photocatalysis and Peroxymonosulfate Oxidation Processes Using CuO-BiVO4 Heterogeneous Catalyst. Process Saf. Environ. Prot. 2021, 145, 364–377. [Google Scholar] [CrossRef]
- Huang, X.; Nan, Z. Synergetic Adsorption and Photo-Fenton Degradation of Methylene Blue by ZnFe2O4/SiO2 Magnetic Double-Mesoporous-Shelled Hollow Spheres. Environ. Technol. 2020, 42, 3218–3230. [Google Scholar] [CrossRef] [PubMed]
- Mudhoo, A.; Paliya, S.; Goswami, P.; Singh, M.; Lofrano, G.; Carotenuto, M.; Carraturo, F.; Libralato, G.; Guida, M.; Usman, M.; et al. Fabrication, Functionalization and Performance of Doped Photocatalysts for Dye Degradation and Mineralization: A Review. Environ. Chem. Lett. 2020, 18, 1825–1903. [Google Scholar] [CrossRef]
- Zhu, S.; Ho, S.-H.; Jin, C.; Duan, X.; Wang, S. Nanostructured Manganese Oxides: Natural/Artificial Formation and Their Induced Catalysis for Wastewater Remediation. Environ. Sci. Nano 2020, 7, 368–396. [Google Scholar] [CrossRef]
- Qin, L.; Wang, Z.; Fu, Y.; Lai, C.; Liu, X.; Li, B.; Liu, S.; Yi, H.; Li, L.; Zhang, M.; et al. Gold Nanoparticles-Modified MnFe2O4 with Synergistic Catalysis for Photo-Fenton Degradation of Tetracycline under Neutral PH. J. Hazard. Mater. 2021, 414, 125448. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zhao, Z.; Yang, Z.; Cheng, B.; Yang, X. Construction of Magnetically Retrievable G-C3N4/TiO2-MnFe2O4 Halloysite Composites with Enhanced Visible-Light Photocatalytic Activity and Antibacterial Properties. Nano 2021, 16, 2150100. [Google Scholar] [CrossRef]
- Gao, X.; Nguyen, T.T.; Gong, X.; Chen, X.; Song, Z.; Du, W.; Chai, R.; Guo, M. A Composite Material of Vacuum Heat-Treated CQDs/Ce0.7Zr0.3O2 with Enhanced Charge Separation for Efficient Photocatalytic Degradation. Vacuum 2019, 169, 108912. [Google Scholar] [CrossRef]
- Shakir, I.; Agboola, P.O.; Haider, S. Manganese Spinel Ferrite-Reduced Graphene Oxides Nanocomposites for Enhanced Solar Irradiated Catalytic Studies. Ceram. Int. 2021, 47, 28367–28376. [Google Scholar] [CrossRef]
- Ain, N.; Shaheen, W.; Bashir, B.; Abdelsalam, N.M.; Warsi, M.F.; Khan, M.A.; Shahid, M. Electrical, Magnetic and Photoelectrochemical Activity of RGO/MgFe2O4 Nanocomposites under Visible Light Irradiation. Ceram. Int. 2016, 42, 12401–12408. [Google Scholar] [CrossRef]
- Abdul Satar, N.S.; Adnan, R.; Lee, H.L.; Hall, S.R.; Kobayashi, T.; Mohamad Kassim, M.H.; Mohd Kaus, N.H. Facile Green Synthesis of Ytrium-Doped BiFeO3 with Highly Efficient Photocatalytic Degradation towards Methylene Blue. Ceram. Int. 2019, 45, 15964–15973. [Google Scholar] [CrossRef]
- Emeline, A.V.; Kuznetsov, V.N.; Ryabchuk, V.K.; Serpone, N. Chapter 1—Heterogeneous Photocatalysis: Basic Approaches and Terminology. In New and Future Developments in Catalysis: Solar Photocatalysis; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–47. ISBN 978-0-444-53872-7. [Google Scholar]
- Duta, A.; Visa, M. Simultaneous Removal of Two Industrial Dyes by Adsorption and Photocatalysis on a Fly-Ash–TiO2 Composite. J. Photochem. Photobiol. A Chem. 2015, 306, 21–30. [Google Scholar] [CrossRef]
- Zhang, Y.J.; He, P.Y.; Zhang, Y.X.; Chen, H. A Novel Electroconductive Graphene/Fly Ash-Based Geopolymer Composite and Its Photocatalytic Performance. Chem. Eng. J. 2018, 334, 2459–2466. [Google Scholar] [CrossRef]
- Zhan, Y.; Meng, Y.; Li, W.; Chen, Z.; Yan, N.; Li, Y.; Teng, M. Magnetic Recoverable MnFe2O4/Cellulose Nanocrystal Composites as an Efficient Catalyst for Decomposition of Methylene Blue. Ind. Crops Prod. 2018, 122, 422–429. [Google Scholar] [CrossRef]
Photocatalysis | Pollutant | Light Source | Pollutant Concentration (ppm) | Catalyst Concentration (g/L) | Reaction Time (min) | Decolorization (%) | Reference |
---|---|---|---|---|---|---|---|
g-C3N4/TiO2-MnFe2O4 halloysite | Crystal violet | Xenon lamp | 10 | 0.05 | 90 | 91 | [83] |
MnFe2O4@SnS2 | MB | Xenon lamp | - | 0.05 | 120 | 93 | [41] |
MnFe2O4-rGO | MB | Xenon lamp | - | 0.60 | 150 | 62 | [42] |
MnFe2O4-G@WA | MB | Sunlight | 10 | 0.25 | 120 | 94 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.E.C.; Soletti, L.d.S.; Bernardino, E.G.; Quesada, H.B.; Gasparotto, F.; Bergamasco, R.; Yamaguchi, N.U. Synergistic Mechanism of Photocatalysis and Photo-Fenton by Manganese Ferrite and Graphene Nanocomposite Supported on Wood Ash with Real Sunlight Irradiation. Catalysts 2022, 12, 745. https://doi.org/10.3390/catal12070745
Ferreira MEC, Soletti LdS, Bernardino EG, Quesada HB, Gasparotto F, Bergamasco R, Yamaguchi NU. Synergistic Mechanism of Photocatalysis and Photo-Fenton by Manganese Ferrite and Graphene Nanocomposite Supported on Wood Ash with Real Sunlight Irradiation. Catalysts. 2022; 12(7):745. https://doi.org/10.3390/catal12070745
Chicago/Turabian StyleFerreira, Maria Eliana Camargo, Lara de Souza Soletti, Eduarda Gameleira Bernardino, Heloise Beatriz Quesada, Francielli Gasparotto, Rosângela Bergamasco, and Natália Ueda Yamaguchi. 2022. "Synergistic Mechanism of Photocatalysis and Photo-Fenton by Manganese Ferrite and Graphene Nanocomposite Supported on Wood Ash with Real Sunlight Irradiation" Catalysts 12, no. 7: 745. https://doi.org/10.3390/catal12070745
APA StyleFerreira, M. E. C., Soletti, L. d. S., Bernardino, E. G., Quesada, H. B., Gasparotto, F., Bergamasco, R., & Yamaguchi, N. U. (2022). Synergistic Mechanism of Photocatalysis and Photo-Fenton by Manganese Ferrite and Graphene Nanocomposite Supported on Wood Ash with Real Sunlight Irradiation. Catalysts, 12(7), 745. https://doi.org/10.3390/catal12070745