Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]
Abstract
:1. Introduction
2. Results
2.1. Heavy Metal Resistance Pattern
2.2. Purification of Xylanase
2.3. Electrophoretic Analysis
2.4. Biochemical Characterization of the Purified Enzyme
2.4.1. Effect of Temperature on Enzyme Activity and Stability
2.4.2. Effect of pH on Enzyme Activity and Stability
2.4.3. Substrate Specificity
2.4.4. Kinetic Analysis
2.4.5. Effect of Metal ions on Activity and Stability
2.4.6. Effect of Inhibitors and Surfactants on Enzyme Stability
2.4.7. Effect of Organic Solvents on Xylanase Stability
2.5. Analysis of Hydrolytic Products
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Microorganisms
4.3. Inoculum Preparation
4.4. Enzyme Production
4.5. Heavy Metal Resistance Studies on Efficient Bacterial Strain T4
4.6. Extraction and Purification of Xylanase
4.6.1. Enzyme Extraction
4.6.2. Ammonium Sulfate Precipitation
4.6.3. Ion exchange Chromatography
4.6.4. Gel filtration Chromatography
4.7. Enzyme Assay and Protein Estimation
4.8. Polyacrylamide Gel Electrophoresis
4.9. Biochemical Characterization of the Purified Enzyme
4.9.1. Determination of Optimum Temperature and Stability
4.9.2. Determination of Optimum pH and Stability
4.9.3. Substrate Specificity
4.9.4. Kinetic Analysis (Determination of Vmax and Km Values)
4.9.5. Effect of Metal Ions on Activity and Stability
4.9.6. Effect of Inhibitors on Xylanase Activity
4.9.7. Effect of Surfactants on Enzyme Stability
4.9.8. Effect of Organic Solvent on Xylanase Stability
4.10. Analysis of Hydrolytic Products
4.11. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coughlan, M.P.; Hazlewood, G.P. Beta-1,4-D-xylan-degrading enzyme-systems-biochemistry, molecular-biology, and applications. Biotechnol. Appl. Biochem. 1993, 17, 259–289. [Google Scholar] [PubMed]
- Aspinall, G.O. Chemistry of Cell-Wall Polysaccharides. In The Biochemistry of Plants. A Comprehensive Treatise; Academic Press: New York, NY, USA, 1980; pp. 473–500. [Google Scholar]
- Viikari, L.; Kantelinen, A.; Sundqvist, J.; Linko, M. Xylanases in bleaching from an idea to the industry. FEMS Microbiol. Rev. 2001, 13, 335–350. [Google Scholar] [CrossRef]
- Walia, A.; Mehta, P.; Chauhan, A.; Kulshrestha, S.; Shirkot, C.K. Purification and characterization of cellulase-free low molecular weight endo β-1,4 xylanase from an alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost. World J. Microbiol. Biotechnol. 2014, 30, 2597–2608. [Google Scholar] [CrossRef]
- Mackenzie, C.R.; Bilous, D.; Schneider, H.; Johnson, K.G. Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl. Environ. Microbiol. 1987, 53, 2835–2839. [Google Scholar] [CrossRef] [Green Version]
- Zamost, B.L.; Nielsen, H.K.; Starnes, R.L. Thermostable enzymes for industrial applications. J. Ind. Microbiol. 1991, 8, 71–82. [Google Scholar] [CrossRef]
- Kapoor, M.; Beg, Q.K.; Bhushan, B.; Singh, K.; Dadhich, K.S.; Hoondal, G.S. Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibers. Process Biochem. 2001, 36, 803–807. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, Y.; Dong, Y.; Tang, X.; Li, J.; Xu, B.; Mu, Y.; Wu, Q. Huang, Z.A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete Lechevalieria sp. HJ3. J. Indust. Microbiol. Biotechnol. 2012, 39, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Fukuda, H.; Zhou, Y.; Mikami, S. Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing. J. Biosci. Bioeng. 2010, 110, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Sunna, A.; Antranikian, G. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 1997, 17, 39–67. [Google Scholar] [CrossRef]
- Kiddinamoorthy, J.; Anceno, J.A.; Haki, D.G.; Rakshit, S.K. Production, purification and characterization of Bacillus sp. GRE7 xylanase and its application in eucalyptus Kraft pulp biobleaching. World J. Microbiol. Biotechnol. 2008, 24, 605–612. [Google Scholar] [CrossRef]
- Sanghi, A.; Garg, N.; Sharma, J.; Kuhar, K.; Kuhad, R.; Gupta, V. Optimization of xylanase production using inexpensive agro-residues by alkalophilic Bacillus subtilis ASH in solid-state fermentation. World J. Microbiol. Biotechnol. 2008, 24, 633–640. [Google Scholar] [CrossRef]
- Kallel, F.; Driss, D.; Bouaziz, F.; Neifer, M.; Ghorbel, R.; Chaabouni, S.E. Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FKand their in vitroevaluation as prebiotics. Food Bioprod. Process. 2015, 94, 536–546. [Google Scholar] [CrossRef]
- Amel, B.D.; Nawel, B.; Khelifa, B.; Mohammed, G.; Manon, J.; Salima, K.G.; Farida, N.; Hocine, H.; Bernard, O.; Jean-Luc, C.; et al. Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1T. Carbohydr. Res. 2016, 419, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Sanjivkumar, M.; Silambarasan, T.S.; Palavesam, A.; Immanuel, G. Biosynthesis, purification and characterization of β-1,4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications. Protein Expr. Purif. 2017, 130, 1–12. [Google Scholar] [CrossRef]
- Kumar, P.S.; Yaashikaa, P.R.; Saravanan, A. Isolation, characterization and purification of xylanase producing bacteria from sea sediment. Biocatal. Agric. Biotechnol. 2018, 13, 299–303. [Google Scholar] [CrossRef]
- Chavez, R.; Navarro, C.; Calderon, I.; Peirano, A.; Bull, P.; Eyzaguirre, J. Secretion of endoxylanase A from Penicillium purpurogenum by Saccharomyces cerevisiae transformed with genomic fungal DNA. FEMS Microbiol. Lett. 2002, 212, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Chavez, R.; Schachter, K.; Navarro, C.; Peirano, A.; Aguirre, C.; Bull, P.; Eyzaguirre, J. Differences in expression of two endoxylanase genes (xynA and xynB) from Penicillium purpurogenum. Gene 2002, 293, 161–168. [Google Scholar] [CrossRef]
- Chavez, R.; Bull, P.; Eyzaguirre, J. The xylanolytic enzyme system from the genus Penicillium. J. Biotechnol. 2006, 123, 413–433. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, X.; Zeng, G.; Shi, J.; Chen, S. Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem. 2006, 41, 2347–2351. [Google Scholar] [CrossRef]
- Okafor, U.A.; Okochi, V.I.; Onyegeme-okerenta, B.M.; Nwodo-Chinedu, S. Xylanase production by Aspergillus niger ANL 301 using agro-wastes. Afr. J. Biotechnol. 2007, 6, 1710–1714. [Google Scholar]
- Liao, H.; Xu, C.; Tan, S.; Wei, Z.; Ling, N.; Yu, G.; Raza, W.; Zhang, R.; Shen, Q.; Xu, Y. Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2. Bioresour. Technol. 2012, 123, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Terrasan, C.R.F.; Carmona, E.C. Purification and characterization of xylanases from Trichoderma inhamatum. Electron J. Biotechnol. 2015, 18, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Terrasan, C.R.F.; Guisan, J.M.; Carmona, E.C. Xylanase and β-xylosidase from Penicillium janczewskii: Purification, characterization and hydrolysis of substrates. Electron. J. Biotechnol. 2016, 23, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Yegin, S. Single-step purification and characterization of an extreme halophilic, ethanol tolerant and acidophilic xylanase from Aureobasidium pullulans NRRL Y-2311-1 with application potential in the food industry. Food Chem. 2017, 221, 67–75. [Google Scholar] [CrossRef]
- Ninawe, S.; Kapoor, M.; Kuhad, R.C. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 2007, 99, 1252–1258. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, W.; Lu, Y.; Kong, Y.; Ma, G. Production, partial purification and characterization of xylanase from Trichosporoncutaneum SL409. Process Biochem. 1998, 33, 331–336. [Google Scholar] [CrossRef]
- Margaritatis, A.; Zajic, J.E. Mixing, masstransfer and scale-up of polysaccharide fermentations. Biotechnol. Bioeng. 1978, 20, 939–1001. [Google Scholar] [CrossRef]
- Sanghi, A.; Garg, N.; Gupta, V.K.; Mittal, A.; Kuhad, R.C. One-step purification and characterization of alkalophilic Bacillus subtilis Ash. Braz. J. Microbiol. 2010, 41, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Kamble, R.D.; Jadhav, A.R. Production, purification and characterisation of alkali stable xylanase from Cellulosimicrobium sp. MTCC 10645. Asian Pac. J. Trop Biomed. 2012, 2, 1790–1797. [Google Scholar] [CrossRef]
- Poorna, C.A. Purification and Biochemical Characterization of Xylanases from Bacillus Pumilus and their Potential for Hydrolysis of Polysaccharides. Ferment. Technol. 2011, 1, 1–5. [Google Scholar] [CrossRef]
- Annamalai, N.; Thavasi, R.; Jayalakshmi, S.; Balasubramanian, T. Thermostable and alkali tolerant xylanase production by Bacillus subtilis isolated for marine environment. Indian J. Biotechnol. 2009, 8, 291–297. [Google Scholar]
- Chaves, B.L.-C.; Martinazzo, A.P.; Coca, B.; de Souza, A.N.; Teodoro, C.E. Optimization of production and partial characterization of xylanase from a newly isolated Bacillus amyloliquefaciens. Ciência. E Natura 2022, 42, 9. [Google Scholar] [CrossRef]
- Sa-Pereira, P.; Duarte, J.; Costa-Ferreira, M. Electroelution as a simple and fast protein purification method: Isolation of an extracellular xylanase from Bacillus sp. CCMI 966. Enzyme Microb. Technol. 2000, 27, 95–99. [Google Scholar] [CrossRef]
- Bataillon, M.; Cardinali, A.P.N.; Castillon, N.; Duchiron, F. Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-O. Enzyme Microb. Technol. 2000, 26, 187–192. [Google Scholar] [CrossRef]
- Li, X.T.; Jiang, Z.Q.; Li, L.T.; Yang, Q.S.; Feng, W.Y.; Fan, J.Y.; Kusakabe, I. Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its bio-bleaching effect on wheat straw pulp. Bioresour. Technol. 2005, 96, 1370–1379. [Google Scholar] [CrossRef]
- Khandeparkar, R.; Bhosle, N.B. Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res. Microbiol. 2006, 157, 315–325. [Google Scholar] [CrossRef]
- Abdella, A.; Ramadan, S.; Hamouda, R.A.; Saddiq, A.A.; Alhazmi, N.M.; Al-Saman, M.A. Paecilomycesvariotii xylanase production, purifcation and characterization with antioxidant xylo-oligosaccharides production. Sci. Rep. 2021, 11, 16468. [Google Scholar] [CrossRef]
- Köstekci, S.; Aygan, A.; Comlekcioglu, N.; Sarıtürk, S. Alkaline cellulase free xylanase from Bacillus sp. asx42: Properties, purification and its effect on seed germination. J. Microbiol. Biotech. Food Sci. 2022. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chan, H.; Lin, H.T.; Shyu, Y.T. Production, purification and characterisation of a novel halostable xylanase from Bacillus sp. NTU-06. Ann. Appl. Biol. 2010, 1, 187–197. [Google Scholar] [CrossRef]
- Kamble, R.D.; Jadhav, A.R. Isolation, Purification and Charaterization of Xylanase Produced by a New Species of Bacillus in Solid State Fermentation. Int. J. Microbiol. 2012, 2012, 683193. [Google Scholar] [CrossRef] [Green Version]
- Hakulinen, N.; Turunen, O.; Jänis, J.; Leisola, M.; Rouvinen, J. Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraeaflexuosa. Eur. J. Biochem. 2003, 270, 1399–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, N.; Rowshanul Habib, M. Isolation and characterization of Xylanase producing strain of Bacillus cereus from soil. Iran. J. Microbiol. 2009, 1, 49–53. [Google Scholar]
- Yadav, P.; Maharjan, J.; Korpole, S.; Prasad, G.S.; Sahni, G.; Bhattarai, T.; Sreerama, L. Production, Purification, and Characterization of Thermostable Alkaline Xylanase From Anoxybacillus kamchatkensis NASTPD13. Front. Bioeng. Biotechnol. 2018, 6, 65. [Google Scholar] [CrossRef]
- Carmona, E.C.; Fialho, M.B.; Buchgnani, É.B.; Coelho, G.D.; Brocheto-Braga, M.R.; Jorge, J.A. Production, purification and characterization of a minor form of xylanase from Aspergillus versicolor. Process Biochem. 2005, 40, 359–364. [Google Scholar] [CrossRef]
- Boonchuay, P.; Takenaka, S.; Kuntiya, A.; Techapun, C.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T. Purification, characterization, and molecular cloning of the xylanase from Streptomyces thermovulgaris TISTR1948 and its application to xylooligosaccharide production. J. Mol. Catal. B Enzym. 2016, 129, 61–68. [Google Scholar] [CrossRef]
- Mamo, G.; Hatti-Kaul, R.; Mattiasson, B. A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: Purification and characterization. Enzyme. Microb. Technol. 2006, 39, 1492–1498. [Google Scholar] [CrossRef]
- Lv, Z.; Yang, J.; Yuan, H. Production, purification and characterization of an alkaliphilic endo-β-1,4-xylanase from a microbial community EMSD5. Enzyme Microb. Technol. 2008, 43, 343–348. [Google Scholar] [CrossRef]
- Prakash, P.; Jayalakshmi, S.K.; Prakash, B.; Rubul, M.; Sreeramulu, K. Production of alkaliphilic, halotolerent, thermostable cellulase free xylanase by Bacillus halodurans PPKS-2 using agro waste: Single step purification and characterization. World J. Microbiol. Biotechnol. 2011, 28, 183–192. [Google Scholar] [CrossRef]
- Roy, S.; Dutta, T.; Sarkar, T.S.; Ghosh, S. Novel xylanases from Simplicillium obclavatum MTCC 9604: Comparative analysis of production, purification and characterization of enzyme from submerged and solid state fermentation. Springer Plus 2013, 2, 382. [Google Scholar] [CrossRef] [Green Version]
- Bastawde, K.B. Xylan structure, microbial xylanases, and their mode of action. World J. Microbiol. Biotechnol. 1992, 8, 353–368. [Google Scholar] [CrossRef]
- Hwang, I.-T.; Lim, H.-K.; Cho, S.-J.; Kim, D.-R.; Song, H.-Y.; Lee, K.-I.; Park, N.-J. Characterization of krict PX2 xylanase from the Paenibacillus sp. HPL-002 for utilization of plant as bio-resources. Park Pak. J. Weed Sci. Res. 2012, 18, 215–227. [Google Scholar]
- Khandeparker, R.; Verma, P.; Deobagkar, D. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: Gene cloning and sequencing. New Biotechnol. 2011, 28, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Dutta, T.; Sengupta, R.; Sahoo, S.; Sinha Ray, S.; Bhattacharjee, A.; Ghosh, S. A novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: Production, purification and characterization. Lett. Appl. Microbiol. 2006, 44, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.O.; Wahnon, D.; Weber, M.E.; Vera, J.H. Precipitation and recovery of xylanase using surfactant and organic solvent. Biotechnol. Bioeng. 2004, 86, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, M.; Ziaee, A.A.; Amoozegar, M.A. Purification and characterization of an organic-solvent-tolerant halophilic α-amylase from the moderately halophilic Nesterenkonia sp. strain F. J. Ind. Microbiol. Biotechnol. 2011, 38, 275–281. [Google Scholar] [CrossRef]
- Ibara, D.; Monte, M.C.; Blanco, A.; Martinez, A.T.; Martinez, M.J. Enzymatic deinking of secondary fibers: Cellulases/hemicellulases versus laccase-mediator system. J. Ind. Microbiol. Biotechnol. 2012, 39, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Juturu, V.; Wu, J.C. Microbial xylanases: Engineering, production and industrial applications. Biotechnol. Adv. 2012, 30, 1219–1227. [Google Scholar] [CrossRef]
- Boucherba, N.; Gagaoua, M.; Bouanane-Darenfed, A.; Bouiche, C.; Bouacem, K.; Kerbous, M.Y.; Maafa, Y.; Benallaoua, S. Biochemical properties of a new thermo- and solvent-stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3. Bioresour. Bioprocess. 2017, 4, 29. [Google Scholar] [CrossRef]
- Eltaweel, M.A.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Basri, M. An organic solvent stable lipase from Bacillus sp. Strain 42. Ann. Microbiol. 2005, 53, 187–192. [Google Scholar]
- Basri, M.; Yunus, W.M.Z.W.; Yoong, W.S.; Ampon, K.; Razak, C.N.A.; Salleh, A.B. Immobilization of lipase from Candidarugosa on synthetic polymer beads for use in the synthesis of fatty esters. J. Chem. Technol. Biotechnol. 1996, 66, 169–173. [Google Scholar] [CrossRef]
- Yadav, S.K.; Bisht, D.; Tiwari, S.; Darmwal, N.S. Purification, biochemical characterization and performance evaluation of analkaline serine protease from Aspergillusflavus MTCC 9952 mutant. Biocat. Agricult. Biotech. 2015, 4, 667–677. [Google Scholar] [CrossRef]
- Annamalai, N.; Rajeswari, M.V.; Elayaraja, S.; Balasubramanian, T. Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydr. Polym. 2013, 94, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Zaks, A.; Klibanov, A.M. Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 1988, 263, 3194–3201. [Google Scholar] [CrossRef]
- Honda, H.; Kudo, T.; Ikura, Y.; Horikoshi, K. Two types of xylanases of alkalophilic Bacillus sp. No. C-125. Can. J. Microbiol. 1985, 31, 538–542. [Google Scholar] [CrossRef]
- Gaur, R.; Tiwari, S.; Rai, P.; Srivastava, V. Isolation, production and characterization of thermotolerant xylanase from solvent tolerant Bacillusvallismortis RSPP-15. Int. J. Polym. Sci. 2015, 2015, 986324. [Google Scholar] [CrossRef] [Green Version]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Somogyi, M. Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, M.J.; Farr, A.L.; Randell, R.J. Protein measurement with folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar]
- Lineweaver, H.; Burke, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 658–666. [Google Scholar] [CrossRef]
- Ogino, H.; Miyamoto, K.; Ishikawa, H. Organic-solvent-tolerant bacterium which secretes organic-solvent-stable lipolytic enzyme. Appl. Environ. Microbiol. 1994, 60, 3884–3886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S.N. | Metal Conc. (µg/mL) | Different Heavy Metals | |||||||
---|---|---|---|---|---|---|---|---|---|
Hg | Ni | Co | Se | Pb | Ce | As | Cr | ||
1 | 50.0 | + | + | + | + | + | + | + | + |
2 | * 60.0 | + | |||||||
* 70.0 | + | ||||||||
* 80.0 | + | ||||||||
* 90.0 | + | ||||||||
100.0 | − | + | + | + | + | + | + | + | |
3 | 150.0 | − | + | + | + | + | + | + | + |
4 | 200.0 | − | + | + | + | + | + | + | + |
5 | 250.0 | − | + | + | + | + | + | + | + |
6 | 300.0 | − | + | + | + | + | + | + | + |
# 325.0 | − | + | + | ||||||
7 | 350.0 | − | − | − | − | + | + | + | + |
8 | 400.0 | − | − | − | − | + | + | + | + |
9 | 500.0 | − | − | − | − | + | + | + | + |
10 | 600.0 | − | − | − | − | + | + | + | + |
11 | 700.0 | − | − | − | − | + | + | + | + |
12 | 800.0 | − | − | − | − | + | + | + | + |
13 | 900.0 | − | − | − | − | + | + | + | + |
** 950.0 | + | ||||||||
14 | 1000.0 | − | − | − | − | − | + | + | + |
15 | 1500.0 | − | − | − | − | − | + | + | + |
16 | 2000.0 | − | − | − | − | − | − | + | + |
17 | 2500.0 | − | − | − | − | − | − | + | + |
*** 2600.0 | + | ||||||||
*** 2700.0 | + | ||||||||
*** 2800.0 | + | ||||||||
*** 2900.0 | − | ||||||||
18 | 3000.0 | − | − | − | − | − | − | − | + |
19 | 3500.0 | − | − | − | − | − | − | − | − |
Purification Steps | Total Activity (U) | Total Protein (mg) | Specific Activity (U/mg Protein) | Yield (%) | Purification Fold |
---|---|---|---|---|---|
Crude | 25687.5 | 104.5 | 245.81 | 100 | 1.0 |
Ammonium sulfate | 17674.5 | 19.54 | 904.59 | 68.8 | 3.6 |
Q-Sepharose | 12123.4 | 4.79 | 2530.98 | 47.2 | 10.3 |
Sephadex G-75 | 9898.7 | 2.98 | 3321.71 | 38.5 | 13.51 |
Substrate (1%) | Xylanase Activity (U/mg Protein) |
---|---|
Birchwood xylan | 675.50 ± 1.2 |
Oat spelt xylan | 498.2 ± 0.9 |
Cellobiose | 0.0 ± 0.0 |
Carboxy methyl cellulose (CMC) | 0.0 ± 0.0 |
p-nitrophenyl xylopyronoside | 96.0 ± 0.7 |
Avicel | 0.0 ± 0.0 |
Starch | 0.0 ± 0.0 |
Metal Ions | Concentration (mM) | Residual Activity (%) | |
---|---|---|---|
Activity | Stability | ||
Control | 100.0 | 100.0 | |
CaCl2 | 5 | 206.4 | 195.7 |
10 | 256.7 | 216.1 | |
NiCl2 | 5 | 131.8 | 119.1 |
10 | 150.4 | 127.5 | |
FeSO4 | 5 | 192.6 | 186.8 |
10 | 229.4 | 206.5 | |
MgCl2 | 5 | 215.9 | 195.6 |
10 | 245.1 | 213.5 | |
CuSO4 | 5 | 67.4 | 59.5 |
10 | 56.7 | 49.5 | |
HgCl2 | 5 | 46 | 52 |
10 | 25 | 32 | |
MnCl2 | 5 | 88.9 | 83.9 |
10 | 96.9 | 90.2 | |
NaCl | 5 | 156.2 | 141.3 |
10 | 181.9 | 165.9 | |
ZnSO4 | 5 | 209.9 | 188.9 |
10 | 234.5 | 205 | |
CoCl2 | 5 | 227.4 | 209.8 |
10 | 284.3 | 234.7 |
Reagents | Conc. (%) | Residual Activity (%) | Surfactants | Conc. (%) | Residual Activity (%) |
---|---|---|---|---|---|
Control | 100.0 | Control | 100.0 | ||
β–mercaptoethanol | 0.1 (%) | 180.9 | Tween-20 | 0.1 | 116.7 |
1.0 (%) | 171.0 | 1.0 | 93.6 | ||
EDTA | 5 mM | 160.9 | Tween-40 | 0.1 | 123.8 |
10 mM | 145.5 | 1.0 | 95.0 | ||
Urea | 5 mM | 118.0 | Tween-60 | 0.1 | 119.8 |
10 mM | 104.0 | 1.0 | 97.2 | ||
PMSF | 5 mM | 123.9 | Triton-X-100 | 0.1 | 131.5 |
10 mM | 105.0 | 1.0 | 115.8 | ||
DTT | 5 mM | 157.3 | SDS | 0.1 | 108 |
10 mM | 123.9 | 1.0 | 98.4 |
Organic Solvents (30%) | log p | Residual Activity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
1 h | 24 h | 48 h | 72 h | 96 h | 120 h | 144 h | 168 h | ||
Butanol | −0.80 | 112.7 | 239.3 | 214.2 | 206.4 | 172.6 | 132.3 | 117 | 99 |
Methanol | −0.76 | 106.7 | 129.8 | 141.2 | 128.4 | 120.1 | 111.2 | 104.1 | 98.6 |
Iso-propanol | −0.28 | 92 | 109.6 | 100 | 94.9 | 91 | 91 | 87.7 | 83.9 |
Ethanol | −0.24 | 99 | 109.7 | 104.5 | 101.7 | 99.8 | 95.5 | 90.3 | 81.5 |
Acetone | −0.23 | 109.4 | 119.9 | 112.9 | 105.1 | 102 | 99 | 93 | 89 |
Benzene | 2.13 | 100 | 119 | 124 | 106 | 109 | 98 | 90 | 86.9 |
Toluene | 2.5 | 110.9 | 250.2 | 220.4 | 189.5 | 140.9 | 119.1 | 100.2 | 100 |
Iso-octane | 2.9 | 117.3 | 177.5 | 146.9 | 132.6 | 120.8 | 112.4 | 105.6 | 101.2 |
Xylene | 3.1 | 92 | 120 | 137 | 123 | 107 | 100 | 95 | 89 |
Cyclohexane | 3.3 | 95 | 121 | 140 | 131.9 | 120.9 | 113 | 100 | 90.9 |
Hexane | 3.6 | 128 | 231 | 214.9 | 204.6 | 187.7 | 149.7 | 124 | 100 |
n-decane | 5.6 | 115.9 | 219.8 | 279.7 | 248.2 | 206.5 | 167.9 | 127 | 99.0 |
n-dodecane | 6.0 | 121.2 | 237.7 | 300.9 | 269.4 | 229.8 | 190.5 | 153.0 | 110.0 |
Control | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, S.; Singh, R.; Yadav, J.; Gaur, R.; Singh, A.; Yadav, J.S.; Pandey, P.K.; Yadav, S.K.; Prajapati, J.; Helena, P.; et al. Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts 2022, 12, 749. https://doi.org/10.3390/catal12070749
Tiwari S, Singh R, Yadav J, Gaur R, Singh A, Yadav JS, Pandey PK, Yadav SK, Prajapati J, Helena P, et al. Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts. 2022; 12(7):749. https://doi.org/10.3390/catal12070749
Chicago/Turabian StyleTiwari, Soni, Ranjan Singh, Janardan Yadav, Rajeeva Gaur, Anurag Singh, Jay Shankar Yadav, Prabhash Kumar Pandey, Santosh Kumar Yadav, Jaya Prajapati, Pukhrambam Helena, and et al. 2022. "Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]" Catalysts 12, no. 7: 749. https://doi.org/10.3390/catal12070749
APA StyleTiwari, S., Singh, R., Yadav, J., Gaur, R., Singh, A., Yadav, J. S., Pandey, P. K., Yadav, S. K., Prajapati, J., Helena, P., Dewangan, J., & Jamal, F. (2022). Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts, 12(7), 749. https://doi.org/10.3390/catal12070749