Experimental Study on the Treatment of Landfill Leachate by Electro-Assisted ZVI/UV Synergistic Activated Persulfate System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Compare Treatment Processes and Analyze Synergistic Effects
2.2. Optimum Parameters of Landfill Leachate Treatment
2.2.1. Effects of Initial pH Value
2.2.2. Effects of PS Dosage
2.2.3. Effects of ZVI Dosage
2.2.4. Effects of Current Density
2.2.5. Effects of Reaction Time
2.3. Analysis of Water Quality Characteristics
2.3.1. UV–Vis Spectrum Analysis
2.3.2. 3D Fluorescence Spectrum Analysis
2.4. Changes in Biodegradability
2.5. Identification of Radicals
2.6. Energy Consumption
3. Materials and Methods
3.1. Materials
3.1.1. Chemical Reagents
3.1.2. Landfill Leachate
3.2. Experimental Procedures
3.3. Analysis Method
4. Conclusions
- (i)
- The treatment efficacy of the electro-assisted ZVI/ UV synergistic activated PS system was investigated in experiments to treat landfill leachate. The results showed that under the optimal conditions (Initial pH: 3.0; PS/12COD ratio: 1; ZVI dosage: 1.5 g/L; current density: 62.5 mA/cm2; reaction time: 6 h), the removal rates of COD, NH3-N and chroma reached 81.99 %, 89.90 % and 99.75 %, respectively, and the BOD5/COD ratio increased from 0.23 to 0.46.
- (ii)
- The degradation of COD is caused by the combined action of sulfate radicals and hydroxyl radicals. Sulfate radicals dominate, and the contribution of hydroxyl radicals increases under alkaline conditions.
- (iii)
- UV-Vis and 3D fluorescence spectroscopy showed that most large-molecule organic substances such as humic acid and fulvic acid in the landfill leachate were degraded to small-molecule organic substances.
- (iv)
- Comparative experiments showed that the UV and ZVI synergistic activated PS was significantly more effective in removing organic pollutants from high concentration landfill leachate than the single activation system.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Zhao, J.; Liu, J.-W.; Zhou, J.; Cheng, L.; Zhao, J.; Shao, Z.; Iris, Ç.; Pan, B.; Li, X.; et al. A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. J. Clean. Prod. 2021, 293, 126144. [Google Scholar] [CrossRef]
- Yu, D.; Pei, Y.; Ji, Z.; He, X.; Yao, Z. A review on the landfill leachate treatment technologies and application prospects of three-dimensional electrode technology. Chemosphere 2022, 291, 132895. [Google Scholar] [CrossRef] [PubMed]
- Bandala, E.R.; Liu, A.; Wijesiri, B.; Zeidman, A.B.; Goonetilleke, A. Emerging materials and technologies for landfill leachate treatment: A critical review. Environ. Pollut. 2021, 291, 118133. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Liu, J.; Gao, B.; Sillanpää, M. Landfill leachate treatment in-depth by bio-chemical strategy: Microbial activation and catalytic ozonation mechanism. Chem. Eng. J. 2022, 444, 136464. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Zheng, H.; Zheng, Y.; Jing, T.; Ma, J.; Nan, J.; Leong, Y.K.; Chang, J.-S. Advanced oxidation process based on hydroxyl and sulfate radicals to degrade refractory organic pollutants in landfill leachate. Chemosphere 2022, 297, 134214. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, Y.; Chen, X.; Lu, Z.; Wei, Z.; Fan, G.; Liang, H.; Qu, F. Evaluation of applying membrane distillation for landfill leachate treatment. Desalination 2021, 520, 115358. [Google Scholar] [CrossRef]
- Deng, Y.; Ezyske, C.M. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res. 2011, 45, 6189–6194. [Google Scholar] [CrossRef]
- Hassan, M.; Wang, X.; Wang, F.; Wu, D.; Hussain, A.; Xie, B. Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O82−) techniques to deal with sanitary landfill leachate. Waste Manag. 2017, 63, 292–298. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, X.; Zhou, H.; Murugananthan, M.; Zhang, Y. Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. Chem. Eng. J. 2015, 264, 39–47. [Google Scholar] [CrossRef]
- Rodrigues, C.S.D.; Madeira, L.M. p-Nitrophenol degradation by activated persulfate. Environ. Technol. Innov. 2021, 21, 101265. [Google Scholar] [CrossRef]
- Guo, R.; Chen, Y.; Liu, B.; Han, Y.; Gou, J.; Cheng, X. Catalytic degradation of lomefloxacin by photo-assisted persulfate activation on natural hematite: Performance and mechanism. Chin. Chem. Lett. 2022, 33, 3809–3817. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, J.Y.; Kim, T.Y.; Shin, W.S.; Hwang, I. Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI. Environ. Sci. Technol. 2018, 52, 3625–3633. [Google Scholar] [CrossRef] [PubMed]
- Chokejaroenrat, C.; Sakulthaew, C.; Angkaew, A.; Satapanajaru, T.; Poapolathep, A.; Chirasatienpon, T. Remediating sulfadimethoxine-contaminated aquaculture wastewater using ZVI-activated persulfate in a flow-through system. Aquac. Eng. 2019, 84, 99–105. [Google Scholar] [CrossRef]
- Singh, N.; Qutub, S.; Khashab, N.M. Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. J. Mater. Chem. B 2021, 9, 5925–5934. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, R.; Furia, F.; Eckert, E.M.; Minella, M.; Corno, G.; Di Cesare, A.; Vione, D. The ZVI-Fenton process affects the total load of human pathogenic bacteria in wastewater samples. J. Water Process Eng. 2022, 47, 102668. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.; Zhou, J. Removal of COD from landfill leachate by electro-Fenton method. J. Hazard. Mater. 2006, 135, 106–111. [Google Scholar] [CrossRef]
- Luu, T.L. Post treatment of ICEAS-biologically landfill leachate using electrochemical oxidation with Ti/BDD and Ti/RuO2 anodes. Environ. Technol. Innov. 2020, 20, 101099. [Google Scholar] [CrossRef]
- Oturan, N.; van Hullebusch, E.D.; Zhang, H.; Mazéas, L.; Budzinski, H.; Le Ménach, K.; Oturan, M.A. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes. Environ. Sci. Technol. 2015, 49, 12187–12196. [Google Scholar] [CrossRef]
- Zhou, T.; Du, J.; Wang, Z.; Xiao, G.; Luo, L.; Faheem, M.; Ling, H.; Bao, J. Degradation of sulfamethoxazole by MnO2/heat-activated persulfate: Kinetics, synergistic effect and reaction mechanism. Chem. Eng. J. Adv. 2022, 9, 100200. [Google Scholar] [CrossRef]
- Salehi, H.; Ebrahimi, A.A.; Ehrampoush, M.H.; Salmani, M.H.; Fard, R.F.; Jalili, M.; Gholizadeh, A. Integration of photo-oxidation based on UV/Persulfate and adsorption processes for arsenic removal from aqueous solutions. Groundw. Sustain. Dev. 2020, 10, 100338. [Google Scholar] [CrossRef]
- Dhaka, S.; Kumar, R.; Khan, M.A.; Paeng, K.-J.; Kurade, M.B.; Kim, S.-J.; Jeon, B.-H. Aqueous phase degradation of methyl paraben using UV-activated persulfate method. Chem. Eng. J. 2017, 321, 11–19. [Google Scholar] [CrossRef]
- Hussain, I.; Li, M.; Zhang, Y.; Huang, S.; Hayat, W.; Li, Y.; Du, X.; Liu, G. Efficient oxidation of arsenic in aqueous solution using zero valent iron- activated persulfate process. J. Environ. Chem. Eng. 2017, 5, 3983–3990. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Chen, G.; Wu, G.; Li, N.; Lu, X.; Zhao, J.; He, M.; Yan, B.; Zhang, H.; Duan, X.; Wang, S. Landfill leachate treatment by persulphate related advanced oxidation technologies. J. Hazard. Mater. 2021, 418, 126355. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Wang, G.; Zhao, W.; Xu, Y.; Wang, D. Experimental study on advanced treatment of landfill leachate by ultraviolet catalytic persulfate. Environ. Technol. Innov. 2021, 23, 101794. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, J.-Y.; Kim, T.Y.; Hwang, I. Mechanisms of electro-assisted persulfate/nano-Fe0 oxidation process: Roles of redox mediation by dissolved Fe. J. Hazard. Mater. 2020, 388, 121739. [Google Scholar] [CrossRef]
- Ghahrchi, M.; Rezaee, A. Electro-catalytic ozonation for improving the biodegradability of mature landfill leachate. J. Environ. Manag. 2019, 254, 109811. [Google Scholar] [CrossRef]
- Mirehbar, S.; Fernández-Velayos, S.; Mazario, E.; Menéndez, N.; Herrasti, P.; Recio, F.J.; Sirés, I. Evidence of cathodic peroxydisulfate activation via electrochemical reduction at Fe(II) sites of magnetite-decorated porous carbon: Application to dye degradation in water. J. Electroanal. Chem. 2021, 902, 115807. [Google Scholar] [CrossRef]
- Zou, L.; Wang, Y.; Huang, C.; Li, B.; Lyu, J.; Wang, S.; Lu, H.; Li, J. Meta-cresol degradation by persulfate through UV/O3 synergistic activation: Contribution of free radicals and degradation pathway. Sci. Total Environ. 2021, 754, 142219. [Google Scholar] [CrossRef]
- Chin, Y.P.; Aiken, G.R.; Danielsen, K.M. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environ. Sci. Technol. 1997, 31, 1630–1635. [Google Scholar] [CrossRef]
- Nishijima, W.; Speitel, G.E. Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon. Chemosphere 2004, 56, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Chen, W.; Li, Q.; Zhang, A. Treatment of semi-aerobic aged-refuse biofilter effluent from treating landfill leachate with the Fenton method. Process Saf. Environ. Prot. 2020, 133, 32–40. [Google Scholar] [CrossRef]
- Xu, J.; Long, Y.; Shen, D.; Feng, H.; Chen, T. Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates. J. Hazard. Mater. 2017, 323, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Carstea, E.M.; Baker, A.; Bieroza, M.; Reynolds, D.M.; Bridgeman, J. Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching. Water Res. 2014, 61, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Moradian, F.; Ramavandi, B.; Jaafarzadeh, N.; Kouhgardi, E. Effective treatment of high-salinity landfill leachate using ultraviolet/ultrasonication/ peroxymonosulfate system. Waste Manag. 2020, 118, 591–599. [Google Scholar] [CrossRef]
- Li, J.; Wan, Y.; Li, Y.; Yao, G.; Lai, B. Surface Fe(III)/Fe(II) cycle promoted the degradation of atrazine by peroxymonosulfate activation in the presence of hydroxylamine. Appl. Catal. B Environ. 2019, 256, 117782. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Gong, M.; Wang, W.; Mu, Y.; Hu, Z.-H. α-MnO2/Palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of Rhodamine B. Sep. Purif. Technol. 2020, 230, 115877. [Google Scholar] [CrossRef]
- Milh, H.; Schoenaers, B.; Stesmans, A.; Cabooter, D.; Dewil, R. Degradation of sulfamethoxazole by heat-activated persulfate oxidation: Elucidation of the degradation mechanism and influence of process parameters. Chem. Eng. J. 2020, 379, 122234. [Google Scholar] [CrossRef]
- Zhang, B.-T.; Zhang, Y.; Teng, Y.; Fan, M. Sulfate Radical and Its Application in Decontamination Technologies. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1756–1800. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Tan, W.; Wu, X.; Lin, H.; Zhang, H. Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis. Sep. Purif. Technol. 2019, 208, 3–11. [Google Scholar] [CrossRef]
- Tripathy, B.K.; Kumar, M. Sequential coagulation/flocculation and microwave-persulfate processes for landfill leachate treatment: Assessment of bio-toxicity, effect of pretreatment and cost-analysis. Waste Manag. 2019, 85, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Qin, X.; Gao, M.; Li, T.; Lv, Y. Graphitic carbon nitride and carbon nanotubes modified active carbon fiber cathode with enhanced H2O2 production and recycle of Fe3+/Fe2+ for electro-Fenton treatment of landfill leachate concentrate. Environ. Sci. Nano 2022, 9, 632–652. [Google Scholar] [CrossRef]
- Sun, W.-Q.; Hu, J.-B.; Jiang, Y.-J.; Xu, N.; Wang, L.-Y.; Li, J.-H.; Hu, Y.-Q.; Duttwyler, S.; Zhang, Y.-B. Flexible molecular sieving of C2H2 from CO2 by a new cost-effective metal organic framework with intrinsic hydrogen bonds. Chem. Eng. J. 2022, 439, 135745. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Quan, K.; Zhao, L.; Li, Z.; Qiu, H. Anhydride-linked β-cyclodextrin-bonded silica stationary phases with enhanced chiral separation ability in liquid chromatography. J. Chromatogr. A 2021, 1651, 462338. [Google Scholar] [CrossRef] [PubMed]
- Vlyssides, A.G.; Karlis, P.K.; Mahnken, G. Influence of various parameters on the electrochemical treatment of landfill leachates. J. Appl. Electrochem. 2003, 33, 155–159. [Google Scholar] [CrossRef]
- Panizza, M.; Delucchi, M.; Sirés, I. Electrochemical process for the treatment of landfill leachate. J. Appl. Electrochem. 2010, 40, 1721–1727. [Google Scholar] [CrossRef]
- Yazici Guvenc, S.; Dincer, K.; Varank, G. Performance of electrocoagulation and electro-Fenton processes for treatment of nanofiltration concentrate of biologically stabilized landfill leachate. J. Water Process Eng. 2019, 31, 100863. [Google Scholar] [CrossRef]
Treatment Process | Leachate COD Concentration (mg/L) | Optimal Conditions | Removal Efficiency (%) | Energy Consumption (kWh/kgCOD) | References |
---|---|---|---|---|---|
Electrically assisted ZVI/UV synergistic activation PS system | 48,440 | PS/12COD ratio: 1; ZVI dosage: 1.5 g/L; The current density: 62.5 mA/cm2, reaction time: 6 h; initial pH: 3.0 | 81.99 | 0.52 | This work |
Micro-waved system coupled Fenton | 8900 + 120 | Fe2+ = 0.04 M, H2O2 = 0.075 M, pH = 3.1, V = 100 mL and reaction time = 36 min | 61 | 833.34 | [41] |
Electro-oxidation + PS oxidation | 1281 | I = 80 mA, [PDS] = 75 mM, [Fe3+] = 15 mM, V = 0.15 L and reaction time = 120 min | 87 | 91.9 | [43] |
Electro-Fenton | 1625 | I = 200 mA, pH = 3, aeration rate = 0.32 L/min, [Fe2+] = 0.8 mM, V = 800 mL and reaction time = 2 h | 74.7 | 5.76 | [44] |
Electro/Fe0/H2O2 | 2500 | pH0: 2.0, Fe0 loading: 1.745 g/L, H2O2 dosage: 0.187 mol/L, current density: 20.6 mA/cm2, inter-electrode gap: 1.8 cm, treatment time: 2 h | 70.1 | 8.12 | [40] |
Electrochemical oxidation | 6000 | 4% NaCl, solution pH 5.5, applied voltage 20 V, temperature: 80 °C, FeSO4∙7H2O: 4 g/L, input rate of leachate: 60 mL/min, treatment time: 5 h | 41.6 | 4.29 | [45] |
Electrochemical oxidation | 780 | pH 8.2, current: 2 A, temperature: 50 °C, inter-electrode gap: 0.5 cm, treatment time: 3 h | <160 mg/L | 145.16 | [46] |
Electro-coagulation | 10,000 ± 200 | I = 3.5 A, pH = 7, V = 0.5 L and reaction time = 20 min | 57.4 | -- | [47] |
Parameter | Range | Average |
---|---|---|
COD (mg/L) | 8280~8570 | 8440 |
BOD5 (mg/L) | 1832~1950 | 1901 |
BOD5/COD | 0.22~0.23 | 0.23 |
NH3-N (mg/L) | 2269~2497 | 2384 |
pH | 7.64~7.82 | 7.75 |
SS (mg/L) | 17,390~18,560 | 17,873 |
TN (mg/L) | 2633~2809 | 2699 |
TP (mg/L) | 25.3~29.4 | 27.50 |
Chroma (times) | 3200 | 3200 |
Indicators | Method | Standard Number |
---|---|---|
COD | Dichromate process | HJ 828–2017 |
NH3-N | Nessler’s reagent spectrophotometry | HJ 5,352,009 |
BOD5 | Dilution and seeding method | HJ 505–2009 |
Chroma | Dilution level method | HJ 1182–2021 |
pH | PHS-3C PH meter | — |
3D fluorescence spectrum | 3D fluorescence spectrometer | — |
Uv-visible spectrum | Uv-visible spectrophotometer | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Wang, J.; Chen, L.; Sun, Y.; Wang, X.; Ruan, J. Experimental Study on the Treatment of Landfill Leachate by Electro-Assisted ZVI/UV Synergistic Activated Persulfate System. Catalysts 2022, 12, 768. https://doi.org/10.3390/catal12070768
Jiang B, Wang J, Chen L, Sun Y, Wang X, Ruan J. Experimental Study on the Treatment of Landfill Leachate by Electro-Assisted ZVI/UV Synergistic Activated Persulfate System. Catalysts. 2022; 12(7):768. https://doi.org/10.3390/catal12070768
Chicago/Turabian StyleJiang, Baojun, Jianlong Wang, Lei Chen, Yiwen Sun, Xinpei Wang, and Junjie Ruan. 2022. "Experimental Study on the Treatment of Landfill Leachate by Electro-Assisted ZVI/UV Synergistic Activated Persulfate System" Catalysts 12, no. 7: 768. https://doi.org/10.3390/catal12070768
APA StyleJiang, B., Wang, J., Chen, L., Sun, Y., Wang, X., & Ruan, J. (2022). Experimental Study on the Treatment of Landfill Leachate by Electro-Assisted ZVI/UV Synergistic Activated Persulfate System. Catalysts, 12(7), 768. https://doi.org/10.3390/catal12070768