Recent Breakthrough in Layered Double Hydroxides and Their Applications in Petroleum, Green Energy, and Environmental Remediation
Abstract
:1. Introduction
2. Photocatalytic Water Splitting to Hydrogen
3. General Introduction of Semiconductors
3.1. Commonly Used Semiconductors for Photocatalysis
3.1.1. TiO2
3.1.2. ZnO
3.1.3. CdS
3.1.4. CuS
3.1.5. BiOx
3.1.6. MnO2
4. The Contribution of Nanomaterials in Energy and Environmental Remediation
5. General Introduction of Layered Double Hydroxides (LDHs)
5.1. General Formula of LDHs
5.2. General Characteristics of LDHs
5.2.1. Memory Effect
5.2.2. High Surface Area
5.2.3. Intercalation Reactions
5.2.4. Layer-by-Layer (LbL) Assembly
Acid–Base Properties
Formation of Thermally Stable Mixed Oxides
5.2.5. Synthesis Methods for LDHs
Co-Precipitation Method
Hydrothermal Method
Sol-Gel Method
Vapor Diffusion Method to Prepare Exceptional Ti-Containing LDHs
Continuous Flow Preparation Method
5.2.6. Characteristic Analyses of LDHs
X-ray Diffraction (XRD)
Surface Features of LDHs; Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscope (HRTEM), and Surface Area
6. Applications of LDHs in the Petroleum Industry
6.1. LDHs/LDH-Based Materials as Hydrotreating Catalysts
6.2. LDHs/LDH-Based Materials as Oxidative Desulfurization Catalysts
6.3. LDHs/LDH-Based Materials as Adsorbents for Petroleum Hazards
6.4. LDHs/LDH-Based Materials as Petroleum Additives
6.5. LDHs for Sensing and Photodegradation of Organic Compounds
6.6. LDHs/LDH-Based Materials for Removal of Oil Wastewater
7. LDHs/LDH-Based Materials for Water Treatment
7.1. Adsorption of Heavy Metals
7.2. Removal of Industrial Dyes
8. The Recent Breakthrough in Synthesis and Applications of 1D LDHs
9. Durability of LDHs as Potential Photocatalytic Materials
10. Summary and Future Prospective
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mostafa, M.S.; Chen, L.; Selim, M.S.; Betiha, M.A.; Zhang, R.; Gao, Y.; Zhang, S.; Ge, G. Novel cyanate intercalated CoBi layered double hydroxide for ultimate charge separation and superior water splitting. J. Clean. Prod. 2021, 313, 127868. [Google Scholar] [CrossRef]
- Chen, G.; Lin, J.; Hu, W.; Cheng, C.; Gu, X.; Du, W.; Zhang, J.; Qu, C. Characteristics of a crude oil composition and it’s in situ waxing inhibition behavior. Fuel 2018, 218, 213–217. [Google Scholar] [CrossRef]
- Coutinho, D.M.; França, D.; Vanini, G.; Gomes, A.O.; Azevedo, D.A. Understanding the molecular composition of petroleum and its distillation cuts. Fuel 2022, 311, 122594. [Google Scholar] [CrossRef]
- Mostafa, M.M.; El Saied, M.; Morshedy, A.S. Novel Calcium Carbonate-titania nanocomposites for enhanced sun light photo catalytic desulfurization process. J. Environ. Manag. 2019, 250, 109462. [Google Scholar] [CrossRef]
- Li, Y.; Dang, L.; Han, L.; Li, P.; Wang, J.; Li, Z. Iodine-sensitized Bi4Ti3O12/TiO2 photocatalyst with enhanced photocatalytic activity on degradation of phenol. J. Mol. Catal. A Chem. 2013, 379, 146–151. [Google Scholar] [CrossRef]
- Mostafa, M.S.; Betiha, M.A.; Rabie, A.M.; Hassan, H.M.; Morshedy, A.A. New conduct in the adsorptive removal of sulfur compounds by new nickel-molybdenum adsorbent. Ind. Eng. Chem. Res. 2018, 57, 425–433. [Google Scholar] [CrossRef]
- Luca, C.G.; Aguire, M.H.; Selli, E. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J. Catal. 2010, 273, 182–190. [Google Scholar]
- Istiroyah; Engge, Y.; Maulana, F.; Nurhuda, M. Literature review of the development of ZnO and TiO2 as photocatalytic material in water splitting processes. In Proceedings of the 11th International Conference on Global Resource Conservation, East Java, Indonesia, 28–29 July 2020. [Google Scholar]
- Li, Y.; Wang, G.; Zhang, H.; Qian, W.; Li, D.; Guo, Z.; Zhou, R.; Xu, J. Hierarchical flower-like 0D/3D g-C3N4/TiO2 S-scheme heterojunction with enhanced photocatalytic activity. Coll. Surf. A Physicochem. Eng. Asp. 2022, 646, 128942. [Google Scholar] [CrossRef]
- Ayyub, M.M.; Chhetri, M.; Gupta, U.; Roy, A.; Rao, C.N.R. Photochemical and Photoelectrochemical Hydrogen Generation by Splitting Seawater. Chem. Eur. J. 2018, 24, 18455–18462. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yin, C.; Qu, H. Electronic microstructure and thermal conductivity modeling of semiconductor nanomaterials. Microelectr. J. 2021, 108, 104988. [Google Scholar] [CrossRef]
- Nur, A.S.M.; Sultana, M.; Mondal, A.; Islam, S.; Robel, F.N.; Islam, A.; Sumi, M.S.A. A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV-vis irradiation. J. Water Process Eng. 2022, 47, 102728. [Google Scholar] [CrossRef]
- Esrafili, A.; Salimi, M.; Jafari, A.; Sobhi, H.R.; Gholami, M.; Kalantary, R.R. Pt-based TiO2 photocatalytic systems: A systematic review. J. Mol. Liq. 2022, 352, 118685. [Google Scholar] [CrossRef]
- Feng, L.; Li, B.; Xiao, Y.; Li, L.; Zhang, Y.; Zhao, Q.; Zuo, G.; Meng, X.; Roy, V.A.L. Au modified Bi2O3-TiO2 hybrid for photocatalytic synthesis of hydrogen peroxide. Catal. Commun. 2021, 155, 106315. [Google Scholar] [CrossRef]
- Cruz, D.; Ortiz-Oliveros, H.B.; Flores-Espinosa, R.M.; Pérez, P.Á.; Ruiz-López, I.I.; Quiroz-Estrada, K.F. Synthesis of Ag/TiO2 composites by combustion modified and subsequent use in the photocatalytic degradation of dyes. J. King Saud Univ. Sci. 2022, 34, 101966. [Google Scholar] [CrossRef]
- Ti, J.; Zhu, J.; He, B.; Zong, Z.; Yao, X.; Tui, R.; Huang, H.; Chen, C.; Chen, H.; Duan, Y.; et al. A “double-sided tape” modifier bridging the TiO2/perovskite buried interface for efficient and stable all-inorganic perovskite solar cells. J. Mater. Chem. A 2022, 10, 6649–6661. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, X.; Li, C.-F.; Yu, W.; Wang, A.; Hu, Z.-Y.; Larter, S.; Li, Y.; Kibria, M.G.; Hu, J. Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. J. Energy Chem. 2022, 64, 201–208. [Google Scholar] [CrossRef]
- Suligoj, A.; Arcon, I.; Mazaj, M.; Drazic, G.; Arcon, D.; Cool, P.; Stangar, U.L.; Tusar, N.N. Surface modified titanium dioxide using transition metals: Nickel as a winning transition metal for solar light photocatalysis. J. Mater. Chem. A 2018, 6, 9882–9892. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Liu, X.; Zhan, P.; Wang, W.; Zhang, Z. Tuning the optical bandgap of TiO2 -TiN composite films as photocatalyst in the visible light. AIP Adv. 2013, 3, 062129. [Google Scholar] [CrossRef]
- Guidetti, G.; Pogna, E.A.A.; Lombardi, L.; Tomarchio, F.; Polishchuk, I.; Joosten, R.R.M.; Ianiro, A.; Soavi, G.; Sommerdijk, N.A.J.M.; Friedrich, H.; et al. Photocatalytic activity of exfoliated graphite -TiO2 nanoparticle composites. Nanoscale 2019, 11, 19301–19314. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Zhang, Y.; Wang, Y.; Chen, M.; Huang, Y.; Cao, J.; Ho, W.; Lee, S.C. Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO2/HAp) composites with improved adsorption and charge mobility ability. RSC Adv. 2017, 7, 24683. [Google Scholar] [CrossRef] [Green Version]
- Urkasame, K.; Yoshida, S.; Takanohashi, T.; Iwamura, S.; Ogino, I.; Mukai, S.R. Development of TiO2- SiO2 photocatalysts having a microhoneycomb structure by the ice templating method. ACS Omega 2018, 3, 14274–14279. [Google Scholar] [CrossRef] [PubMed]
- Widiyandari, H.; Umiati, N.A.K.; Herdianti, R.D. Synthesis and photocatalytic property of Zinc Oxide ZnO fine particle using flame spray pyrolysis method. IOP Conf. Ser. J. Phys. Conf. Ser. 2018, 1025, 012004. [Google Scholar] [CrossRef]
- Chen, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-Based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Adhikari, S.; Sarkar, D.; Madras, G. Hierarchical design of CuS architectures for visible light photocatalysis of 4-Chlorophenol. ACS Omega 2017, 2, 4009–4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warsi, M.F.; Bilal, M.; Zulfiqar, S.; Khalid, M.U.; Agboola, P.O.; Shakir, I. Enhanced visible light driven photocatalytic activity of MnO2 nanomaterials and their hybrid structure with carbon nanotubes. Mater. Res. Express 2020, 7, 105015. [Google Scholar] [CrossRef]
- Wei, J.; Qu, R.; Xu, S.; Chen, J.; Al-Basher, G.; Li, C.; Shada, A.; Dar, A.A.; Wang, Z. Alumina-mediated photocatalytic degradation of hexachlorobenzene in aqueous system: Kinetics and mechanism. Chemosphere 2020, 257, 127256. [Google Scholar]
- Kamil, N.; El Amrani, M.K.; Benjelloun, N.; Naturforsch, Z. New silica supported titanium dioxide catalysts: Characteristics and photocatalytic efficiency in waste water depollution. Z. Naturforschung 2006, 61, 1311–1318. [Google Scholar] [CrossRef]
- Li, C.; Zhu, N.; Yang, S.; He, X.; Zheng, S.; Sun, Z.; Dionysiou, D.D. A review of clay based photocatalysts: Role of phyllosilicate mineral in interfacial assembly, microstructure control and performance regulation. Chemosphere 2021, 273, 129723. [Google Scholar] [CrossRef]
- Dubey, N.; Rayalu, S.S.; Labhsetwar, N.K.; Devotta, S. Visible light active zeolite-based photocatalysts for hydrogen evolution from water. Int. J. Hydrogen Energy 2008, 33, 5958–5966. [Google Scholar] [CrossRef]
- Sajid, M.M. Nanomaterials: Types, proper ties, recent advances, and toxicity concerns. Environ. Sci. Health 2022, 25, 100319. [Google Scholar]
- Lang, J.; Takahashi, K.; Kubo, M.; Shimada, M. Preparation of TiO2-CNT-Ag ternary composite film with enhanced photocatalytic activity via plasma-enhanced chemical vapor deposition. Catalysts 2022, 12, 508. [Google Scholar] [CrossRef]
- Amin, M.A.; Mersal, G.A.M.; Shaltout, A.A.; Badawi, A.; El-Sheshtawy, H.S.; Das, M.R.; Boman, J.; Ibrahim, M.M. Non-covalent functionalization of graphene oxide-supported 2-Picolyamine-based zinc (II) complexes as novel electrocatalysts for hydrogen production. Catalysts 2022, 12, 389. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Ouyang, S.; Ye, J. Metal—Organic frameworks for photocatalysis. Phys. Chem. Chem. Phys. 2016, 18, 7563–7572. [Google Scholar] [CrossRef] [PubMed]
- Alduhaish, O.M.; Shaik, M.R.; Adil, S.F. Photo-Induced preparation of Ag@MOF-801 composite based heterogeneous nanocatalyst for the production of biodiesel. Catalysts 2022, 12, 533. [Google Scholar] [CrossRef]
- Errahmani, K.B.; Benhabiles, O.; Bellebia, S.; Bengharez, Z.; Goosen, M.; Mahmoudi, H. Photocatalytic nanocomposite polymer-TiO2 membranes for pollutant removal from wastewater. Catalysts 2021, 11, 402. [Google Scholar] [CrossRef]
- Omr, H.A.E.; Horn, M.W.; Lee, H. Low-dimensional nanostructured photocatalysts for efficient CO2 conversion into solar fuels. Catalysts 2021, 11, 418. [Google Scholar] [CrossRef]
- Qin, Q.; Wang, J.; Xia, Y.; Yang, D.; Zhou, Q.; Zhu, X.; Feng, W. Synthesis and characterization of Sn/Ni single doped and co-doped anatase/rutile mixed-Crystal nanomaterials and their photocatalytic performance under UV-Visible Light. Catalysts 2021, 11, 1341. [Google Scholar] [CrossRef]
- El Hakim, S.; Chave, T.; Nikitenko, S.I. Photocatalytic and Sonocatalytic Degradation of EDTA and Rhodamine B over Ti0 and Ti@TiO Nanoparticles. Catalysts 2021, 11, 928. [Google Scholar] [CrossRef]
- Prasad, C.; Tang, H.; Liu, Q.Q.; Zulfiqar, S.; Shah, S.; Bahadur, I. An overview of semiconductors/layered double hydroxides composites: Properties, synthesis, photocatalytic and photoelectrochemical applications. J. Mol. Liq. 2019, 289, 111114. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, S.; Shi, R.; Waterhouse, G.I.N.; Tang, J.; Zhang, T. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91. [Google Scholar] [CrossRef]
- Zhao, Y.; Waterhouse, G.I.N.; Chen, G.; Xiong, X.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 2019, 48, 1972–2010. [Google Scholar] [CrossRef]
- Sun, X.; Huang, H.; Zhao, Q.; Ma, T.; Wang, L. Thin-Layered Photocatalysts. Adv. Funct. Mater. 2020, 30, 1910005. [Google Scholar] [CrossRef]
- Sun, X.; Shi, L.; Huang, H.; Song, X.; Ma, T. Surface engineered 2D materials for photocatalysis. Chem. Commun. 2020, 56, 11000–11013. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.R.; O’Hare, D. Towards understanding, control and application of layered double hydroxide chemistry. J. Mater. Chem. 2006, 16, 3065–3074. [Google Scholar] [CrossRef]
- Mohapatra, L.; Parida, K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mater. Chem. A 2016, 4, 10744–10766. [Google Scholar] [CrossRef]
- Yan, K.; Wu, G.; Jin, W. Recent advances in the synthesis and applications of layered double hydroxide-based materials and their applications in hydrogen and oxygen evolution. Energy Technol. 2016, 4, 354–368. [Google Scholar] [CrossRef]
- Zhao, Y.; Jia, X.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; O’Hare, D.; Zhang, T. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 2016, 6, 1501974. [Google Scholar] [CrossRef]
- Nishimura, S.; Takagaki, A.; Ebitani, K. Characterization, synthesis and catalysis of hydrotalcite-related materials for highly efficient materials transformations. Green Chem. 2013, 15, 2026–2042. [Google Scholar] [CrossRef]
- Xu, M.; Wei, M. Layered double hydroxide-based catalysts: Recent advances in preparation, structure and applications. Adv. Funct. Mater. 2018, 28, 802943. [Google Scholar] [CrossRef]
- Lu, X.; Xue, H.; Gong, H.; Bai, M.; Tang, D.; Ma, R.; Sasaki, T. 2D Layered double hydroxide nanosheets and their derivatives toward efficient oxygen evolution reaction. Nano-Micro Lett. 2020, 12, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, G.; Li, F.; Evans, D.G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, F.; Zhang, C.; Zeng, G.; Tan, X.; Yu, Z.; Zhong, Y.; Wang, H.; Cui, F. Utilization of LDH-based materials as potential adsorbents and photocatalysts for the decontamination of dyes wastewater: A review. RSC Adv. 2016, 6, 79415–79436. [Google Scholar] [CrossRef]
- Wu, M.J.; Wu, J.Z.; Zhang, J.; Chen, H.; Zhou, J.Z.; Qian, G.R.; Xu, Z.P.; Du, Z.; Rao, Q.L. A review on fabricating heterostructures from layered double hydroxides for enhanced photocatalytic activities. Catal. Sci. Technol. 2018, 8, 1207–1228. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Zhang, C.; Zeng, G.-M.; Tan, X.-F.; Wang, H.; Huang, D.-L.; Yang, K.-H.; Wei, J.-J.; Ma, C.; Nie, K. Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: A review. J. Mater. Chem. A 2020, 8, 4141–4173. [Google Scholar] [CrossRef]
- Razzaq, A.; Ali, S.; Asif, M.; In, S.-I. Layered double hydroxide (LDH) based photocatalysts: An outstanding strategy for efficient photocatalytic CO2 conversion. Catalysts 2020, 10, 1185. [Google Scholar] [CrossRef]
- Ng, S.F.; Lau, M.Y.L.; Ong, W.J. Engineering layered double hydroxide—Based photocatalysts toward artificial photosynthesis: State-of-the-art progress and prospects. Sol. RRL 2021, 5, 2000535. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, D.; El Hankari, S.; Zou, Y.; Wang, S. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. 2018, 5, 1800064. [Google Scholar] [CrossRef] [PubMed]
- Cavani, F.; Trifiro, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–302. [Google Scholar] [CrossRef]
- Mochane, M.J.; Magagula, S.I.; Sefadi, J.S.; Sadiku, E.R.; Mokhena, T.C. Morphology, thermal stability, and flammability properties of polymer-layered double hydroxide (LDH) nanocomposites: A review. Crystals 2020, 10, 612. [Google Scholar] [CrossRef]
- Wijitwongwan, R.; Intasa-ard, S.; Ogawa, M. Preparation of Layered Double Hydroxides toward Precisely Designed Hierarchical Organization. ChemEngineering 2019, 3, 68. [Google Scholar] [CrossRef] [Green Version]
- Tian, R.; Liang, R.; Wei, M.; Evans, D.J.; Duan, X. Applications of layered double hydroxide materials: Recent advances and perspective. Struct. Bond. 2015, 430, 205. [Google Scholar]
- Chen, J.; Wang, C.; Zhang, Y.; Guo, Z.; Luo, Y.; Mao, C.J. Engineering ultrafine NiS cocatalysts as active sites to boost photocatalytic hydrogen production of MgAl layered double hydroxide. Appl. Surf. Sci. 2020, 506, 144999. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Martins, P.R.; Angnes, L.; Araki, K. Recent advances in ternary layered double hydroxide electrocatalysts for the oxygen evolution reaction. New J. Chem. 2020, 44, 9981–9997. [Google Scholar] [CrossRef]
- Johnston, A.M.; Lester, E.; Williams, O.; Gomes, R.L. Understanding layered double hydroxide properties as sorbent materials for removing organic pollutants from environmental waters. J. Environ. Chem. Eng. 2021, 9, 105197. [Google Scholar] [CrossRef]
- Wu, L.; Pan, F.; Liu, Y.; Zhang, G.; Tang, A.; Atrens, A. Influence of pH on the growth behaviour of Mg-Al LDH films. Surf. Eng. 2018, 34, 674–681. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, F.; Jiao, Q. Hydrothermal synthesis of Ni/Al layered double hydroxide nanorods. J. Nanotechnol. 2011, 11, 646409. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A. Effect of synthesis conditions on the controlled growth of MgAl–LDH corrosion resistance film: Structure and corrosion resistance properties. Michele Fedel Coat 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhang, J.; Li, L.; Yuan, C.; Weng, T.C. Boosting the electrocatalytic activity of nickel-iron layered double hydroxide for the oxygen evolution reaction by terephthalic acid. Catalysts 2022, 12, 258. [Google Scholar] [CrossRef]
- Nayak, S.; Parida, K. MgCr-LDH nanoplatelets as effective oxidation catalysts for visible light-triggered Rhodamine B degradation. Catalysts 2021, 11, 1072. [Google Scholar] [CrossRef]
- Agostino, L.C.D.; Gonçalves, R.G.L.; Santilli, C.V.; Pulcinelli, S.H. Effect of solvent in the sol-gel synthesis of layered double hydroxides as catalysts for the ethanol steam reforming reaction. In Proceedings of the 18. Brazil MRS Meeting, Balneario Camboriu, Brazil, 22–26 September 2019. [Google Scholar]
- Zhao, Y.; He, S.; Wei, M.; Evans, D.G.; Duan, X. Hierarchical films of layered double hydroxides by using a sol-gel process and their high adaptability in water treatment. Chem. Commun. 2010, 46, 3031–3033. [Google Scholar] [CrossRef]
- Mostafa, M.S.; Lan, C.; Betiha, M.A.; Zhang, R.; Gaoa, Y.; Ge, G. Enhanced infrared-induced water oxidation by one-pot synthesized CoTi-Nanorods as highly infrared responsive photocatalyst. J. Power Source 2020, 464, 228176. [Google Scholar] [CrossRef]
- Chowdhury, P.R.; Bhattacharyya, K.G. Synthesis and characterization of Co/Ti layered double hydroxide and its application as a photocatalyst for degradation of aqueous Congo Red. RSC Adv. 2015, 5, 92189–92206. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.R.; Bhattacharyya, K.G. Ni/Ti layered double hydroxide: Synthesis, characterization and application as a photocatalyst for visible light degradation of aqueous methylene blue. Dalton Trans. 2015, 44, 6809–6824. [Google Scholar] [CrossRef]
- Chen, G.; Qian, S.; Tu, X.; Wei, X.; Zou, J.; Leng, L.; Luo, S. Enhancement photocatalytic degradation of rhodamine B on nano Pt intercalated Zn–Ti layered double hydroxides. Appl. Surf. Sci. 2014, 293, 345–351. [Google Scholar] [CrossRef]
- Xia, J.Y.; Tang, M.T.; Chen, C.; Jin, S.M.; Chen, Y.M. Preparation of α-Bi2O3 from bismuth powders through low-temperature oxidation. Trans. Nonferrous Metals Soc. China 2012, 22, 2289–2294. [Google Scholar]
- Li, C.D.; Li, M.; van Veen, A.C. Chapter 1—Synthesis of Nano-catalysts in flow conditions using millimixers. In Advanced Nanomaterials, Advanced Nanomaterials for Catalysis and Energy; Sadykov, V.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–28. [Google Scholar]
- Tichit, D.; Layrac, G.; Gérardin, C. Synthesis of layered double hydroxides through continuous flow processes: A review. Chem. Eng. J. 2019, 369, 302–332. [Google Scholar] [CrossRef]
- Chen, Y.; Jing, C.; Zhang, X.; Jiang, D.; Liu, X.; Dong, B.; Feng, L.; Li, S.; Zhang, Y. Acid- salt treated CoAl layered double hydroxide nanosheets with enhanced adsorption capacity of Methyl Orange dye. J. Colloid Interface Sci. 2019, 548, 100–109. [Google Scholar] [CrossRef]
- El Hassani, K.; Beakou, B.H.; Kalnina, D.; Oukani, E.; Anouar, A. Effect of morphological properties of layered double hydroxides on adsorption of azo dye Methyl Orange: A comparative study. Appl. Clay Sci. 2017, 140, 124–131. [Google Scholar] [CrossRef]
- Guan, T.; Fang, L.; Lu, Y.; Wu, F.; Ling, F.; Gao, J.; Hu, B.; Meng, F.; Jin, X. A facile approach to synthesize 3D flower-like hierarchical NiCo layered double hydroxide microspheres and their enhanced adsorption capability. Coll. Surf. A Physicochem. Eng. Asp. 2017, 529, 907–915. [Google Scholar] [CrossRef]
- Jiang, Z.; Yan, L.; Wu, J.; Liu, X.; Zhang, J.; Zheng, Y.; Pei, Y. Low-temperature synthesis of carbonate-intercalated NixFe-layered double hydroxides for enhanced adsorption properties. Appl. Surf. Sci. 2020, 531, 147281. [Google Scholar] [CrossRef]
- Jing, C.; Chen, Y.; Zhang, X.; Guo, X.; Liu, X.; Dong, B.; Dong, F.; Zhang, X.; Liu, Y.; Li, S.; et al. Low carbonate contaminative and ultrasmall NiAl LDH prepared by acid salt treatment with high adsorption capacity of Methyl Orange. Ind. Eng. Chem. Res. 2019, 58, 11985–11998. [Google Scholar] [CrossRef]
- Shabbir, R.; Gu, A.; Chen, J.; Khan, M.M.; Wang, P.; Jiao, Y.; Zhang, Z.; Liu, Y.; Yang, Y. Highly efficient removal of congo red and Methyl Orange by using petal-like Fe-Mg layered double hydroxide. Int. J. Environ. Anal. Chem. 2022, 102, 1–18. [Google Scholar] [CrossRef]
- Chao, Y.-F.; Lee, J.-J.; Wang, S.-L. Preferential adsorption of 2,4-dichlorophenoxyacetate from associated binary-solute aqueous systems by Mg/Al-NO3 layered double hydroxides with different nitrate orientations. J. Hazard. Mater. 2009, 165, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.M.; Li, N.; Zhang, W.D. Preparation of nanostructured microspheres of Zn-Mg-Al layered double hydroxides with high adsorption property. Coll. Surf. A Physicochem. Eng. Asp. 2012, 415, 195–201. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, B.; Fang, L.; Ling, F.; Gao, J.; Wu, F.; Zhang, X. High performance NiFe layered double hydroxide for Methyl Orange dye and Cr(VI) adsorption. Chemosphere 2016, 152, 415–422. [Google Scholar] [CrossRef]
- Wang, H.; Fan, Q.; Yang, Z.; Tang, S.; Chen, J.; Wu, Y. A novel pre-sulfided hydrotreating catalyst derived from thiomolybdate intercalated NiAl LDHs. Mol. Catal. 2019, 468, 1–8. [Google Scholar] [CrossRef]
- Linares, C.F.; Vásquez, M.; Castillo, R.; Bretto, P.; Solano, R.; Rincón, A. Applications of CoMo/calcined quaternary hydrotalcites for hydrotreatment reactions. Fuel Process. Technol. 2015, 132, 105–110. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Meng, F.; Yin, W.; Wu, Y. Effects of preparation methods on the property and hydrodesulfurization activity of NiAlZrW catalysts derived from tungstate intercalated NiAlZr layered double hydroxides. Fuel 2018, 228, 332–341. [Google Scholar] [CrossRef]
- Arias, S.; Lice, Y.E.; Soares, D.; Eon, J.G.; Palacio, L.A.; Faro, A.C., Jr. Mixed NiMo, NiW and NiMoW sulfides obtained from layered double hydroxides as catalysts in simultaneous HDA and HDS reactions. Catal. Today 2017, 296, 187–196. [Google Scholar] [CrossRef]
- Li, Q.; Yang, J.; Zhang, H.; Sun, H.; Wu, S.; Ge, B.; Wang, R.; Yuan, P. Tuning the properties of Ni-based catalyst via La incorporation for efficient hydrogenation of petroleum resin. J. Chem. Eng. 2022, 45, 41–50. [Google Scholar] [CrossRef]
- Song, Y.; Bai, J.; Jiang, S.; Yang, H.; Yang, L.; Wei, D.; Bai, L.; Wang, W.; Liang, Y.; Chen, H. Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization. Fuel 2021, 306, 121751. [Google Scholar] [CrossRef]
- Gao, L.G.; Li, H.X.; Song, X.L.; Li, W.L.; Ma, X.R. Degradation of benzothiophene in diesel oil by LaZnAl layered double hydroxide: Photocatalytic performance and mechanism. Petrol. Sci. 2019, 16, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Masoumi, S.; Hosseini, S.A. Desulfurization of di-benzothiophene from gasoil model using Ni-Co2, NiFe2 and Co-Fe2 nano layered-double hydroxides as photocatalysts under visible light. Fuel 2020, 277, 118137. [Google Scholar] [CrossRef]
- Yao, Z.; Miras, H.N.; Song, Y.F. Efficient concurrent removal of sulfur and nitrogen contents from complex oil mixtures by using polyoxometalate-based composite material. Inorg. Chem. Front. 2016, 3, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, X.; Zhang, H. Synergistic effects of MOF-76 on layered double hydroxides with superior activity for extractive catalytic oxidative desulfurization. New J. Chem. 2020, 44, 6269–6276. [Google Scholar] [CrossRef]
- Lee, S.; Govindan, M.; Kim, D. CoFe-based layered double hydroxide for high removal capacity of hydrogen sulfide under high humid gas stream. Chem. Eng. J. 2021, 416, 127918. [Google Scholar] [CrossRef]
- Menzel, R.; Iruretagoyena, D.; Wang, Y.; Bawaked, S.M.; Mokhtar, M.; Al-Thabaiti, S.A.; Basahel, S.N.; Shaffer, M.S.P. Graphene oxide/mixed metal oxide hybrid materials for enhanced adsorption desulfurization of liquid hydrocarbon fuels. Fuel 2016, 181, 531–536. [Google Scholar] [CrossRef]
- Kameda, T.; Tochinai, M.; Kumagai, S.; Yoshioka, T. Mg−Al layered double hydroxide intercalated with CO32– and its recyclability for treatment of SO2. Appl. Clay Sci. 2019, 183, 105349. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, J.; Xu, X.; Sun, Y. Effect of surface organic modified layered double hydroxide on UV ageing resistance of bitumen. Pet. Sci. Technol. 2017, 35, 488–494. [Google Scholar] [CrossRef]
- Li, S.; Qin, H.; Zuo, R.; Bai, Z. Friction properties of La-doped Mg/Al layered double hydroxide and intercalated product as lubricant additives. Tribol. Int. 2015, 91, 60–66. [Google Scholar] [CrossRef]
- Parvulescu, A.N.; Kimura, R.; Zoellner, B.; Holtze, C.; Weisse, S.A.; Lorenz, S.; Ulrich, M. Monolayer from at Least One Layered Double Hydroxide (LDH). EP 3 015 429 A1, 4 May 2016. [Google Scholar]
- Wang, H.; Wang, Y.; Liu, Y.; Zhao, J.; Li, J.; Wang, Q.; Luo, J. Tribological behavior of layered double hydroxides with various chemical compositions and morphologies as grease additives. Friction 2021, 9, 952–962. [Google Scholar] [CrossRef]
- He, L.; Zhang, W.; Zhang, X.; Bai, X.; Chen, J.; Ikram, M.; Zhang, G.; Shi, K. 3D flower-like NiCo-LDH composites for a high-performance NO2 gas sensor at room temperature. Coll. Surf. A Physicochem. Eng. Asp. 2020, 603, 125142. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, B.; Hu, Z.; Zhen, M.; Guo, S.Q.; Dong, F. Uncovering the synergy between Mn substitution and O vacancy in ZnAl-LDH photocatalyst for efficient toluene removal. Appl. Catal. B Environ. 2021, 296, 120376. [Google Scholar] [CrossRef]
- Fu, S.; Zheng, Y.; Zhou, X.; Ni, Z.; Xia, S. Visible light promoted degradation of gaseous volatile organic compounds catalyzed by Au supported layered double hydroxides: Influencing factors kinetics and mechanism. J. Hazard. Mater. 2019, 363, 41–54. [Google Scholar] [CrossRef]
- Zhou, L.; Slaný, M.; Bai, B.; Du, W.; Qu, C.; Zhang, J.; Tang, Y. Enhanced Removal of Sulfonated Lignite from Oil Wastewater with Multidimensional MgAl-LDH Nanoparticles. Nanomaterials 2021, 11, 861. [Google Scholar] [CrossRef]
- Bezerra, P.G.B.; Bieseki, L.; da Silva, D.R.; Pergher, S.B.C. Development of a zeolite A/LDH composite for simultaneous cation and anion removal. Materials 2019, 12, 661. [Google Scholar] [CrossRef] [Green Version]
- Yanming, S.; Dongbin, L.; Shifeng, L.; Lihui, F.; Shuai, C.; Haque, M.A. Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide. Arab. J. Chem. 2017, 10, 2295–2301. [Google Scholar] [CrossRef] [Green Version]
- Soltani, R.; Pelalak, R.; Pishnamazi, M.; Marjani, A.; Shirazian, S. A water-stable functionalized NiCo-LDH/MOF nanocomposite: Green synthesis, characterization and its environmental application for heavy metals adsorption. Arab. J. Chem. 2021, 14, 103052. [Google Scholar] [CrossRef]
- Li, S.; Xu, H.; Wang, L.; Ji, L.; Li, X.; Qu, Z.; Yan, N. Dual-functional sites for selective adsorption of mercury and arsenic ions in [SnS4]4−/MgFe-LDH from wastewater. J. Hazard. Mater. 2021, 403, 123940. [Google Scholar] [CrossRef]
- Abo el-Reesh, G.Y.; Farghali, A.A.; Taha, M.; Mahmoud, R.K. Novel synthesis of ni/fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI)removal. Sci. Rep. 2020, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Kurniawan, T.A.; Avtar, R.; Xu, P.; Othman, M.H.D. Recovering heavy metals from electroplating wastewater and their conversion into Zn2Cr-layered double hydroxide (LDH) for pyrophosphate removal from industrial wastewater. Chemosphere 2021, 271, 129861. [Google Scholar] [CrossRef]
- Zhao, S.; Meng, Z.; Fan, X.; Jing, R.; Yang, J.; Shao, Y.; Liu, X.; Wu, M.; Zhang, Q.; Liu, A. Removal of heavy metals from soil by vermiculite supported layered double hydroxides with three-dimensional hierarchical structure. Chem. Eng. J. 2020, 390, 124554. [Google Scholar] [CrossRef]
- Chen, M.; Bi, R.; Zhang, R.; Yang, F.; Chen, F. Tunable surface charge and hydrophilicity of sodium polyacrylate intercalated layered double hydroxide for efficient removal of dyes and heavy metal ion. Coll. Surf. A Physicochem. Eng. Asp. 2021, 617, 126384. [Google Scholar] [CrossRef]
- Daud, M.; Hai, A.; Banat, F.; Wazir, M.B.; Habib, M.; Bharath, G.; Al-Harthi, M.A. A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH)-Containing hybrids as promising adsorbents for dyes removal. J. Mol. Liq. 2019, 288, 110989. [Google Scholar] [CrossRef]
- dos Santos, R.M.M.; Gonçalves, R.G.L.; Constantino, V.R.L.; Santilli, C.V.; Borges, P.D.; Tronto, J.; Pinto, F.G. Adsorption of Acid Yellow 42 dye on calcined layered double hydroxide: Effect of time, concentration, pH and temperature. Appl. Clay Sci. 2017, 140, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Rathee, G.; Awasthi, A.; Sood, D.; Tomar, R.; Tomar, V.; Chandra, R. Layered double hydroxide adsorbent for ultrafast removal of anionic organic dyes. Sci. Rep. 2019, 9, 16225. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Naskar, M.K. Carbon-layered double hydroxide nanocomposite for efficient removal of inorganic and organic based water contaminants—Unravelling the adsorption mechanism. Mater. Adv. 2021, 2, 3600–3612. [Google Scholar] [CrossRef]
- Nazir, M.A.; Khan, N.A.; Cheng, C.; Shah, S.S.A.; Najam, T.; Arshad, M.; Sharif, A.; Akhtar, S.; ur Rehman, A. Surface induced growth of ZIF-67 at Co-layered double hydroxide: Removal of methylene blue and methyl orange from water. Appl. Clay Sci. 2020, 190, 105564. [Google Scholar] [CrossRef]
- Chowdhury, P.R.; Bhattacharyya, K.J. Ni/Co/Ti layered double hydroxide for highly efficient photocatalytic degradation of Rhodamine B and Acid Red G: A comparative study. Photochem. Photobiol. Sci. 2017, 16, 835–839. [Google Scholar] [CrossRef]
- Sriram, G.; Uthappa, U.T.; Losic, D.; Kigga, M.; Jung, H.-Y.; Kurkuri, M.D. MgAl-layered double hydroxide (LDH) modified diatoms for highly efficient removal of congo red from aqueous solution. Appl. Sci. 2020, 10, 2285. [Google Scholar] [CrossRef] [Green Version]
- Lesbani, A.; Meg, P.; Bahar, S.; Siregar, N.; Palapa, N.R.; Taher, T.; Riyanti, F. Adsorptive removal methylene-blue using Zn/Al LDH modified rice husk biochar. Pol. J. Environ. Stud. 2021, 30, 3117–3124. [Google Scholar] [CrossRef]
- Mostafa, M.S.; Mohamed, N.H. Towards novel adsorptive nanomaterials: Synthesis of Co+2Mo+6 LDH for sulfur and aromatic removal from crude petroleum. Egypt. J. Pet. 2016, 25, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, M.S.; Lan, C.; Selim, M.S.; Ruiyi, Z.; Ya, G.; Shuai, Z.; Ge, G. Synthesis of novel CoBiTi LDH and fabrication of LDH-LDO 3D-Hetero -junction for enhanced infrared induced water splitting to hydrogen. J. Clean. Prod. 2022, 340, 130663. [Google Scholar] [CrossRef]
- Awadallah, A.; Mostafa, M.S.; Aboul-Enein, A.A.; Hanafi, S.A. Hydrogen production via methane decomposition over Al2O3-TiO2 binary oxides supported Ni catalysts: Effect of Ti content on the catalytic efficiency. Fuel 2014, 129, 68–77. [Google Scholar] [CrossRef]
- Zhang, G.; Lin, B.; Yang, W.; Jiang, S.; Yao, Q.; Chen, Y.; Gao, B. Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer. RSC Adv. 2015, 5, 5823–5829. [Google Scholar] [CrossRef]
- Kato, H.; Asakura, K.; Kudo, A. Highly efficient water splitting into H2 and O2 over Lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089. [Google Scholar] [CrossRef]
- Peng, S.; An, R.; Li, Y.; Lu, G.; Li, S. Remarkable enhancement of photocatalytic hydrogen evolution over Cd0.5Zn0.5S by bismuth-doping. Int. J. Hydrogen Energy 2012, 37, 1366–1374. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W.; Zhang, J.; Huang, C.; Mao, L. Nickel nanoparticles modified CdS—A potential photocatalyst for hydrogen production through water splitting under visible light irradiation. Int. J. Hydrogen Energy 2015, 40, 340–345. [Google Scholar] [CrossRef]
- Suzuki, T.; Hisatomi, T.; Teramura, K.; Shimodaira, Y.; Kobayashid, H.; Domen, K. A titanium-based oxysulfide photocatalyst: La5Ti2MS5O7 (M = Ag, Cu) for water reduction and oxidation. Phys. Chem. Chem. Phys. 2012, 14, 15475–15481. [Google Scholar] [CrossRef]
- Kiyonori, O.; Akio, I.; Kentaro, T.; Kenji, T.; Michikazu, H.; Kazunari, D. Lanthanum–indium oxysulfide as a visible light driven photocatalyst for water splitting. Chem. Lett. 2007, 36, 854–855. [Google Scholar]
- Zhang, L.; Han, Z.; Wang, W.; Li, X.; Su, Y.; Jiang, D.; Lei, X.; Sun, S. Solar-light-driven pure water splitting with ultrathin BiOCl nanosheets. Chem. A Eur. J. 2015, 21, 18089–18094. [Google Scholar] [CrossRef]
- Han, Q.; Han, Q.; Wang, B.; Gao, J.; Cheng, Z.; Zhao, Y.; Zhang, Z.; Qu, L. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016, 10, 2745–2751. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Pang, C.; Wang, X. Teh function-led design of Z-scheme photocatalytic systems based on hollow carbon nitride semiconductors. Chem. Commun. 2015, 51, 17467–17470. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Parida, K. Recent progress in LDH@graphene and analogous heterostructures for highly active and stable photocatalytic and photoelectrochemical water splitting. Chem. Asian J. 2021, 16, 2211–2248. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Z.; Zhang, C.; Zeng, G.M.; Tan, X.F.; Huang, D.L.; Zhou, J.W.; Fang, Q.Z.; Yang, K.H.; Wang, H.; Wei, J.; et al. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord. Chem. Rev. 2021, 446, 214103. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Yuan, F.; Yang, Z.; Lin, J.; Huang, Y.; Ding, M. Effect of Bi5O7I/calcined ZnAlBi-LDHs composites on Cr(VI) removal via adsorption and photocatalytic reduction. Appl. Surf. Sci. 2021, 562, 150129. [Google Scholar] [CrossRef]
- Gao, R.; Yan, D. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, K.; Pi, Y.; Huang, X. Superior electrochemical oxygen evolution enabled by three-dimensional layered double hydroxide nanosheet superstructures. ChemCatChem 2017, 9, 84–88. [Google Scholar] [CrossRef]
LDH | MII/MIII Ratio | Synthesis Route | Specific Surface Area (m2/g) | Ref. |
---|---|---|---|---|
CoAlCl− | 4:1 | Hydrothermal/acid salt template | 26.5 | [80] |
CoAlCl− | 4:1 | Coprecipitation | 30.9 | [80] |
CoAlCl− | 4:1 | Hydrothermal | 19.7 | [80] |
NiAlCO32− | 1:1 | Coprecipitation | 133 | [81] |
NiCoNO3− | 1:1 | Hydrothermal | 37 | [82] |
NiFeCO3− | 2:1 | Coprecipitation | 427.00 | [83] |
NiAlCl− | 4:1 | Coprecipitation | 95.44 | [84] |
NiAlCO3− | 4:1 | Hydrothermal | 13 | [84] |
MgFeCl− | 2:1 | Solvothermal with SDS | 70.19 | [85] |
ZnAlCl− | 2:1 | Urea | 253 | [86] |
ZnMgAlCO32− | 2:1 | Coprecipitation | 28.12 | [87] |
NiFeNO3− | 4:1 | Coprecipitation | 17.84 | [88] |
LDH-Photocatalyst | Conditions | HER (µmolg−1h−1) | QYE | Ref. |
---|---|---|---|---|
CBT-LDH | Xe-200 W, <800 nm | 272.8 | - | [127] |
CBT-LDH/CBTO | Xe-200 W, <800 nm | 1255 | - | [127] |
CdS/ZnCr-LDH | Xe-340 W, <420 nm | 374 | 42.6 (420 nm) | [129] |
NiO/NaTaO3:La | Hg-400 W, full light | 19,800 | 56 (420 nm) | [130] |
Pt-Cd0.5Zn0.5S:Bi | Hg-400 W, >420 nm | 55.9 | 9.7 (420 nm) | [131] |
Ni-CdS | Xe-300 W, >420 nm | 25.8 | 26.8 (420 nm) | [132] |
Pt-La5Ti2AgS5O7 | Xe-300 W, >420 nm | 225 | 1.2 (420 nm) | [133] |
Pt-LaInS2O | Xe-300 W, >420 nm | 9 | 0.2 (420 nm) | [134] |
P3HT/g-C3N4 | Xe-300 W, >420 nm | 3045 | 77.4 (420 nm) | [135] |
g-C3N4/N-rich-CNF | Xe-300 W, >420 nm | 169 | 14.3 (420 nm) | [136] |
CdS-Au-HCNS Pt | Xe-300 W, >455 nm | 277 | 8.7 (420 nm) | [137] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, M.S.; Chen, L.; Selim, M.S.; Zhang, R.; Ge, G. Recent Breakthrough in Layered Double Hydroxides and Their Applications in Petroleum, Green Energy, and Environmental Remediation. Catalysts 2022, 12, 792. https://doi.org/10.3390/catal12070792
Mostafa MS, Chen L, Selim MS, Zhang R, Ge G. Recent Breakthrough in Layered Double Hydroxides and Their Applications in Petroleum, Green Energy, and Environmental Remediation. Catalysts. 2022; 12(7):792. https://doi.org/10.3390/catal12070792
Chicago/Turabian StyleMostafa, Mohsen S., Lan Chen, Mohamed S. Selim, Ruiyi Zhang, and Guanglu Ge. 2022. "Recent Breakthrough in Layered Double Hydroxides and Their Applications in Petroleum, Green Energy, and Environmental Remediation" Catalysts 12, no. 7: 792. https://doi.org/10.3390/catal12070792
APA StyleMostafa, M. S., Chen, L., Selim, M. S., Zhang, R., & Ge, G. (2022). Recent Breakthrough in Layered Double Hydroxides and Their Applications in Petroleum, Green Energy, and Environmental Remediation. Catalysts, 12(7), 792. https://doi.org/10.3390/catal12070792