Insights into the Design of An Enzyme Free Sustainable Sensing Platform for Efavirenz
Abstract
:1. Introduction
2. Results and Discussion
2.1. Computational Results
2.1.1. Frontier Molecular Orbitals from DFT Calculations
2.1.2. Monte Carlo Simulation
2.2. Experimental Results
2.2.1. Spectroscopic and Morphological Characterization
2.2.2. Electrochemical Behavior of Electrodes
Cyclic Voltametric Measurements
EIS Measurement
2.2.3. Effect of Scan Rate Variation
2.3. Electrocatalysis of EFV
2.3.1. Effect of pH Solution
2.3.2. Electrochemical Behavior of EFV Bare and Modified Electrodes
2.3.3. Analytical Performance of GCE/TiO2-NPs-Nafion Electrode
2.4. Real Sample Analysis
2.5. Interference and Reproducibility Study
3. Materials and Methods
3.1. Experimental
3.1.1. Chemicals and Solutions
3.1.2. Preparation of Plant Extract
3.1.3. Synthesis of TiO2 Nanoparticles
3.1.4. Electrode pre-Treatment and Modification
3.1.5. Preparation of EFV Stock and Working Solutions
3.1.6. Characterization of TiO2-NPs
3.1.7. Electrochemical Studies
3.1.8. Preparation of Real Sample
3.2. Computational Section
3.2.1. Model Building
3.2.2. Density Functional Theory (DFT) Calculations
3.2.3. Monte Carlo (MC) Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masenga, W.; Paganotti, G.M.; Seatla, K.; Gaseitsiwe, S.; Sichilongo, K. A fast-screening dispersive liquid–liquid microextraction–gas chromatography–mass spectrometry method applied to the determination of efavirenz in human plasma samples. Anal. Bioanal. Chem. 2021, 413, 6401–6412. [Google Scholar] [CrossRef] [PubMed]
- Tittikpina, N.K.; Wane, T.M.; Diouf, D.; Thiam, K.; Diop, A.; Fall, D.; Diop, Y.M.; Sarr, S.O. Development and validation of a UV-Visible method for the determination of the active principle Efavirenz in tablets. Int. J. Biol. Chem. Sci. 2020, 14, 279–288. [Google Scholar] [CrossRef]
- Thapliyal, N.; Osman, N.S.; Patel, H.; Karpoormath, R.; Goyal, R.N.; Moyo, T.; Patel, R. NiO–ZrO 2 nanocomposite modified electrode for the sensitive and selective determination of efavirenz, an anti-HIV drug. RSC Adv. 2015, 5, 40057–40064. [Google Scholar] [CrossRef]
- Sailaja, A.L.; Kumar, K.K.; Kumar, D.R.; Kumar, C.M.; Yugandhar, N.; Srinubabu, G. Development and validation of a liquid chromatographic method for determination of efavirenz in human plasma. Chromatographia 2007, 65, 359–361. [Google Scholar] [CrossRef]
- Dogan-Topal, B.; Ozkan, S.; Uslu, B. Simultaneous determination of abacavir, efavirenz and valganciclovir in human serum samples by isocratic HPLC-DAD detection. Chromatographia 2007, 66, 25–30. [Google Scholar] [CrossRef]
- Martin, J.; Deslandes, G.; Dailly, E.; Renaud, C.; Reliquet, V.; Raffi, F.; Jolliet, P. A liquid chromatography–tandem mass spectrometry assay for quantification of nevirapine, indinavir, atazanavir, amprenavir, saquinavir, ritonavir, lopinavir, efavirenz, tipranavir, darunavir and maraviroc in the plasma of patients infected with HIV. J. Chromatogr. B 2009, 877, 3072–3082. [Google Scholar] [CrossRef] [PubMed]
- Notari, S.; Mancone, C.; Alonzi, T.; Tripodi, M.; Narciso, P.; Ascenzi, P. Determination of abacavir, amprenavir, didanosine, efavirenz, nevirapine, and stavudine concentration in human plasma by MALDI-TOF/TOF. J. Chromatogr. B 2008, 863, 249–257. [Google Scholar] [CrossRef]
- Martins, E.d.S.; Oliveira, J.A.; Franchin, T.B.; Silva, B.C.U.; Cândido, C.D.; Peccinini, R.G. Simple and rapid method by ultra high-performance liquid chromatography (UHPLC) with ultraviolet detection for determination of efavirenz in plasma: Application in a preclinical pharmacokinetic study. J. Chromatogr. Sci. 2019, 57, 874–880. [Google Scholar] [CrossRef]
- Kim, K.-B.; Kim, H.; Jiang, F.; Yeo, C.-W.; Bae, S.K.; Desta, Z.; Shin, J.-G.; Liu, K.-H. Rapid and simultaneous determination of efavirenz, 8-hydroxyefavirenz, and 8, 14-dihydroxyefavirenz using LC–MS–MS in human plasma and application to pharmacokinetics in healthy volunteers. Chromatographia 2011, 73, 263–271. [Google Scholar] [CrossRef]
- Tamilselvi, N.; Arivukkarasu, R.; Sasikala, R.; Jayan, S. Development and Validation of HPTLC method for the Determination of Efavirenz in Tablet Dosage Form. Res. J. Pharm. Technol. 2018, 11, 885–888. [Google Scholar] [CrossRef]
- Srivastava, P.; Moorthy, G.S.; Gross, R.; Barrett, J.S. A Sensitive and Selective Liquid Chromatography/Tandem Mass Spectrometry Method for Quantitative Analysis of Efavirenz in Human Plasma. PLoS ONE 2013, 8, e63305. [Google Scholar] [CrossRef] [PubMed]
- Slabiak, O.I.; Ivanchuk, I.M.; Tokaryk, G.V.; Klimenko, L.; Kolisnyk, I.S. Development and validation of UV-spectrophotometric procedures for efavirenz quantitative determination. Int. J. Pharm. Qual. Assur. 2018, 9, 231–240. [Google Scholar]
- Guichard, N.; Tobolkina, E.; el Morabit, L.; Bonnabry, P.; Vernaz, N.; Rudaz, S. Determination of antiretroviral drugs for buyers’ club in Switzerland using capillary electrophoresis methods. Electrophoresis 2021, 42, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Filho, L.A.Z.; Galdez, C.R.; Silva, C.A.; Tavares, M.F.; Costa, D.M.; Aurora-Prado, M.S. Development and validation of a simple and rapid capillary zone electrophoresis method for determination of nnrti nevirapine in pharmaceutical formulations. J. Braz. Chem. Soc. 2011, 22, 2005–2012. [Google Scholar] [CrossRef] [Green Version]
- Hareesha, N.; Manjunatha, J.; Amrutha, B.; Sreeharsha, N.; Asdaq, S.B.; Answer, M.K. A fast and selective electrochemical detection of vanillin in food samples on the surface of poly (glutamic acid) functionalized multiwalled carbon nanotubes and graphite composite paste sensor. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127042. [Google Scholar] [CrossRef]
- Raj, M.; Gupta, P.; Thapliyal, N.; Goyal, R.N. A Novel Hybrid Nano-composite Grafted Electrochemically Reduced Graphene Oxide Based Sensor for Sensitive Determination of Efavirenz. Electroanalysis 2017, 29, 456–465. [Google Scholar] [CrossRef]
- Dogan-Topal, B.; Uslu, B.; Ozkan, S.A. Voltammetric studies on the HIV-1 inhibitory drug Efavirenz: The interaction between dsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode. Biosens. Bioelectron. 2009, 24, 2358–2364. [Google Scholar] [CrossRef]
- Castro, A.A.; de Souza, M.V.; Rey, N.A.; Farias, P.A. Determination of efavirenz in diluted alkaline electrolyte by cathodic adsorptive stripping voltammetry at the mercury film electrode. J. Braz. Chem. Soc. 2011, 22, 1662–1668. [Google Scholar] [CrossRef]
- Jeong, H.; Yoo, J.; Park, S.; Lu, J.; Park, S.; Lee, J. Non-Enzymatic Glucose Biosensor Based on Highly Pure TiO2 Nanoparticles. Biosensors 2021, 11, 149. [Google Scholar] [CrossRef]
- Aravind, M.; Amalanathan, M.; Mary, M. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl. Sci. 2021, 3, 1–10. [Google Scholar] [CrossRef]
- Uwaya, G.E.; Fayemi, O.E.; Sherif, E.-S.M.; Junaedi, H.; Ebenso, E.E. Synthesis, electrochemical studies, and antimicrobial properties of Fe3O4 nanoparticles from Callistemon viminalis plant extracts. Materials 2020, 13, 4894. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, S.P.K.; Alghuthaymi, M.A. Biomolecule-assisted biogenic synthesis of metallic nanoparticles. Agri-Waste Microbes Prod. Sustain. Nanomater. 2022, 139–163. [Google Scholar] [CrossRef]
- Sethy, N.K.; Arif, Z.; Mishra, P.K.; Kumar, P. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Proc. Synth. 2020, 9, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.; Kumar, A.; Kumar, D. Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. S. Afr. J. Bot. 2019, 124, 223–227. [Google Scholar] [CrossRef]
- Bhullar, S.; Goyal, N.; Gupta, S. Rapid green-synthesis of TiO2 nanoparticles for therapeutic applications. RSC Adv. 2021, 11, 30343–30352. [Google Scholar] [CrossRef]
- Amanulla, A.M.; Sundaram, R. Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater. Today Proc. 2019, 8, 323–331. [Google Scholar] [CrossRef]
- Balaji, S.; Guda, R.; Mandal, B.K.; Kasula, M.; Ubba, E.; Khan, F.-R.N. Green synthesis of nano-titania (TiO2 NPs) utilizing aqueous Eucalyptus globulus leaf extract: Applications in the synthesis of 4H-pyran derivatives. Res. Chem. Intermed. 2021, 47, 3919–3931. [Google Scholar] [CrossRef]
- Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kulkarni, R.M. Fabrication of MWCNTs and Ru doped TiO2 nanoparticles composite carbon sensor for biomedical application. ECS J. Solid State Sci. Technol. 2018, 7, Q3070. [Google Scholar] [CrossRef]
- Oliveira, T.M.; Morais, S. New generation of electrochemical sensors based on multi-walled carbon nanotubes. Appl. Sci. 2018, 8, 1925. [Google Scholar] [CrossRef] [Green Version]
- Tarahomi, S.; Rounaghi, G.H.; Zavar, M.H.A.; Daneshvar, L. Electrochemical sensor based on TiO2 nanoparticles/nafion biocompatible film modified glassy carbon electrode for carbamazepine determination in pharmaceutical and urine samples. J. Electrochem. Soc. 2018, 165, B946. [Google Scholar] [CrossRef]
- Buzid, A.; McGlacken, G.P.; Glennon, J.D.; Luong, J.H. Electrochemical sensing of biotin using Nafion-modified boron-doped diamond electrode. ACS Omega 2018, 3, 7776–7782. [Google Scholar] [CrossRef] [PubMed]
- Pamuk, D.; Taşdemir, İ.H.; Ece, A.; Canel, E.; Kılıç, E. Redox pathways of aliskiren based on experimental and computational approach and its voltammetric determination. J. Braz. Chem. Soc. 2013, 24, 1276–1286. [Google Scholar] [CrossRef]
- Bekele, E.T.; Gonfa, B.A.; Zelekew, O.A.; Belay, H.H.; Sabir, F.K. Synthesis of titanium oxide nanoparticles using root extract of Kniphofia foliosa as a template, characterization, and its application on drug resistance bacteria. J. Nanomater. 2020, 2020, 2817037. [Google Scholar] [CrossRef]
- Hareesha, N.; Manjunatha, J. Electro-oxidation of formoterol fumarate on the surface of novel poly (thiazole yellow-G) layered multi-walled carbon nanotube paste electrode. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 2019, 12, 3576–3600. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, W.; Jaiswal, K.K.; Soni, S. Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorg. Nano-Met. Chem. 2020, 50, 1032–1038. [Google Scholar] [CrossRef]
- Biovia, D. Material Studio Modelling; v. 16.1.0; Dassault Systemes: San Diego, CA, USA, 2016. [Google Scholar]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [Green Version]
- Frisch, G.W.T.M.J.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; et al. Gaussian 09 Revision C. 01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
Substrate-Adsorbate | Adsorption Energy/kcal mol |
---|---|
GCE/TiO2-NPs-EVF | −20.455 |
GCE/TiO2/nafion-EVF | −23.962 |
Electrodes | Epa (V) | Ipa (µA) | Epc (V) | Ipc (µA) | Epa-Epc (ΔE, V) | Ipa/Ipc | A (cm2) |
---|---|---|---|---|---|---|---|
GCE | 0.2949 | 20.361 | 0.0874 | −22.000 | 0.2075 | −0.9255 | 0.0017 |
GCE/TiO2-NPs | 0.2510 | 20.770 | 0.1387 | −21.697 | 0.1123 | −0.9572 | 0.0018 |
GCE/TiO2-NPs-nafion | 0.3511 | 11.749 | 0.0288 | −12.5823 | 0.3223 | −0.9337 | 0.0010 |
Electrode | Rs (Ω) | Rct (Ω) | Y° (µΩ*S^n) | n | χ² |
---|---|---|---|---|---|
GCE | 172.31 (2.74) | 3765 (2.26) | 0.94 (11.29) | 0.85 (1.54) | 0.3610 |
GCE/TiO2-NPs | 176.64 (2.04) | 1279 (2.23) | 1.50 (13.67) | 0.85 (1.86) | 0.2244 |
GCE/TiO2-NPs-nafion | 217 (1.22) | 14179 (1.25) | 1.04 (3.74) | 0.840 (0.57) | 0.0896 |
Electrodes | Rs (Ω) | Rct (KΩ) | Y (µΩ*S^n) | n | χ² |
---|---|---|---|---|---|
GCE | 263(4.41) | 712 (3.37) | 0.36 (3.56) | 0.76 (0.61) | 0.42927 |
GCE/TiO2-NPs | 257(4.32) | 671 (4.31) | 0.27(5.10) | 0.86 (0.81) | 0.8977 |
GCE/TiO2-NPs-nafion | 222(5.22) | 593 (7.17) | 1.14 (4.58) | 0.73 (0.92) | 0.9142 |
Electrodes | Methods | Supporting Electrolyte | Peak Potential mV | Linearity (µM) | LOD (µM) | Ref |
---|---|---|---|---|---|---|
PGE/dsDNA | AdSV | pH 7.2 PBS | 1001 | 6.33–7.60 | 1.9 | [17] |
Thin Hg-Film | AdSV | 2.0 × 10−3 NaOH | −280 | 0.03 | [18] | |
ErGO-Pt/Nafion/EPPG | SWV | PBS pH 7.2 | 1160 | 0.05–150 | 1.8 × 10−3 | [16] |
NiO–ZrO2/GCE | DPV | PBS 7.2 | 1200 | 0.01–10 | 1.36 × 10−3 | [3] |
GCE/TiO2-NPs-nafion | DPV | 0.1 M PBS, pH 7 | 1010 | 4.5–18.7 | 0.01 | This work |
Serial Number | Amount Added | Amount Found | Recovery (%) | RSD n = 3 |
---|---|---|---|---|
1 | 8.3 | 8.8 | 106 | 9.9 |
2 | 11.5 | 11.2 | 97 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mthiyane, K.; Uwaya, G.E.; Jordaan, M.A.; Kanchi, S.; Bisetty, K. Insights into the Design of An Enzyme Free Sustainable Sensing Platform for Efavirenz. Catalysts 2022, 12, 830. https://doi.org/10.3390/catal12080830
Mthiyane K, Uwaya GE, Jordaan MA, Kanchi S, Bisetty K. Insights into the Design of An Enzyme Free Sustainable Sensing Platform for Efavirenz. Catalysts. 2022; 12(8):830. https://doi.org/10.3390/catal12080830
Chicago/Turabian StyleMthiyane, Khethiwe, Gloria Ebube Uwaya, Maryam Amra Jordaan, Suvardhan Kanchi, and Krishna Bisetty. 2022. "Insights into the Design of An Enzyme Free Sustainable Sensing Platform for Efavirenz" Catalysts 12, no. 8: 830. https://doi.org/10.3390/catal12080830
APA StyleMthiyane, K., Uwaya, G. E., Jordaan, M. A., Kanchi, S., & Bisetty, K. (2022). Insights into the Design of An Enzyme Free Sustainable Sensing Platform for Efavirenz. Catalysts, 12(8), 830. https://doi.org/10.3390/catal12080830