Synthesis of 2-Alkylaryl and Furanyl Acetates by Palladium Catalysed Carbonylation of Alcohols
Abstract
:1. Introduction
2. Results
2.1. One-Pot Methoxycarbonylation of Benzyl Alcohol (I)
2.2. One-Pot Methoxycarbonylation of Piperonyl Alcohol (V)
2.3. One-Pot Methoxy Carbonylation of Furfuryl Alcohol (IX)
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Generic Procedure for One-Pot Methoxycarbonylation
3.4. Product Characterisation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. The European Green Deal. 2019. Available online: https://europarl.europa.eu/climate/change (accessed on 3 July 2022).
- European Commission. Horizon Europe. Work Programme 2021–2022. 2021. Available online: https://ec.europa.eu/info/research-and-innovation/funding65 (accessed on 3 July 2022).
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Di, J.; Zhao, N.; Fan, B.; He, Y.C.; Ma, C. Efficient Valorisation of Sugarcane Bagasse into Furfurylamine in Benign Deep Eutectic Solvent ChCl:Gly–Water. Appl. Biochem. Biotechnol. 2022, 194, 2204–2218. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.Y.; Kwon, O. Unified Approach to Furan Natural Products via Phosphine-Palladium Catalysis. Angew. Chem. Int. Ed. 2021, 60, 8874–8881. [Google Scholar] [CrossRef] [PubMed]
- Kucherov, F.A.; Romashov, L.V.; Averochkin, G.M.; Ananikov, V.P. Biobased C6-Furans in Organic Synthesis and Industry: Cycloaddition Chemistry as a Key Approach to Aromatic Building Blocks. ACS Sustain. Chem. Eng. 2021, 9, 3011–3042. [Google Scholar] [CrossRef]
- Katke, S.A.; Amrutkar, S.V.; Bhor, R.J.; Khairnar, M.V. Synthesis of Biologically Active 2-Chloro-N-Alkyl/Aryl Acetamide Derivatives. Int. J. Pharma Sci. Res. IJPSR 2011, 2, 148–156. [Google Scholar]
- Sole, R.; Toldo, S.; Bortoluzzi, M.; Beghetto, V. A sustainable route for the synthesis of alkyl arylacetates via halogen and base free carbonylation of benzyl acetates. Catal. Sci. Technol 2022. [Google Scholar] [CrossRef]
- Murahashi, S.; Imada, Y.; Taniguchi, Y.; Higashiura, S. Palladium(0)-catalyzed carbonylation of allyl phosphates and allyl acetates. Selective synthesis of β,γ-unsaturated esters. Tetrahedron Lett. 1988, 29, 4945–4948. [Google Scholar] [CrossRef]
- Yamamoto, T.; Saito, O.; Yamamoto, A. Oxidative addition of allyl acetate to palladium(0) complexes. J. Am. Chem. Soc. 1981, 103, 5600–5602. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, G. Catalytic Transformation of the Furfural Platform into Bifunctionalized Monomers for Polymer Synthesis. ACS Catal. 2021, 11, 10058–10083. [Google Scholar] [CrossRef]
- Delliere, P.; Guigo, N. Monitoring the Degree of Carbonyl-Based Open Structure in a Furanic Macromolecular System. Macromolecules 2022, 55, 1196–1204. [Google Scholar] [CrossRef]
- Lv, X.; Luo, X.; Cheng, X.; Liu, J.; Li, C.; Shuai, L. Production of Hydroxymethylfurfural Derivatives from Furfural Derivatives via Hydroxymethylation. Front. Bioeng. Biotechnol. 2022, 10, 851668. [Google Scholar] [CrossRef]
- Fu, X.-F.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chem. Soc. Rev. 2011, 40, 5122–5150. [Google Scholar]
- Sang, R.; Hu, Y.; Razzaq, R.; Jackstell, R.; Franke, R.; Beller, M. State-of-the-art palladium-catalyzed alkoxycarbonylations. Org. Chem. Front. 2021, 8, 799–811. [Google Scholar] [CrossRef]
- Wu, L.; Fang, X.; Liu, Q.; Jackstell, R.; Beller, M.; Wu, X.F. Palladium-Catalyzed Carbonylative Transformation of C(sp3)–X Bonds. ACS Catal. 2014, 4, 2977–2989. [Google Scholar] [CrossRef]
- Mukaiyama, T. Titanium Tetrachloride in Organic Synthesis [New synthetic methods (21)]. Angew. Chem. Int. Ed. Engl. 1977, 16, 817–826. [Google Scholar] [CrossRef]
- Brownbridge, P. Silyl Enol Ethers in Synthesis—Part II. Synthesis 1983, 2, 85–104. [Google Scholar] [CrossRef]
- Murata, S.; Suzuki, M.; Noyori, R. A new method for converting oxiranes to allylic alcohols by an organosilicon reagent. J. Am. Chem. Soc. 1979, 101, 2738–2739. [Google Scholar] [CrossRef]
- Murata, S.; Suzuki, M.; Noyori, R. Trialkylsilyl triflates. 5. A stereoselective aldol-type condensation of enol silyl ethers and acetals catalyzed by trimethylsilyl trifluoromethanesulfonate. J. Am. Chem. Soc. 1980, 102, 3248–3249. [Google Scholar] [CrossRef]
- Mukaiyama, T.; Hideharu, I.; Katsuhiko, I. A Convenient Method for the Synthesis of Furan derivatives. Chem. Lett. 1975, 4, 527–530. [Google Scholar] [CrossRef]
- Chan, T.-H.; Brownbridge, P. A Novel Cycloaromatization Reaction. Regiocontrolled Synthesis of Substituted Methyl Salicylates. J. Am. Chem. Soc. 1980, 102, 3534–3538. [Google Scholar] [CrossRef]
- Molander, G.A.; Cameron, K.O. Neighboring group participation in Lewis acid-promoted [3 + 4] and [3 + 5] annulations. The synthesis of oxabicyclo [3.n.1]alkan-3-ones. J. Am. Chem. Soc. 1993, 115, 830–846. [Google Scholar] [CrossRef]
- Langer, P. Cyclization Reactions of 1,3-Bis-Silyl Enol Ethers and Related Masked Dianions. Synthesis 2002, 4, 441–459. [Google Scholar] [CrossRef]
- Bellur, E.; Görls, H.; Langer, P. Regioselective Synthesis of Functionalized Furans by Cyclization of 1,3-Bis-Silyl Enol Ethers with 1-Chloro-2,2-dimethoxyethane. Eur. J. Org. Chem. 2005, 2074–2090. [Google Scholar] [CrossRef]
- Enders, D.; Burkamp, F.; Runsink, J. Diastereo- and enantio-selective synthesis of 6-heterosubstituted-3,5-dihydroxyesters: Novel precursors of mevinolin analogues. Chem. Commun. 1996, 609–610. [Google Scholar] [CrossRef]
- Chan, T.-H.; Brownbridge, P. Reaction of electrophiles with 1,3-bis(trimethylsiloxy)-1-methoxybuta-1,3-diene, a dianion equivalent of methyl acetoacetate. J. Chem. Soc. Chem. Commun. 1979, 578–579. [Google Scholar] [CrossRef]
- Danishefsky, S.J.; Harvey, D.F.; Quallich, G.; Uang, B.J. Expeditious routes to multiply functionalized pyrans. J. Org. Chem. 1984, 49, 392–393. [Google Scholar] [CrossRef]
- Gandini, A.; Lacerda, T.M. Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules 2022, 27, 159. [Google Scholar] [CrossRef]
- Iroegbu, A.O.; Hlangothi, S.P. Furfuryl Alcohol a Versatile, Eco-Sustainable Compound in Perspective. Chem. Afr. 2019, 2, 223–239. [Google Scholar] [CrossRef]
- Perez, R.F.; Fraga, M.A. Hemicellulose-derived chemicals: One-step production of furfuryl alcohol from xylose. Green Chem. 2014, 16, 3942–3950. [Google Scholar] [CrossRef]
- Beghetto, V.; Sole, R.; Buranello, C.; Al-Abkal, M.; Facchin, M. Recent Advancements in Plastic Packaging Recycling: A Mini-Review. Materials 2021, 14, 4782. [Google Scholar] [CrossRef]
- Visco, A.; Scolaro, C.; Facchin, M.; Brahimi, S.; Belhamdi, H.; Gatto, V.; Beghetto, V. Agri-Food Wastes for Bioplastics: European Prospective on Possible Applications in Their Second Life for a Circular Economy. Polymers 2022, 14, 2752. [Google Scholar] [CrossRef] [PubMed]
- Beghetto, V.; Gatto, V.; Conca, S.; Bardella, N.; Scrivanti, A. Polyamidoamide dendrimers and cross-linking agents for stabilized bioenzymatic resistant metal-free bovine collagen. Molecules 2019, 24, 3611–3622. [Google Scholar] [CrossRef] [PubMed]
- Sole, R.; Buranello, C.; Di Michele, A.; Beghetto, V. Boosting physical-mechanical properties of adipic acid/chitosan films by DMTMM cross-linking. Int. J. Biol. Macromol. 2022, 209, 2009–2019. [Google Scholar] [CrossRef] [PubMed]
- Beghetto, V.; Bardella, N.; Samiolo, R.; Gatto, V.; Conca, S.; Sole, R.; Molin, G.; Gattolin, A.; Ongaro, N. By-products from mechanical recycling of polyolefins improve hot mix asphalt performance. J. Cleaner Prod. 2021, 318, 128627. [Google Scholar] [CrossRef]
- Sole, R.; Gatto, V.; Conca, S.; Bardella, N.; Morandini, A.; Beghetto, V. Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis. Molecules 2021, 26, 191. [Google Scholar] [CrossRef]
- Sole, R.; Agostinis, L.; Conca, S.; Gatto, V.; Bardella, N.; Morandini, A.; Buranello, C.; Beghetto, V. Synthesis of Amidation Agents and Their Reactivity in Condensation Reactions. Synthesis 2021, 53, 1672–1682. [Google Scholar] [CrossRef]
- Sole, R.; Scrivanti, A.; Alam, M.M.; Beghetto, V. The intriguing methoxycarbonylation of trimethylsilylacetylene in the presence of Drent’s catalytic system. Appl. Organomet. Chem. 2021, 35, e6391. [Google Scholar] [CrossRef]
- Sole, R.; Buranello, C.; Bardella, N.; Di Michele, A.; Paganelli, S.; Beghetto, V. Recyclable Ir nanoparticles for the catalytic hydrogenation of biomass-derived carbonyl compounds. Catalysts 2021, 11, 914. [Google Scholar] [CrossRef]
- Sole, R.; Bortoluzzi, M.; Spannenberg, A.; Tin, S.; Beghetto, V.; de Vries, J.G. Synthesis, characterization and catalytic activity of novel ruthenium complexes bearing NNN click based ligands. Dalton Trans. 2019, 48, 13580–13588. [Google Scholar] [CrossRef]
- Scrivanti, A.; Sole, R.; Bortoluzzi, M.; Beghetto, V.; Bardella, N.; Dolmella, A. Synthesis of new triazolyl-oxazoline chiral ligands and study of their coordination to Pd(II) metal centers. Inorg. Chim. Acta 2019, 498, 119129. [Google Scholar] [CrossRef]
- Ferraro, V.; Sole, R.; Bortoluzzi, M.; Beghetto, V. Tris-isocyanide copper(I) complex enabling copper azide-alkyne cycloaddition in neat conditions. Appl. Organomet. Chem. 2021, 35, e6401. [Google Scholar] [CrossRef]
- Zanti, G.; Peeters, D. DFT Study of Small Palladium Clusters Pdn and Their Interaction with a CO Ligand (n = 1–9). Eur. J. Inorg. Chem. 2009, 2009, 3904–3911. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.; Lei, A. Oxidative Carbonylation Reactions: Organometallic Compounds (R-M) or Hydrocarbons (R-H) as Nucleophiles. Angew. Chem. Int. Ed. 2011, 50, 10788–10799. [Google Scholar] [CrossRef]
- Kalck, P.; Le Berre, C.; Serp, P. Recent advances in the methanol carbonylation reaction into acetic acid. Coord. Chem. Rev. 2020, 402, 213078. [Google Scholar] [CrossRef]
- Murahashi, S.; Imada, Y.; Taniguchi, Y.; Higashiura, S. Palladium(0)-Catalyzed Alkoxycarbonylation of Allyl Phosphates and Acetates. J. Org. Chem. 1993, 58, 1538–1545. [Google Scholar] [CrossRef]
- Sole, R.; Scrivanti, A.; Bertoldini, M.; Beghetto, V.; Alam, M. The alkoxycarbonylation of protected propargyl alcohols. Mol. Catal. 2020, 496, 111179. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Wu, X.F. A sustainable procedure toward alkyl arylacetates: Palladium-catalysed direct carbonylation of benzyl alcohols in organic carbonates. Green Chem. 2018, 20, 969–972. [Google Scholar] [CrossRef]
- Bellardita, M.; Loddo, V.; Palmisano, G.; Pibiric, I.; Palmisano, L.; Augugliaro, V. Photocatalytic green synthesis of piperonal in aqueous TiO2 suspension. Appl. Catal. B Environ. 2014, 144, 607–613. [Google Scholar] [CrossRef]
- Birkholz, M.N.; Freixa, Z.; Van Leeuwen, P.W.N.M. Bite angle effects of diphosphines in C–C and C–X bond forming cross coupling reactions. Chem. Soc. Rev. 2009, 38, 1099–1118. [Google Scholar] [CrossRef]
- Amadio, E.; Freixa, Z.; Van Leeuwen, P.W.N.M.; Toniolo, L. Palladium catalyzed oxidative carbonylation of alcohols: Effects of diphosphine ligands. Catal. Sci. Technol. 2015, 5, 2856–2864. [Google Scholar] [CrossRef]
- Freixa, Z.; Van Leeuwen, P.W.N.M. Bite angle effects in diphosphine metal catalysts: Steric or electronic. Dalton Trans. 2003, 10, 1890–1901. [Google Scholar]
- Marcone, J.E.; Moloy, K.J. Kinetic Study of Reductive Elimination from the Complexes (Diphosphine)Pd(R)(CN). J. Am. Chem. Soc. 1998, 120, 8527–8528. [Google Scholar] [CrossRef]
- Zuideveld, M.; Swennenhuis, B.H.G.; Boele, M.D.K.; Guari, Y.; Van Strijdonck, G.P.F.; Reek, J.N.H.; Kamer, P.C.J.; Goubitz, K.; Fraanje, J.; Lutz, M.; et al. The coordination behaviour of large natural bite angle diphosphine ligands towards methyl and 4-cyanophenylpalladium(ii) complexes. J. Chem. Soc. Dalton Trans. 2002, 2308–2317. [Google Scholar] [CrossRef]
- Armarego, W.L.F. (Ed.) Purification of Laboratory Chemicals, 8th ed.; Elsevier Science Publishers, B.V.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Sheet, D.; Bhattachary, S.; Paine, T.K. Dioxygen activation and two consecutive oxidative decarboxylations of phenylpyruvate by nonheme iron(ii) complexes: Functional models of hydroxymandelate synthase (HMS) and CloR. Chem. Commun. 2015, 36, 1–4. [Google Scholar] [CrossRef]
- Kumar, S.; Chaudhary, A.; Bandna; Bhattacherje, D.; Thakur, V.; Das, P. Supported palladium nanoparticles as switchable catalyst for aldehyde conjugate/s and acetate ester syntheses from alcohols. New J. Chem. 2017, 41, 3242–3245. [Google Scholar] [CrossRef]
- Tsuji, H.; Hashimoto, K.; Kawatsura, M. Nickel-Catalyzed Benzylic Substitution of Benzyl Esters with Malonates as a Soft Carbon Nucleophile. Org. Lett. 2019, 21, 8837–8841. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Itoh, S.; Kobayashi, M.; Obora, Y. Iridium-Catalyzed α-Methylation of α-Aryl Esters Using Methanol as the C1 Source. Org. Lett. 2019, 21, 3299–3303. [Google Scholar] [CrossRef]
- Zeng, T.; Song, G.; Li, C.J. Separation, recovery and reuse of N-heterocyclic carbene catalysts in transesterification reactions. Chem. Commun. 2009, 6249–6251. [Google Scholar] [CrossRef]
- Zeng, R.; Sheng, H.; Zhang, Y.; Feng, Y.; Chen, Z.; Wang, J.; Chen, M.; Zhu, M.; Guo, Q. Heterobimetallic Dinuclear Lanthanide Alkoxide Complexes as Acid–Base Difunctional Catalysts for Transesterification. J. Org. Chem. 2014, 79, 9246–9252. [Google Scholar] [CrossRef]
- Gu, Q.; Fang, J.; Xu, Z.; Ni, W.; Kong, K.; Hou, Z. CO2 promoted synthesis of unsymmetrical organic carbonate using switchable agents based on DBU and alcohols. New J. Chem. 2018, 42, 13054–13064. [Google Scholar] [CrossRef]
Entry a | Ctz. | PCO (Bar) | Conv. (%) b | Yield b |
---|---|---|---|---|
1 | Pd(OAc)2 | 50 | 36 | 15 |
2 | Pd(OAc)2 | 20 | 56 | 39 |
3 | Pd(OAc)2 | 10 | 80 | 54 |
4 | Pd(OAc)2 | 5 | 66 | 49 |
5 | Pd(CF3COO)2 | 5 | 62 | 24 |
6 | Pd(DPPF)Cl2 acetone c | 5 | 61 | 24 |
7 d | Pd(OAc)2 | 5 | 99 | 98 |
Entry a | A b | Ctz. c | P(CO) (bar) | T (°C) | t (h) | Conv. (%) d | Yield (%) d |
---|---|---|---|---|---|---|---|
(VI) | |||||||
1 | DMC | 5 | 10 | 130 | 18 | 75 | 68 |
2 | DMC | 5 | 5 | 130 | 18 | 99 | 95 |
3 | DMC | 5 | 5 | 100 | 18 | 95 | 92 |
4 | DMC | 1 | 2 | 130 | 18 | 99 | 96 |
5 | DMC | 0.1 | 2 | 130 | 18 | 99 | 94 |
6 | DMC | 0.01 | 2 | 130 | 18 | 90 | 90 |
7 | IPAc | 5 | 10 | 130 | 18 | 72 | 61 |
8 | IPAc | 5 | 5 | 130 | 18 | 99 | 88 |
9 | IPAc | 5 | 5 | 130 | 24 | 99 | 87 |
10 | IPAc | 5 | 2 | 130 | 18 | 60 | 36 |
11 | IPAc | 5 | 5 | 130 | 4 | 56 | 15 |
12 | IPAc | 5 | 5 | 100 | 18 | 28 | 6 |
13 | IPAc | 5 | 5 | 80 | 18 | 19 | 2 |
14 | IPAc | 2.5 | 5 | 130 | 18 | 85 | 70 |
15 e | IPAc | 5 | 5 | 130 | 18 | 91 | 65 |
16 f | IPAc | 5 | 5 | 130 | 18 | 97 | 40 |
17 g | IPAc | 5 | 5 | 130 | 18 | 20 | 16 |
Entry a | A b | Ligand | T (°C) | t (h) | Conv (%) c | Yield (X) (%) c |
---|---|---|---|---|---|---|
1 | DMC | DPPF | 130 | 18 | 95 | 75 |
2 | IPAc | DPPF | 130 | 18 | 81 | 77 |
3 | DMC | DPPE | 130 | 18 | 62 | 10 |
4 | IPAc | DPPE | 130 | 18 | 80 | 18 |
5 | DMC | DPPP | 130 | 18 | 99 | 95 |
6 | IPAc | DPPP | 130 | 18 | 92 | 90 |
7 | DMC | DPPP | 130 | 1 | 94 | 85 |
8 d | DMC | DPPP | 130 | 18 | 99 | 98 |
9 | IPAc | DPPP | 100 | 18 | 99 | 70 |
10 | DMC | DPPP | 100 | 4 | 95 | 93 |
11 d | DMC | DPPP | 80 | 18 | 99 | 95 |
12 | DMC | DPPP | 80 | 18 | 95 | 84 |
13 | IPAc | DPPP | 80 | 18 | 92 | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sole, R.; Cappellazzo, J.; Scalchi, L.; Paganelli, S.; Beghetto, V. Synthesis of 2-Alkylaryl and Furanyl Acetates by Palladium Catalysed Carbonylation of Alcohols. Catalysts 2022, 12, 883. https://doi.org/10.3390/catal12080883
Sole R, Cappellazzo J, Scalchi L, Paganelli S, Beghetto V. Synthesis of 2-Alkylaryl and Furanyl Acetates by Palladium Catalysed Carbonylation of Alcohols. Catalysts. 2022; 12(8):883. https://doi.org/10.3390/catal12080883
Chicago/Turabian StyleSole, Roberto, Jacopo Cappellazzo, Leonardo Scalchi, Stefano Paganelli, and Valentina Beghetto. 2022. "Synthesis of 2-Alkylaryl and Furanyl Acetates by Palladium Catalysed Carbonylation of Alcohols" Catalysts 12, no. 8: 883. https://doi.org/10.3390/catal12080883
APA StyleSole, R., Cappellazzo, J., Scalchi, L., Paganelli, S., & Beghetto, V. (2022). Synthesis of 2-Alkylaryl and Furanyl Acetates by Palladium Catalysed Carbonylation of Alcohols. Catalysts, 12(8), 883. https://doi.org/10.3390/catal12080883