Electrochemical Characteristics of Nanosized Cu, Ni, and Zn Cobaltite Spinel Materials
Abstract
:1. Introduction
2. Results and Discussion
3. Catalytic Activity
4. Material and Methods
4.1. Materials
4.2. Synthesis of Different Spinel Catalysts
4.3. Characterization of Catalysts
4.4. Electrochemical Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, S.; Lu, X.; Ma, S.; Masel, R.I.; Kenis, P.J.A. The Effect of Electrolyte Composition on the Electroreduction of CO2 to CO on Ag Based Gas Diffusion Electrodes. Phys. Chem. Chem. Phys. 2016, 18, 7075–7084. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Hillman, F.; Ariyoshi, M.; Fujikawa, S.; Kenis, P.J.A. Effects of Composition of the Micro Porous Layer and the Substrate on Performance in the Electrochemical Reduction of CO2 to CO. J. Power Sources 2016, 312, 192–198. [Google Scholar] [CrossRef]
- Xiong, P.; Yang, F.; Ding, Z.; Jia, Y.; Liu, J.; Yan, X.; Chen, X.; Yang, C. Preparation and Electrocatalytic Properties of Spinel CoxFe3-XO4 Nanoparticles. Int. J. Hydrogen Energy 2020, 45, 13841–13847. [Google Scholar] [CrossRef]
- Khdary, N.H.; Alayyar, A.S.; Alsarhan, L.M.; Alshihri, S.; Mokhtar, M. Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion, Review. Catalysts 2022, 12, 300. [Google Scholar] [CrossRef]
- Glazer, A.M. Crystallography: A Very Short Introduction; Oxford University Press: Oxford, UK, 2016; ISBN 9780198717591. [Google Scholar]
- Singh, S.K.; Dhavale, V.M.; Kurungot, S. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application. ACS Appl. Mater. Interfaces 2015, 7, 21138–21149. [Google Scholar] [CrossRef] [PubMed]
- Ramsundar, R.M.; Debgupta, J.; Pillai, V.K.; Joy, P.A. Co3O4 Nanorods—Efficient Non-Noble Metal Electrocatalyst for Oxygen Evolution at Neutral PH. Electrocatalysis 2015, 6, 331–340. [Google Scholar] [CrossRef]
- Jin, H.; Wang, J.; Su, D.; Wei, Z.; Pang, Z.; Wang, Y. In-Situ Cobalt-Cobalt Oxide/N-Doped Carbon Hybrids as Superior Bi-Functional Electrocatalysts for Hydrogen and Oxygen Evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694. [Google Scholar] [CrossRef] [PubMed]
- Hamdani, M.; Singh, R.N.; Chartier, P. Co3O4 and Co-Based Spinel Oxides Bifunctional Oxygen Electrodes. Int. J. Electrochem. Sci. 2010, 5, 556–577. [Google Scholar]
- Wang, J.; Wang, Q.; She, W.; Xie, C.; Zhang, X.; Sun, M.; Xiao, J.; Wang, S. Tuning the Electron Density Distribution of the Co-N-C Catalysts through Guest Molecules and Heteroatom Doping to Boost Oxygen Reduction Activity. J. Power Sources 2019, 418, 50–60. [Google Scholar] [CrossRef]
- Raveau, B.; Seikh, M.M. Magnetic and Physical Properties of Cobalt Perovskites. In Handbook of Magnetic Materials; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 23, pp. 161–289. [Google Scholar]
- Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Partially Oxidized Atomic Cobalt Layers for Carbon Dioxide Electroreduction to Liquid Fuel. Nature 2016, 529, 68–71. [Google Scholar] [CrossRef]
- Harris, V.G. Microwave magnetic materials. In Handbook of Magnetic Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1–63. [Google Scholar]
- Basahel, S.N.; Abd El-Maksod, I.H.; Abu-Zied, B.M.; Mokhtar, M. Effect of Zr4+ doping on the stabilization of ZnCo-mixed oxide spinel system and its catalytic activity towards N2O decomposition. J. Alloys Compd. 2010, 493, 630–635. [Google Scholar] [CrossRef]
- Bruce, P.G. Solid State Electrochemistry; Cambridge University Press: Cambridge, UK, 1995; ISBN 0521400074. [Google Scholar]
- Singh, R.-N.; Hamdani, M.; Koenig, J.-F.; Poillerat, G.; Gautier, J.L.; Chartier, P. Thin Films of CO3O4 and NiCo2O4 Obtained by the Method of Chemical Spray Pyrolysis for Electrocatalysis III. The Electrocatalysis of Oxygen Evolution. J. Appl. Electrochem. 1990, 20, 442–446. [Google Scholar] [CrossRef]
- Singh, R.N.; Koenig, J.-F.; Poillerat, G.; Chartier, P. Electrochemical Studies on Protective Thin CO3O4 and NiCo2O4 Films Prepared on Titanium by Spray Pyrolysis for Oxygen Evolution. J. Electrochem. Soc. 1990, 137, 1408–1413. [Google Scholar] [CrossRef]
- Rashkova, V.; Kitova, S.; Konstantinov, I.; Vitanov, T. Vacuum Evaporated Thin Films of Mixed Cobalt and Nickel Oxides as Electrocatalyst for Oxygen Evolution and Reduction. Electrochim. Acta 2002, 47, 1555–1560. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Zhang, Y.; Wang, Z. Facile Synthesis of a ZnCo2O4 Electrocatalyst with Three-Dimensional Architecture for Methanol Oxidation. J. Alloys Compd. 2019, 810, 151879. [Google Scholar] [CrossRef]
- Anu Prathap, M.U.; Srivastava, R. Synthesis of NiCo2O4 and Its Application in the Electrocatalytic Oxidation of Methanol. Nano Energy 2013, 2, 1046–1053. [Google Scholar] [CrossRef]
- Silambarasan, M.; Padmanathan, N.; Ramesh, P.S.; Geetha, D. Spinel CuCo2O4 Nanoparticles: Facile One-Step Synthesis, Optical, and Electrochemical Properties. Mater. Res. Express 2016, 3, 095021. [Google Scholar] [CrossRef]
- Hao, S.; Zhang, B.; Ball, S.; Copley, M.; Xu, Z.; Srinivasan, M.; Zhou, K.; Mhaisalkar, S.; Huang, Y. Synthesis of Multimodal Porous ZnCo2O4 and Its Electrochemical Properties as an Anode Material for Lithium Ion Batteries. J. Power Sources 2015, 294, 112–119. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Zhou, C.; Liu, J.; Zeng, H. Integrating Large Specific Surface Area and High Conductivity in Hydrogenated NiCo2O4 Double-Shell Hollow Spheres to Improve Supercapacitors. NPG Asia Mater. 2015, 7, e165. [Google Scholar] [CrossRef]
- Lu, L.; Min, F.; Luo, Z.; Wang, S.; Teng, F.; Li, G.; Feng, C. Synthesis and Electrochemical Properties of CuCo2O4 as Anode Material for Lithium-Ion Battery. J. Nanosci. Nanotechnol. 2017, 17, 4763–4771. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, G.; Zhang, M.; Wang, Z.; Zhao, R.; Wang, Y. Electrochemical Performance of Mesoporous ZnCo2O4 Nanosheets as an Electrode Material for Supercapacitor. Ionics 2018, 24, 2435–2443. [Google Scholar] [CrossRef]
- Wu, H.; Qin, M.; Zhang, L. NiCo2O4 Constructed by Different Dimensions of Building Blocks with Superior Electromagnetic Wave Absorption Performance. Compos. Part B Eng. 2020, 182, 107620. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Lee, S.H.; Ryu, K.S. Hierarchical CuCo2O4 Nanobelts as a Supercapacitor Electrode with High Areal and Specific Capacitance. Electrochim. Acta 2015, 182, 979–986. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, Q. Mesoporous MCo2O4 (M = Cu, Mn and Ni) Spinels: Structural Replication, Characterization and Catalytic Application in CO Oxidation. Microporous Mesoporous Mater. 2009, 124, 144–152. [Google Scholar] [CrossRef]
- Sekar, P.; Calvillo, L.; Tubaro, C.; Baron, M.; Pokle, A.; Carraro, F.; Martucci, A.; Agnoli, S. Cobalt Spinel Nanocubes on N-Doped Graphene: A Synergistic Hybrid Electrocatalyst for the Highly Selective Reduction of Carbon Dioxide to Formic Acid. ACS Catal. 2017, 7, 7695–7703. [Google Scholar] [CrossRef]
- Parveen, S.; Nguyen, H.H.; Premkumar, T.; Puschmann, H.; Govindarajan, S. Nano Spinel Cobaltites and Their Catalytic and Electrochemical Properties: Facile Synthesis of Metal (Co, Ni, and Zn) and Mixed Metal (Co–Ni and Co–Zn) Complexes of Schiff Bases Prepared from α-Ketoglutaric Acid and Ethyl Carbazate. New J. Chem. 2020, 44, 12729–12740. [Google Scholar] [CrossRef]
- Lu, X.F.; Wu, D.J.; Li, R.Z.; Li, Q.; Ye, S.H.; Tong, Y.X.; Li, G.R. Hierarchical NiCo2O4 Nanosheets@hollow Microrod Arrays for High-Performance Asymmetric Supercapacitors. J. Mater. Chem. A 2014, 2, 4706–4713. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D.; Chastain, J. Handbook of X-ray Photoelectron Spectroscopy AReference Book of Standard Spectra for Identification and Interpretation of XPS Data; Perkin-Elmer: Waltham, MA, USA, 1979. [Google Scholar]
- Hu, L.; Qu, B.; Li, C.; Chen, Y.; Mei, L.; Lei, D.; Chen, L.; Li, Q.; Wang, T. Facile Synthesis of Uniform Mesoporous ZnCo2O4 Microspheres as a High-Performance Anode Material for Li-Ion Batteries. J. Mater. Chem. A 2013, 1, 5596–5602. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Wang, X.Z.; Chen, Y.Q.; Dai, L.Y. NiCo2O4 Nanoparticles: An Efficient and Magnetic Catalyst for Knoevenagel Condensation. J. Zhejiang Univ. Sci. A 2020, 21, 74–84. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, M.; Lee, L.Y.S. Best Practices in Using Foam-Type Electrodes for Electrocatalytic Performance Benchmark. ACS Energy Lett. 2020, 5, 3260–3264. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, L.W.; Shi, B.Y.; Ryan, K.M.; Wang, J.J. Highly Efficient Oxygen Evolution Reaction Enabled by Phosphorus Doping of the Fe Electronic Structure in Iron–Nickel Selenide Nanosheets. Adv. Sci. 2021, 8, 2101775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; He, A.; Dong, W.; Du, J.; Liu, Z.; Tao, C. Co, N Co-Doped Porous Carbon Supported Spinel Co3O4 for Highly Selective Electroreduction of CO2 to Formate. Vacuum 2022, 197, 110803. [Google Scholar] [CrossRef]
- Gao, S.; Jiao, X.; Sun, Z.; Zhang, W.; Sun, Y.; Wang, C.; Hu, Q.; Zu, X.; Yang, F.; Yang, S.; et al. Ultrathin Co3O4 Layers Realizing Optimized CO2 Electroreduction to Formate. Angew. Chem. 2016, 128, 708–712. [Google Scholar] [CrossRef]
- Yang, Y.; He, A.; Yang, M.; Zou, Q.; Li, H.; Liu, Z.; Du, J. Selective electroreduction of CO2 to ethanol over a highly stable catalyst derived from polyaniline/CuBi2O4. Catal. Sci. Technol. 2021, 11, 5908–5916. [Google Scholar] [CrossRef]
- Karim, K.M.R.; Tarek, M.; Sarkar, S.M.; Mouras, R.; Ong, H.R.; Abdullah, H.; Cheng, C.K.; Khan, M.M.R. Photoelectrocatalytic Reduction of CO2 to Methanol over CuFe2O4@PANI Photocathode. Int. J. Hydrogen Energy 2021, 46, 24709–24720. [Google Scholar] [CrossRef]
- Tarek, M.; Rezaul Karim, K.M.; Sarkar, S.M.; Deb, A.; Ong, H.R.; Abdullah, H.; Cheng, C.K.; Rahman Khan, M.M. Hetero-Structure CdS–CuFe2O4 as an Efficient Visible Light Active Photocatalyst for Photoelectrochemical Reduction of CO2 to Methanol. Int. J. Hydrogen Energy 2019, 44, 26271–26284. [Google Scholar] [CrossRef]
- Simon, C.; Zander, J.; Kottakkat, T.; Weiss, M.; Timm, J.; Roth, C.; Marschall, R. Fast Microwave Synthesis of Phase-Pure Ni2FeS4 Thiospinel Nanosheets for Application in Electrochemical CO2 Reduction. ACS Appl. Energy Mater. 2021, 4, 8702–8708. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | Smicro (m2/g) | Smeso (m2/g) | Vtotal (cc/g) | Vmicro (cc/g) | Vmeso (cc/g) | Average Pore Size (nm) | Pore Radius (nm) | C-Constant | HF |
---|---|---|---|---|---|---|---|---|---|---|
NiCo2O4 | 41 | 0 | 35 | 0.2726 | 0.000 | 0.26 | 13 | 8.7 | 45.7 | 0.000 |
CuCo2O4 | 28 | 11 | 12 | 0.0352 | 0.007 | 0.023 | 3 | 1.7 | 121.6 | 0.088 |
ZnCo2O4 | 32 | 12 | 16 | 0.0407 | 0.007 | 0.027 | 3 | 1.7 | 100.5 | 0.086 |
Catalyst | Temp. (°C) | CO2 Uptake (μmol/g) | Total CO2 Uptake (μmol/g) |
---|---|---|---|
NiCo2O4 | 585.5 | 646.6 | 1089.1 |
652 | 442.5 | ||
CuCo2O4 | 686.2 | 626.2 | 626.4 |
ZnCo2O4 | 620.8 | 152 | 697.7 |
720 | 545.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, M.M.M.; Bajafar, W.; Gu, L.; Narasimharao, K.; Abdel Salam, M.; Alshehri, A.; Khdary, N.H.; Al-Faifi, S.; Chowdhury, A.D. Electrochemical Characteristics of Nanosized Cu, Ni, and Zn Cobaltite Spinel Materials. Catalysts 2022, 12, 893. https://doi.org/10.3390/catal12080893
Mostafa MMM, Bajafar W, Gu L, Narasimharao K, Abdel Salam M, Alshehri A, Khdary NH, Al-Faifi S, Chowdhury AD. Electrochemical Characteristics of Nanosized Cu, Ni, and Zn Cobaltite Spinel Materials. Catalysts. 2022; 12(8):893. https://doi.org/10.3390/catal12080893
Chicago/Turabian StyleMostafa, Mohamed Mokhtar M., Wejdan Bajafar, Lin Gu, Katabathini Narasimharao, Mohamed Abdel Salam, Abdulmohsen Alshehri, Nezar H. Khdary, Sulaiman Al-Faifi, and Abhishek Dutta Chowdhury. 2022. "Electrochemical Characteristics of Nanosized Cu, Ni, and Zn Cobaltite Spinel Materials" Catalysts 12, no. 8: 893. https://doi.org/10.3390/catal12080893
APA StyleMostafa, M. M. M., Bajafar, W., Gu, L., Narasimharao, K., Abdel Salam, M., Alshehri, A., Khdary, N. H., Al-Faifi, S., & Chowdhury, A. D. (2022). Electrochemical Characteristics of Nanosized Cu, Ni, and Zn Cobaltite Spinel Materials. Catalysts, 12(8), 893. https://doi.org/10.3390/catal12080893