Iron Carbide Nanoparticles Embedded in Edge-Rich, N and F Codoped Graphene/Carbon Nanotubes Hybrid for Oxygen Electrocatalysis
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Catalysts
3.3. Physical Characterization
3.4. Electrochemical Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Ran, R.; Zhong, Y.; Zhou, W.; Ni, M.; Shao, Z. Advances in Porous Perovskites: Synthesis and Electrocatalytic Performance in Fuel Cells and Metal–Air Batteries. Energy Environ. Mater. 2020, 3, 121–145. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, F.; Zeng, J.; Wang, Q.; Naren, T.; Li, Y.; Cheng, Y.; Lei, Y.; Wu, F. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS Nano 2021, 15, 210–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X.; Yang, Z.; Yan, S.; Zhang, C.; Liu, S. Space-Confined Synthesis of Lasagna-like N-Doped Graphene-Wrapped Copper–Cobalt Sulfides as Efficient and Durable Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. ACS Sustain. Chem. Eng. 2020, 8, 1004–1014. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef] [PubMed]
- Qu, K.; Zheng, Y.; Dai, S.; Qiao, S.Z. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 2016, 19, 373–381. [Google Scholar] [CrossRef]
- Chen, Z.; Higgins, D.; Yu, A.; Zhang, L.; Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167. [Google Scholar] [CrossRef]
- Qiao, X.; Peng, H.; You, C.; Liu, F.; Zheng, R.; Xu, D.; Li, X.; Liao, S. Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction. J. Power Source 2015, 288, 253–260. [Google Scholar] [CrossRef]
- Kim, J.; Zhou, R.; Murakoshi, K.; Yasuda, S. Advantage of semi-ionic bonding in fluorine-doped carbon materials for the oxygen evolution reaction in alkaline media. Rsc. Adv. 2018, 8, 14152–14156. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Wu, M.; Wei, Z.; Cui, C.; Mao, M.; Zhang, J.; Han, X.; Liu, Q.; Ma, J. Nitrogen, Fluorine, and Boron Ternary Doped Carbon Fibers as Cathode Electrocatalysts for Zinc-Air Batteries. Small 2018, 14, e1800737. [Google Scholar] [CrossRef]
- Li, Z.; Gao, Q.; Liang, X.; Zhang, H.; Xiao, H.; Xu, P.; Liu, Z. Low content of Fe3C anchored on Fe,N,S-codoped graphene-like carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2019, 150, 93–100. [Google Scholar] [CrossRef]
- Murugesan, B.; Pandiyan, N.; Arumugam, M.; Veerasingam, M.; Sonamuthu, J.; Jeyaraman, A.R.; Samayanan, S.; Mahalingam, S. Two dimensional graphene oxides converted to three dimensional P, N, F and B, N, F tri-doped graphene by ionic liquid for efficient catalytic performance. Carbon 2019, 151, 53–67. [Google Scholar] [CrossRef]
- Zhong, J.W.; Wu, T.; Wu, Q.; Du, S.; Chen, D.C.; Chen, B.; Chang, M.L.; Luo, X.H.; Liu, Y.L. N- and S- co-doped graphene sheet-encapsulated Co9S8 nanomaterials as excellent electrocatalysts for the oxygen evolution reaction. J. Power Source 2019, 417, 90–98. [Google Scholar] [CrossRef]
- Zheng, X.J.; Wu, J.; Cao, X.C.; Abbott, J.; Jin, C.; Wang, H.B.; Strasser, P.; Yang, R.Z.; Chen, X.; Wu, G. N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B-Environ. 2019, 241, 442–451. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Wang, G.; Cai, F.; Ye, Y.; Jiang, Q.; Sun, S.; Miao, S.; Bao, X. High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer. Nano Energy 2016, 30, 801–809. [Google Scholar] [CrossRef]
- Qiao, X.; Liao, S.; Wang, G.; Zheng, R.; Song, H.; Li, X. Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: A highly active metal-free electrocatalyst for oxygen reduction. Carbon 2016, 99, 272–279. [Google Scholar] [CrossRef]
- Zhang, H.J.; Yao, S.W.; Geng, J.; Ma, Z.F.; Yang, J.H. Oxygen reduction reaction with efficient, metal-free nitrogen, fluoride-codoped carbon electrocatalysts derived from melamine hydrogen fluoride salt. J. Colloid Interface Sci. 2019, 535, 436–443. [Google Scholar] [CrossRef]
- Gong, T.L.; Qi, R.Y.; Liu, X.D.; Li, H.; Zhang, Y.M. N, F-Codoped Microporous Carbon Nanofibers as Efficient Metal-Free Electrocatalysts for ORR. Nano-Micro. Lett. 2019, 11, 9. [Google Scholar] [CrossRef]
- Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S. Earth-Abundant Nanomaterials for Oxygen Reduction. Angew. Chem. Int. Ed. 2016, 55, 2650–2676. [Google Scholar] [CrossRef]
- Li, Y.-F.; Liu, Z.-P. Structure and water oxidation activity of 3d metal oxides. WIREs Comput. Mol. Sci. 2016, 6, 47–64. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Kairi, M.I.; Khavarian, M.; Bakar, S.A.; Vigolo, B.; Mohamed, A.R. Recent trends in graphene materials synthesized by CVD with various carbon precursors. J. Mater. Sci. 2017, 53, 851–879. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.B.; Salarizadeh, P.; Di Bartolomeo, A.; Sen, F. Enhanced electrochemical performance of MnNi2O4/rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst. Nanotechnology 2021, 32, 325707. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Wang, Y.; Mao, L.; Yang, X.; Jin, J.; Yang, S.; Li, G. Strongly coupled Co, N co-doped carbon nanotubes/graphene-like carbon nanosheets as efficient oxygen reduction electrocatalysts for primary Zinc-air battery. Chem. Eng. J. 2018, 351, 94–102. [Google Scholar] [CrossRef]
- Dou, S.; Tao, L.; Huo, J.; Wang, S.; Dai, L. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326. [Google Scholar] [CrossRef]
- Tang, C.; Wang, H.F.; Chen, X.; Li, B.Q.; Hou, T.Z.; Zhang, B.; Zhang, Q.; Titirici, M.M.; Wei, F. Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis. Adv. Mater. 2016, 28, 6845–6851. [Google Scholar] [CrossRef]
- Tao, L.; Wang, Q.; Dou, S.; Ma, Z.L.; Huo, J.; Wang, S.Y.; Dai, L.M. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2016, 52, 2764–2767. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, Q. Nanocarbon for Oxygen Reduction Electrocatalysis: Dopants, Edges, and Defects. Adv. Mater. 2017, 29, 1604103. [Google Scholar] [CrossRef]
- Xu, B.; Hou, S.; Chu, M.; Cao, G.; Yang, Y. An activation-free method for preparing microporous carbon by the pyrolysis of poly(vinylidene fluoride). Carbon 2010, 48, 2812–2814. [Google Scholar] [CrossRef]
- Yang, W.; Liu, X.; Yue, X.; Jia, J.; Guo, S. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436–1439. [Google Scholar] [CrossRef]
- Yang, W.; Yue, X.; Liu, X.; Chen, L.; Jia, J.; Guo, S. Superior oxygen reduction electrocatalysis enabled by integrating hierarchical pores, Fe3C nanoparticles and bamboo-like carbon nanotubes. Nanoscale 2016, 8, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Wang, H.; Yu, H.; Peng, F. Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. J. Power Source 2015, 286, 495–503. [Google Scholar] [CrossRef]
- Palaniselvam, T.; Aiyappa, H.B.; Kurungot, S. An efficient oxygen reduction electrocatalyst from graphene by simultaneously generating pores and nitrogen doped active sites. J. Mater. Chem. 2012, 22, 23799–23805. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Z.; Kuang, Y.; Xu, C.; Yang, L.; Zhou, M.; He, B.; Jing, M.; Li, Z.; Li, F.; et al. Edge-Rich Quasi-Mesoporous Nitrogen-Doped Carbon Framework Derived from Palm Tree Bark Hair for Electrochemical Applications. ACS Appl. Mater. Interfaces 2018, 10, 27047–27055. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Huang, T.; Wen, Z.; Mao, S.; Cui, S.; Chen, J. Metal−Organic Framework-Derived Nitrogen-Doped Core-Shell-Structured Porous Fe/Fe3C@C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions. Adv. Energy Mater. 2014, 4, 1400337. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Wang, R.; Wang, S.; Lv, Y.R.; Xu, H.; Zang, S.Q. Metal-organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. J. Mater. Chem. A 2019, 7, 7389–7395. [Google Scholar] [CrossRef]
- Ranjbar Sahraie, N.; Paraknowitsch, J.P.; Göbel, C.; Thomas, A.; Strasser, P. Noble-Metal-Free Electrocatalysts with Enhanced ORR Performance by Task-Specific Functionalization of Carbon using Ionic Liquid Precursor Systems. J. Am. Chem. Soc. 2014, 136, 14486–14497. [Google Scholar] [CrossRef]
- Tian, G.L.; Zhang, Q.; Zhang, B.S.; Jin, Y.G.; Huang, J.Q.; Su, D.S.; Wei, F. Toward Full Exposure of "Active Sites": Nanocarbon Electrocatalyst with Surface Enriched Nitrogen for Superior Oxygen Reduction and Evolution Reactivity. Adv. Funct. Mater. 2014, 24, 5956–5961. [Google Scholar] [CrossRef]
- Ban, J.J.; Xu, G.C.; Zhang, L.; Xu, G.; Yang, L.J.; Sun, Z.P.; Jia, D.Z. Efficient Co-N/PC@CNT bifunctional electrocatalytic materials for oxygen reduction and oxygen evolution reactions based on metal-organic frameworks. Nanoscale 2018, 10, 9077–9086. [Google Scholar] [CrossRef]
- Qiao, X.; Jin, J.; Luo, J.; Fan, H.; Cui, L.; Wang, W.; Liu, D.; Liao, S. In-situ formation of N doped hollow graphene Nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. J. Alloys Compd. 2020, 828, 154238. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, C.; Xi, J.; Xu, Y.; Xiao, F.; Wang, S.; Yang, S. Core–shell Co@ Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction. Nanoscale 2015, 7, 7056–7064. [Google Scholar] [PubMed]
- Li, Y.H.; Zang, K.T.; Duan, X.Z.; Luo, J.; Chen, D. Boost oxygen reduction reaction performance by tuning the active sites in Fe-N-P-C catalysts. J. Energy Chem. 2021, 55, 572–579. [Google Scholar] [CrossRef]
- Li, T.F.; Li, M.; Zhang, M.R.; Li, X.; Liu, K.H.; Zhang, M.Y.; Liu, X.; Sun, D.M.; Xu, L.; Zhang, Y.W.; et al. Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries. Carbon 2019, 153, 364–371. [Google Scholar] [CrossRef]
- Chen, D.; Li, G.F.; Chen, X.; Li, C.J.; Zhang, Y.C.; Hu, J.; Yu, J.H.; Yu, L.Y.; Dong, L.F. CoFeNi/N-codoped carbon nanotubes with small diameters derived from spherical Prussian blue analog as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. J. Alloys Compd. 2022, 910, 164964. [Google Scholar] [CrossRef]
- Deng, Y.J.; Tian, X.L.; Chi, B.; Wang, Q.Y.; Ni, W.P.; Gao, Y.; Liu, Z.E.; Luo, J.M.; Lin, C.X.; Ling, L.M.; et al. Hierarchically open-porous carbon networks enriched with exclusive Fe-N-x active sites as efficient oxygen reduction catalysts towards acidic H-2-O-2 PEM fuel cell and alkaline Zn-air battery. Chem. Eng. J. 2020, 390, 124479. [Google Scholar] [CrossRef]
- Wang, Q.; Ji, Y.; Lei, Y.; Wang, Y.; Wang, Y.; Li, Y.; Wang, S. Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn–Air Batteries. ACS Energy Lett. 2018, 3, 1183–1191. [Google Scholar] [CrossRef]
- Yang, T.F.; Chen, Y.; Liu, Y.; Liu, X.P.; Gao, S.Y. Self-sacrificial template synthesis of Fe, N co-doped porous carbon as efficient oxygen reduction electrocatalysts towards Zn-air battery application. Chin. Chem. Lett. 2022, 33, 2171–2177. [Google Scholar] [CrossRef]
- Prabu, M.; Ramakrishnan, P.; Shanmugam, S. CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc–air battery. Electrochem. Commun. 2014, 41, 59–63. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, X.; Deng, Y.; Cao, X.; Wu, J.; Guo, H.; Xiao, W.; Liao, S. Iron Carbide Nanoparticles Embedded in Edge-Rich, N and F Codoped Graphene/Carbon Nanotubes Hybrid for Oxygen Electrocatalysis. Catalysts 2022, 12, 1023. https://doi.org/10.3390/catal12091023
Qiao X, Deng Y, Cao X, Wu J, Guo H, Xiao W, Liao S. Iron Carbide Nanoparticles Embedded in Edge-Rich, N and F Codoped Graphene/Carbon Nanotubes Hybrid for Oxygen Electrocatalysis. Catalysts. 2022; 12(9):1023. https://doi.org/10.3390/catal12091023
Chicago/Turabian StyleQiao, Xiaochang, Yijie Deng, Xiaochang Cao, Jiafeng Wu, Hui Guo, Wenhuang Xiao, and Shijun Liao. 2022. "Iron Carbide Nanoparticles Embedded in Edge-Rich, N and F Codoped Graphene/Carbon Nanotubes Hybrid for Oxygen Electrocatalysis" Catalysts 12, no. 9: 1023. https://doi.org/10.3390/catal12091023
APA StyleQiao, X., Deng, Y., Cao, X., Wu, J., Guo, H., Xiao, W., & Liao, S. (2022). Iron Carbide Nanoparticles Embedded in Edge-Rich, N and F Codoped Graphene/Carbon Nanotubes Hybrid for Oxygen Electrocatalysis. Catalysts, 12(9), 1023. https://doi.org/10.3390/catal12091023