Synthesis and Investigation of Pure and Cu-Doped NiO Nanofilms for Future Applications in Wastewater Treatment Rejected by Textile Industry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Morphological Properties
2.1.1. XRD Characterization
2.1.2. Microstructural Study
2.1.3. AFM Characterization
2.2. Optical Properties
2.3. Photocatalytical Activity
- -
- During UV-light illumination, electrons are extracted from the valence band to the conduction band; electron–hole pairs are then created.
- -
- O-H radicals and peroxide groups (O2−) are produced by the presence of holes.
- -
- The peroxides interact with the protons and form HO2− and H2O2− species.
- During UV-irradiation, the species present in MB solution interact with and degrade it. Step 1 and 2 can be displayed by the following mechanisms:
3. Materials and Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kayan, Z.N.; Saleemi, F.; Batool, I. Synthesis and Characterization of ZnO Nanoparticles. Mater. Today Proc. 2015, 2, 5619–5621. [Google Scholar] [CrossRef]
- Viana, M.M.; Soares, V.F.; Mohallem, N.D.S. Synthesis and Characterization of TiO2 nanoparticles. Ceram. Int. 2010, 36, 2047–2053. [Google Scholar] [CrossRef]
- Kumar, B.; Smita, K.; Debut, A.; Cumbal, L. Synthesis and characterization of SnO2 nanoparticles using cochineal dye. Appl. Phys. A 2020, 126, 779. [Google Scholar] [CrossRef]
- Renuga, D.; Jeyasundari, J.; Shakthi, A.A.S.; Brightson, A.J. Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Mater. Res. Express 2020, 7, 4. [Google Scholar] [CrossRef]
- Bielz, T.; Lorenz, H.; Jochum, W.; Kaindl, R.; Klauser, F.; Kloetzer, B.; Penner, S. Hydrogen on In2O3: Reducibility, bonding, defect formation, and reactivity. J. Phys. Chem. C 2010, 114, 9022–9029. [Google Scholar] [CrossRef]
- Golovanov, V.; Maki-Jaskari, M.A.; Rantala, T.T.; Korotcenkov, G.; Brinzari, V.; Cornet, A.; Morante, J. Experimental and theoretical studies of the indium oxide-based gas sensors deposited by spray pyrolysis. Sens. Actuators B 2005, 106, 563–571. [Google Scholar]
- Fukano, T.; Motohiro, T. Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition. Sol. Energy Mater. Sol. Cells 2004, 82, 567–575. [Google Scholar] [CrossRef]
- Reyes-Herrera, J.; Acosta-Slane, D.; Castillo-Michel, H.; Pradas del Real, A.E.; Vogel-Mikus, K.; Benetti, F.; Roman, M.; Villanova, J.; Valles-Aragón, M.C. Detection and Characterization of TiO2 Nanomaterials in Sludge from Wastewater Treatment Plants of Chihuahua State, Mexico. Nanomaterials 2022, 12, 744. [Google Scholar] [CrossRef]
- Fereshteh, M.; Mozdianfard, M.R.; Soofivand, F.; Salavati-Niasari, M. NiO nanostructures: Synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. 2014, 4, 27654–27660. [Google Scholar]
- Herrmann, M.; Jansen, F.; van Santen, R.A. Catalytic Science Series; Imperial College Press: London, UK, 1999; pp. 171–180. [Google Scholar]
- El-Hakam, S.A.; ALShorifi, F.T.; Salama, R.S.; Gamal, S.; El-Yazeed, W.A.; Ibrahim, A.A.; Ahmed, A.I. Application of nanostructured mesoporous silica/ bismuth vanadate composite catalysts for the degradation of methylene blue and brilliant green. J. Mat. Res. Technol. 2022, 18, 1963–1976. [Google Scholar] [CrossRef]
- Sun, L.; Hu, D.; Zhang, Z.; Deng, X. Oxidative degradation of methylene blue via PDS-based advanced oxidation process usingnatural pyrite. Int. J. Environ. Res. Public Health 2019, 16, 4773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Zhan, C.; Wu, J.; Cui, Z.; Si, J.; Wang, Q.; Peng, X.; Turng, L.S. Highly Efficient Removal of Methylene Blue Dye from anAqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine. ACS Omega 2020, 5, 5389–5400. [Google Scholar] [CrossRef] [PubMed]
- Dharmraj Khairnar, S.; Shankar Shrivastava, V. Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: A comparative study. J. Taibah Univ. Sci. 2019, 13, 1108–1118. [Google Scholar] [CrossRef] [Green Version]
- Mannaa, M.A.; Qasim, K.F.; Alshorifi, F.T.; El-Bahy, S.M.; Salama, R.S. Role of NiO Nanoparticles in Enhancing Structure Properties of TiO2 and Its Applications in Photodegradation and Hydrogen Evolution. ACS Omega 2021, 6, 30386–30400. [Google Scholar] [CrossRef]
- Sabouri, Z.; Fereydouni, N.; Akbari, A.; Ali Hosseini, H.; Hashemzadeh, A.; Sadegh Amiri, M.; Kazemi Oskuee, R.; Darroudi, M. Plant-based synthesis of NiO nanoparticles using salvia macrosiphon Boiss extract and examination of their water treatment. Rare Met. 2020, 39, 1134–1144. [Google Scholar] [CrossRef]
- Manouchehri, I.; Mehrparvar, D.; Moradian, R.; Gholami, K.; Osati, T. Investigation of structural and optical properties of copper doped NiO thin films deposited by RF magnetron reactive sputtering. Optik 2016, 127, 8124–8129. [Google Scholar] [CrossRef]
- Gandhi, A.C.; Yun Wu, S. Strong Deep-Level-Emission Photoluminescence in NiO Nanoparticles. Nanomaterials 2017, 7, 231. [Google Scholar] [CrossRef]
- Shang, Z.W.; Hsu, H.H.; Zheng, Z.W.; Cheng, C.H. Progress and challenges in p-type oxide-based thin film transistors. Nanotechnol. Rev. 2019, 8, 422–443. [Google Scholar] [CrossRef]
- Hotovy, I.; Spiess, L.; Predanocy, M.; Rehacek, V.; Racko, J. Sputtered nanocrystalline NiO thin films for very low ethanol detection. Vacuum 2014, 107, 129–131. [Google Scholar] [CrossRef]
- Korosec, R.C.; Bukovec, P. Sol-gel preparation NiO thin films for electrochromic applications. Acta Chim. Slov. 2006, 53, 136–147. [Google Scholar]
- Garcia-Garcia, F.J.; Salazar, P.; Yubero, F.; González-Elipe, A.R. Non-enzymatic glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim. Acta 2016, 201, 38–44. [Google Scholar] [CrossRef]
- Mironova-Ulmane, N.; Kuzmin, A.; Sildos, I.; Puust, L.; Grabis, J. Magnon and Phonon Excitations in Nanosized NiO. Latv. J. Phys. Tech. Sci. 2019, 56, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.M.; Reddy, A.S.; Lee, K.S.; Reddy, P.S. Growth and characterization of NiO thin films prepared by dc reactive magnetron sputtering. Solid. Stat. Sci. 2011, 13, 314–320. [Google Scholar] [CrossRef]
- Bahramian, A.; Eyraud, M.; Vacandio, F.; Hornebecq, V.; Djenizian, T.; Knauth, P. Single-step electrodeposition of superhydrophobic black NiO thin films. J. Appl. Electrochem. 2018, 49, 621–629. [Google Scholar] [CrossRef]
- Khalaf, M.M.; Hany, M.; El-Lateef, A. Corrosion protection of mild steel by coating with TiO2 thin films co-doped with NiO and ZrO2 in acidic chloride environments. Mater. Chem. Phys. 2016, 177, 250–265. [Google Scholar] [CrossRef]
- Dahamni, M.A.; Ghamnia, M.; Naceri, S.E.; Fauquet, C.; Tonneau, D.; Pireaux, J.-J.; Bouadi, A. Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films. Coatings 2021, 11, 598. [Google Scholar] [CrossRef]
- Benameur, N.; Chakhoum, M.A.; Boukhachem, A.; Dahamni, M.A.; Ghamnia, M.; Hacini, N.; Pireaux, J.P.; Houssiau, L.; Ziouche, A. Investigation of some physical properties of pure and Co-doped MoO3 synthesized on glass substrates by the spray pyrolysis method. J. Electron Spectrosc. Relat. Phenom. 2019, 234, 79–97. [Google Scholar] [CrossRef]
- Ouhaibi, A.; Ghamnia, M.; Dahamni, M.A.; Heresanu, V.; Fauquet, C.; Tonneau, D. The effect of Strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method. J. Sci. Adv. Mater. Devices 2018, 36, 29–36. [Google Scholar] [CrossRef]
- Kooti, M.; Jorf, M. Synthesis and characterization of nanosized NiO2 and NiO using Triton X-100. Cent. Eur. J. Chem. 2009, 7, 155–158. [Google Scholar] [CrossRef]
- AL-Rashedi, K.; Farooqui, M.; Rabbani, G. Nickel Oxide Thin Film Synthesis by Sol-Gel Method on Glass Substrates. Int. J. Univers. Print 2018, 4, 508–516. [Google Scholar]
- Alver, U.; Yaykaşl, H.; Kerli, S.; Tanrıverdi, A. Synthesis and characterization of boron-doped NiO thin films produced by spray pyrolysis. Int. J Miner. Metall. Mater. 2013, 20, 1097–1101. [Google Scholar] [CrossRef]
- Chen, S.C.; Kuo, T.Y.; Lin, Y.C.; Lin, H.C. Preparation and properties of p-type transparent conductive Cu-doped NiO films. Thin Solid Films 2011, 519, 4944–4947. [Google Scholar] [CrossRef]
- Gowthami, V.; Meenakshi, M.; Anandhan, N.; Sanjeeviraja, C. Preparation of Cu-doped Nickel Oxide Thin Films and their Properties. AIP Conf. Proc. 2014, 1591, 884. [Google Scholar] [CrossRef]
- Cullity, B.; Stock, S. Principles of XRay Diffraction; Addison Wesley: Boston, MA, USA, 1978. [Google Scholar]
- Vijaya Kumar, P.; Jafar Ahamed, A.; Karthikeyan, M. Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models. SN Appl. Sci. 2019, 1, 1083. [Google Scholar] [CrossRef] [Green Version]
- Nid, A.; Zighed, L.; Aoun, Y.; Maaoui, B. Synthesis and Characterization of Al-doped NiO Nanostructured Thin Films Elaborated by Solar Spray Pyrolysis Technique, for Photovoltaic Cells. Preprints 2021, 2021110572. [Google Scholar] [CrossRef]
- Mezher, J.S.; Dawood, M.O.; Beddai, A.A.; Mejbel, M.K. NiO nanostructure by RF sputtering for gas sensing applications. Mater. Technol. 2020, 35, 60–68. [Google Scholar] [CrossRef]
- Borchert, H.; Shevchenko, E.V.; Robert, A.; Mekis, I.; Kornowski, A.; Grubel, G.; Weller, H. Determination of nanocrystalsizes: Comparison of TEM; SAXS and XRD studies of highly monodisperse CoPt3 particles. Langmur 2005, 21, 1931–1936. [Google Scholar] [CrossRef]
- Habtea, A.G.; Honea, F.G.; Dejene, F.B. The influence of malonic acid on the structural, morphological and optical properties of CdSe thin films prepared by chemical bath deposition method. Inorg. Chem. Commun. 2019, 103, 107–112. [Google Scholar] [CrossRef]
- Guo, F.; Yang, B.; Yuan, Y.; Xiao, Z.; Dong, Q.; Bi, Y.; Huang, J. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802. [Google Scholar] [CrossRef]
- Awais, M.; Rahman, M.; Don MacElroy, J.M.; Coburn, N.; Dini, D.; Vos, J.G.; Dowling, D.P. Deposition and characterization of NiO x coatings by magnetron sputtering for application in dye-sensitized solar cells. Surf. Coat Technol. 2010, 204, 2729–2736. [Google Scholar] [CrossRef]
- Reddy, R.S.; Sreedhar, A.; Reddy, A.S.; Uthanna, S. Effect of film thickness on the structural morphological and optical properties of nanocrystalline ZnO films formed by RF magnetron sputtering. Adv. Mater. Lett. 2012, 3, 239–245. [Google Scholar] [CrossRef]
- Ramesh, M. N and Fe doped NiO nanoparticles for enhanced photocatalytic degradation of azo dye methylene blue in the presence of visible light. SN Appl. Sci. 2021, 3, 817. [Google Scholar] [CrossRef]
- Al Boukhari, J.; Zeidan, L.; Khalaf, A.; Awad, R. Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chem. Phys. 2019, 516, 116–124. [Google Scholar] [CrossRef]
- Tauc, J. Amorphous and Liquid Semiconductors; Springer: Boston, MA, USA, 1974; p. 159. [Google Scholar]
- Rahal, H.T.; Awad, R.; Abdel-Gaber, A.M.; El-Said Bakeer, D. Synthesis, Characterization, and Magnetic Properties of Pure and EDTA-Capped NiO Nanosized Particles. J. Nanomater. 2017, 2017, 7460323. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, L.; Niu, Q. Electrical and optical properties of p-type Li, Cu-codoped NiO thin films. J. Electron. Mater. 2012, 41, 3382–3393. [Google Scholar] [CrossRef]
- Safwat Mahmoud, A.; Alshomer, S.; Tarawnh, A.M. Structural and Optical Dispersion Characterisation of Sprayed Nickel Oxide Thin Films. J. Mod. Phys. 2011, 2, 1178–1186. [Google Scholar] [CrossRef] [Green Version]
- Boulila, S.; Ghamnia, M.; Boukhachem, A.; Ouhaibi, A.; Chakhoum, M.A.; Fauquet, C.; Heresanu, V.; Tonneau, D. Photocatalytical properties of NiO nanofilms doped with Ba. Philos. Mag. Lett. 2020, 110, 283–293. [Google Scholar] [CrossRef]
- Chakhoum, M.A.; Bouchakhoum, A.; Ghamnia, M.; Benameur, N.; Mehdi, N.; Raouadi, K.; Amlouk, M. An attempt to study (111) oriented NiO-like TCO thin films in terms of structural, optical properties and photocatalytic activities under strontium doping. Spectrochim. Acta Part A 2018, 205, 649–660. [Google Scholar] [CrossRef]
- Zhao, B.; Ke, X.K.; Bao, J.H.; Wang, C.L.; Dong, L.; Chen, Y.W.; Chen, H.L. Synthesis of Flower-Like NiO and Effects of Morphology on Its Catalytic Properties. J. Phys. Chem. C 2009, 113, 14440–14447. [Google Scholar] [CrossRef]
- Karthikeyan, V.; Padmanaban, A.; Dhanasekaran, T.; Praveen Kumar, S.; Gnanamoorthy, G.; Narayanan, V. Synthesis and Characterization of ZnO/NiO and Its Photocatalytic Activity. Photobiology 2017, 9, 824–831. [Google Scholar]
- Benameur, N.; Boukhachem, A.; Ghamnia, M.; Chakhoum, M.A.; Dahamni, M.A.; Fauquet, C. Investigation of Some Physical Properties of Cobalt Doped MoO3 Nanofilms and Their Effects on the Degradation of the Methylene Blue Solution under UV Illumination. Int. J. Chem. Eng. Appl. 2019, 10, 33–39. [Google Scholar] [CrossRef]
- Aroussi, S.; Dahamni, M.A.; Ghamnia, M.; Tonneau, D.; Fauquet, C. Characterization of Some Physical and Photocatalytic Properties of CuO Nanofilms Synthesized by a Gentle Chemical Technique. Condens. Matter 2022, 7, 37. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Khan, I.; Saeeda, K.; Alib, N.; Khanc, I.; Zhangd, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
Samples | 2θ | a (Å) | a (Å) from in Literature |
---|---|---|---|
Pure NiO | 42.93 | 4.1092 | 4.1605–4.1787 [36] 4.16–4.19 [37] 4.204 [38] |
2% Cu-doped NiO | 43.08 | 4.1952 | |
4% Cu-doped NiO | 43.11 | 4.1968 | |
6% Cu-doped NiO | 43.00 | 4.2026 | |
8% Cu-doped NiO | 43.08 | 4.2066 | |
10% Cu-doped NiO | 43.13 | 4.2105 |
Samples | D (nm) | × 10–3 | × 10–3 |
---|---|---|---|
Pure NiO | 6.6125 | 15.3061 | 22.80 |
2% Cu-doped NiO | 6.4625 | 14.9092 | 14.90 |
4% Cu-doped NiO | 6.4274 | 16.6267 | 24.20 |
6% Cu-doped NiO | 5.9303 | 15.3658 | 28.43 |
8% Cu-doped NiO | 5.5810 | 18.6885 | 32.10 |
10% Cu-doped NiO | 5.2737 | 17.6454 | 35.95 |
Scheme | Ni (% at.) | O (% at.) | Atomic Ratio (Ni/O) | Cu (% at.) |
---|---|---|---|---|
Pure NiO | 44.7 | 48.6 | 0.91 | 0 |
2% Cu-doped NiO | 52.1 | 45.9 | 1.13 | 0.1 |
4% Cu-doped NiO | 52 | 46.3 | 1.12 | 0.4 |
6% Cu-doped NiO | 49.8 | 48 | 1.03 | 1.7 |
8% Cu-doped NiO | 47.3 | 45 | 1.05 | 2.9 |
10% Cu-doped NiO | 45.6 | 44.8 | 1.01 | 6.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allali, M.; Dahamni, M.A.; Ghamnia, M.; Boukhachem, A.; Boukrédimi, D.; Tonneau, D.; Fauquet, C. Synthesis and Investigation of Pure and Cu-Doped NiO Nanofilms for Future Applications in Wastewater Treatment Rejected by Textile Industry. Catalysts 2022, 12, 931. https://doi.org/10.3390/catal12090931
Allali M, Dahamni MA, Ghamnia M, Boukhachem A, Boukrédimi D, Tonneau D, Fauquet C. Synthesis and Investigation of Pure and Cu-Doped NiO Nanofilms for Future Applications in Wastewater Treatment Rejected by Textile Industry. Catalysts. 2022; 12(9):931. https://doi.org/10.3390/catal12090931
Chicago/Turabian StyleAllali, Malika, Mohamed Amine Dahamni, Mostefa Ghamnia, Abdelwahab Boukhachem, Djamel Boukrédimi, Didier Tonneau, and Carole Fauquet. 2022. "Synthesis and Investigation of Pure and Cu-Doped NiO Nanofilms for Future Applications in Wastewater Treatment Rejected by Textile Industry" Catalysts 12, no. 9: 931. https://doi.org/10.3390/catal12090931
APA StyleAllali, M., Dahamni, M. A., Ghamnia, M., Boukhachem, A., Boukrédimi, D., Tonneau, D., & Fauquet, C. (2022). Synthesis and Investigation of Pure and Cu-Doped NiO Nanofilms for Future Applications in Wastewater Treatment Rejected by Textile Industry. Catalysts, 12(9), 931. https://doi.org/10.3390/catal12090931