Alkaline Media Regulated NiFe-LDH-Based Nickel–Iron Phosphides toward Robust Overall Water Splitting
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Synthesis of the e-NFF Catalyst on NiFe Alloy Foam
3.3. Synthesis of the e-NF-LDH and a-NF-LDH Catalyst on NiFe Alloy Foam
3.4. Synthesis of the e-NFP and a-NFP Catalyst on NiFe Alloy Foam
3.5. Synthesis of Pt/C/NFF and RuO2/NFF
3.6. Material Characterization
3.7. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, X.X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [Green Version]
- Katsounaros, I.; Cherevko, S.; Zeradjanin, A.R.; Mayrhofer, K.J.J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 2014, 53, 102–121. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Dotan, H.; Landman, A.; Sheehan, S.W.; Malviya, K.D.; Shter, G.E.; Grave, D.A.; Arzi, Z.; Yehudai, N.; Halabi, M.; Gal, N.; et al. Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat. Energy 2019, 4, 786–795. [Google Scholar] [CrossRef]
- Xiong, B.Y.; Chen, L.S.; Shi, J.L. Anion-Containing Noble-Metal-Free Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catal. 2018, 8, 3688–3707. [Google Scholar] [CrossRef]
- Burke, M.S.; Enman, L.J.; Batchellor, A.S.; Zou, S.H.; Boettcher, S.W. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles. Chem. Mater. 2015, 27, 7549–7558. [Google Scholar] [CrossRef]
- Gao, T.T.; Zhou, C.X.; Chen, X.J.; Huang, Z.H.; Yuan, H.Y.; Xiao, D. Surface in situ self-reconstructing hierarchical structures derived from ferrous carbonate as efficient bifunctional iron-based catalysts for oxygen and hydrogen evolution reactions. J. Mater. Chem. A 2020, 8, 18367–18375. [Google Scholar] [CrossRef]
- Wang, K.X.; Wang, X.Y.; Li, Z.J.; Yang, B.; Ling, M.; Gao, X.; Lu, J.G.; Shi, Q.R.; Lei, L.C.; Wu, G.; et al. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides. Nano Energy 2020, 77, 105162. [Google Scholar] [CrossRef]
- McCrum, I.T.; Koper, M.T.M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Wu, C.Q.; Jiang, H.L.; Lin, Y.X.; Liu, H.J.; He, Q.; Chen, S.M.; Duan, T.; Song, L. Atomic Iridium Incorporated in Cobalt Hydroxide for Efficient Oxygen Evolution Catalysis in Neutral Electrolyte. Adv. Mater. 2018, 30, 1707522. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.R.; Kolb, M.J.; Giordano, L.; Pedersen, A.F.; Katayama, Y.; Hwang, J.; Mehta, A.; You, H.; Lunger, J.R.; Zhou, H.; et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 2020, 3, 516–525. [Google Scholar] [CrossRef]
- Smith, R.D.L.; Prevot, M.S.; Fagan, R.D.; Zhang, Z.P.; Sedach, P.A.; Siu, M.K.J.; Trudel, S.; Berlinguette, C.P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Y.; Xiang, H.; Rauf, M.; Mi, H.W.; Ren, X.Z.; Zhang, P.X.; Li, Y.L. Plasma enhanced atomic-layer-deposited nickel oxide on Co3O4 arrays as highly active electrocatalyst for oxygen evolution reaction. J. Power Sources 2021, 481, 228925. [Google Scholar] [CrossRef]
- Lv, L.; Yang, Z.X.; Chen, K.; Wang, C.D.; Xiong, Y.J. 2D Layered Double Hydroxides for Oxygen Evolution Reaction: From Fundamental Design to Application. Adv. Energy Mater. 2019, 9, 1803358. [Google Scholar] [CrossRef]
- Mu, W.N.; Bao, D.C.; Chang, C. Growth of nickel vacancy NiFe-LDHs on Ni(OH)2 nanosheets as highly efficient bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2022, 47, 15603–15611. [Google Scholar] [CrossRef]
- Han, X.Q.; Lin, Z.H.; He, X.Q.; Cui, L.L.; Lu, D.X. The construction of defective FeCo-LDHs by in-situ polyaniline curved strategy as a desirable bifunctional electrocatalyst for OER and HER. Int. J. Hydrogen Energy 2020, 45, 26989–26999. [Google Scholar] [CrossRef]
- Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. 2012, 124, 11664–11668. [Google Scholar] [CrossRef]
- He, W.J.; Wang, F.Q.; Jia, D.B.; Li, Y.; Liang, L.M.; Zhang, J.; Hao, Q.Y.; Liu, C.C.; Liu, H.; Zhao, J.L. Al-doped nickel sulfide nanosheet arrays as highly efficient bifunctional electrocatalysts for overall water splitting. Nanoscale 2020, 12, 24244–24250. [Google Scholar] [CrossRef]
- Wang, T.Y.; Wang, C.; Jin, Y.; Sviripa, A.; Liang, J.S.; Han, J.T.; Huang, Y.H.; Li, Q.; Wu, G. Amorphous Co–Fe–P nanospheres for efficient water oxidation. J. Mater. Chem. A 2017, 5, 25378–25384. [Google Scholar] [CrossRef]
- Chouki, T.; Machreki, M.; Emin, S. Solvothermal synthesis of iron phosphides and their application for efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2020, 45, 21473–21482. [Google Scholar] [CrossRef]
- Han, N.; Liu, P.Y.; Jiang, J.; Ai, L.H.; Shao, Z.P.; Liu, S.M. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 2018, 6, 19912–19933. [Google Scholar] [CrossRef]
- Li, W.M.; Chen, S.H.; Zhong, M.X.; Wang, C.; Lu, X.F. Synergistic coupling of NiFe layered double hydroxides with Co-C nanofibers for high-efficiency oxygen evolution reaction. Chem. Eng. J. 2021, 415, 128879. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Y.Y.; Liu, D.D.; Zou, Y.Q.; Wang, S.Y. Water-Plasma-Enabled Exfoliation of Ultrathin Layered Double Hydroxide Nanosheets with Multivacancies for Water Oxidation. Adv. Mater. 2017, 29, 1701546. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.L.; Ran, N.; Wan, G.; Zhao, W.P.; Kuang, Z.Y.; Lu, Z.; Sun, C.J.; Liu, J.J.; Wang, L.Z.; Chen, H.R. Engineering Active Fe Sites on Nickel-Iron Layered Double Hydroxide through Component Segregation for Oxygen Evolution Reaction. ChemSusChem 2020, 13, 811–818. [Google Scholar] [CrossRef]
- Liu, T.B.; Zhou, H.F.; Zhong, G.X.; Yan, X.L.; Su, X.T.; Lin, Z. Synthesis of NiFeAl LDHs from electroplating sludge and their excellent supercapacitor performance. J. Hazard. Mater. 2021, 404, 124113. [Google Scholar] [CrossRef]
- Tomboc, G.M.; Kim, J.; Wang, Y.T.; Son, Y.C.; Li, J.H.; Kim, J.Y.; Lee, K. Hybrid layered double hydroxides as multifunctional nanomaterials for overall water splitting and supercapacitor applications. J. Mater. Chem. A 2021, 9, 4528–4557. [Google Scholar] [CrossRef]
- Lin, Y.P.; Wang, H.; Peng, C.K.; Bu, L.M.; Chiang, C.L.; Tian, K.; Zhao, Y.; Zhao, J.Q.; Lin, Y.G.; Lee, J.M.; et al. Co-Induced Electronic Optimization of Hierarchical NiFe LDH for Oxygen Evolution. Small 2020, 16, 2002426. [Google Scholar] [CrossRef]
- Song, D.N.; Sun, J.K.; Sun, L.J.; Zhai, S.L.; Ho, G.W.; Wu, H.; Deng, W.Q. Acidic Media Regulated Hierarchical Cobalt Compounds with Phosphorous Doping as Water Splitting Electrocatalysts. Adv. Energy Mater. 2021, 11, 2100358. [Google Scholar] [CrossRef]
- Li, X.P.; Zheng, L.R.; Liu, S.J.; Ouyang, T.; Ye, S.; Liu, Z.Q. Heterostructures of NiFe LDH hierarchically assembled on MoS2 nanosheets as high-efficiency electrocatalysts for overall water splitting. Chin. Chem. Lett. 2022, 33, 4761–4765. [Google Scholar] [CrossRef]
- Yang, Z.X.; Zhang, Y.Q.; Feng, C.Q.; Wu, H.M.; Ding, Y.; Mei, H. P doped NiCoZn LDH growth on nickel foam as an highly efficient bifunctional electrocatalyst for Overall Urea-Water Electrolysis. Int. J. Hydrogen Energy 2021, 46, 25321–25331. [Google Scholar] [CrossRef]
- Chen, S.; Duan, J.J.; Bian, P.J.; Tang, Y.H.; Zheng, R.K.; Qiao, S.Z. Three-Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction. Adv. Energy Mater. 2015, 5, 1500936. [Google Scholar] [CrossRef]
- Chen, J.S.; Guo, Z.Z.; Luo, Y.X.; Cai, M.D.; Gong, Y.X.; Sun, S.; Li, Z.X.; Mao, C.J. Engineering Amorphous Nickel Iron Oxyphosphide as a Highly Efficient Electrocatalyst toward Overall Water Splitting. ACS Sustain. Chem. Eng. 2021, 9, 9436–9443. [Google Scholar] [CrossRef]
- Shi, Y.M.; Li, M.Y.; Yu, Y.F.; Zhang, B. Recent advances in nanostructured transition metal phosphides: Synthesis and energy-related applications. Energy Environ. Sci. 2020, 13, 4564–4582. [Google Scholar] [CrossRef]
- Qin, S.L.; Lei, J.L.; Xiong, Y.; Xu, X.H.; Geng, X.H.; Wang, J.H. Synthesis of Ni4.5Fe4.5S8/Ni3S2 film on Ni3Fe alloy foam as an excellent electrocatalyst for the oxygen evolution reaction. RSC Adv. 2019, 9, 10231–10236. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.W.; Yu, C.; Zhao, C.T.; Han, X.T.; Yang, J.; Liu, Z.B.; Li, S.F.; Zhang, M.D.; Qiu, J.S. Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy 2017, 34, 472–480. [Google Scholar] [CrossRef]
- Wu, X.J.; Liu, H.Z.; Li, F.S.; Lu, L.J.; Li, W.J.; Feng, L.; Sun, L.C. Exploration of electrocatalytic water oxidation properties of NiFe catalysts doped with nonmetallic elements (P, S, Se). Int. J. Hydrogen Energy 2021, 46, 38992–39002. [Google Scholar] [CrossRef]
- Zhang, W.X.; Jia, Q.; Liang, H.; Cui, L.; Wei, D.; Liu, J.Q. Iron doped Ni3S2 nanorods directly grown on FeNi3 foam as an efficient bifunctional catalyst for overall water splitting. Chem. Eng. J. 2020, 396, 125315. [Google Scholar] [CrossRef]
- Shen, J.; Li, Q.; Zhang, W.X.; Cai, Z.Y.; Cui, L.; Liu, X.P.; Liu, J.Q. Spherical Co3S4 grown directly on Ni–Fe sulfides as a porous nanoplate array on FeNi3 foam: A highly efficient and durable bifunctional catalyst for overall water splitting. J. Mater. Chem. A 2022, 10, 5442–5451. [Google Scholar] [CrossRef]
- Yu, J.; Li, Q.Q.; Chen, N.; Xu, C.Y.; Zhen, L.; Wu, J.S.; Dravid, V.P. Carbon-Coated Nickel Phosphide Nanosheets as Efficient Dual-Electrocatalyst for Overall Water Splitting. ACS Appl. Mater. Interfaces 2016, 8, 27850–27858. [Google Scholar] [CrossRef]
- Yan, P.X.; Hu, Y.; Shoko, E.; Isimjan, T.T.; Tian, J.N.; Yang, X.L. Hierarchical Core-Shell N-Doped Carbon@FeP4-CoP Arrays as Robust Bifunctional Electrocatalysts for Overall Water Splitting at High Current Density. Adv. Mater. Interfaces 2021, 8, 2100065. [Google Scholar] [CrossRef]
- Song, C.Y.; Liu, Y.; Wang, Y.C.; Tang, S.H.; Li, W.K.; Li, Q.; Zeng, J.; Chen, L.; Peng, H.C.; Lei, Y.P. Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides. Sci. China Mater. 2021, 64, 1662–1670. [Google Scholar] [CrossRef]
- Li, Y.Y.; Guo, H.R.; Zhang, Y.; Zhang, H.T.; Zhao, J.Y.; Song, R. Hollow Mo-doped NiSx nanoarrays decorated with NiFe layered double-hydroxides for efficient and stable overall water splitting. J. Mater. Chem. A 2022, 10, 18989–18999. [Google Scholar] [CrossRef]
- Oliver-Tolentino, M.A.; Vázquez-Samperio, J.; Manzo-Robledo, A.; González-Huerta, R.d.G.; Flores-Moreno, J.L.; Ramírez-Rosales, D.; Guzmán-Vargas, A. An Approach to Understanding the Electrocatalytic Activity Enhancement by Superexchange Interaction toward OER in Alkaline Media of Ni–Fe LDH. J. Phys. Chem. C 2014, 118, 22432–22438. [Google Scholar] [CrossRef]
- Lai, W.; Ge, L.H.; Li, H.M.; Deng, Y.L.; Xu, B.; Ouyang, B.; Kan, E. In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure. Int. J. Hydrogen Energy 2021, 46, 26861–26872. [Google Scholar] [CrossRef]
- Wu, Z.C.; Zou, Z.X.; Huang, J.S.; Gao, F. NiFe2O4 Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities. ACS Appl. Mater. Interfaces 2018, 10, 26283–26292. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.Z.; Gao, G.P.; Chen, H.; Wang, B.; Zhou, J.Z.; Soo, M.T.; Hong, M.; Yan, X.C.; Qian, G.; et al. A Heterostructure Coupling of Exfoliated Ni-Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. Adv. Mater. 2017, 29, 1700017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.R.; Wang, T.T.; Cao, H.Y.; Cui, S.S.; Du, P.W. Self-supported Ni2P nanosheets on low-cost three-dimensional Fe foam as a novel electrocatalyst for efficient water oxidation. J. Energy Chem. 2020, 42, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhang, T.; Sun, Y.Q.; Li, X.Y.; Li, X.Y.; Wu, B.; Men, D.; Li, Y. Hollow FeP/Fe3O4 Hybrid Nanoparticles on Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2020, 12, 12783–12792. [Google Scholar] [CrossRef]
- Lei, X.; Qing, J.C.; Weng, L.T.; Li, S.M.; Peng, R.Z.; Wang, W.; Wang, J.L. Porous FeP/CoP heterogeneous materials as efficient alkaline oxygen evolution reaction (OER) catalysts. New J. Chem. 2022, 46, 15351–15357. [Google Scholar] [CrossRef]
- Li, R.Q.; Wang, B.L.; Gao, T.; Zhang, R.; Xu, C.Y.; Jiang, X.F.; Zeng, J.J.; Bando, Y.; Hu, P.F.; Li, Y.L.; et al. Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting. Nano Energy 2019, 58, 870–876. [Google Scholar] [CrossRef]
- Sun, H.C.; Zhang, W.; Li, J.G.; Li, Z.S.; Ao, X.; Xue, K.H.; Ostrikov, K.K.; Tang, J.; Wang, C.D. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B Environ. 2021, 284, 119740. [Google Scholar] [CrossRef]
- Cui, H.; Liao, H.X.; Wang, Z.L.; Xie, J.P.; Tan, P.F.; Chu, D.W.; Jun, P. Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction. Rare Met. 2022, 41, 2606–2615. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Hou, C.C.; Wang, C.J.; Yang, X.; Shi, R.; Chen, Y. Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting. Chem. Commun. 2018, 54, 6400–6403. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xia, B.Y.; Ge, X.M.; Liu, Z.L.; Fisher, A.; Wang, X. A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting. Chem. Eur. J. 2015, 21, 18062–18067. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Xu, X.Y.; Su, H.; Liu, Y.P.; Chen, T.H.; Yuan, Z.Y. Ultrafine Metal Phosphide Nanocrystals in Situ Decorated on Highly Porous Heteroatom-Doped Carbons for Active Electrocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces 2015, 7, 28369–28376. [Google Scholar] [CrossRef]
- Xiao, C.L.; Gaddam, R.R.; Wu, Y.L.; Sun, X.M.; Liang, Y.; Li, Y.B.; Zhao, X.S. Improvement of the electrocatalytic performance of FeP in neutral electrolytes with Fe nanoparticles. Chem. Eng. J. 2021, 408, 127330. [Google Scholar] [CrossRef]
- Hu, F.; Wang, H.Y.; Zhang, Y.; Shen, X.C.; Zhang, G.H.; Pan, Y.B.; Miller, J.T.; Wang, K.; Zhu, S.L.; Yang, X.J.; et al. Designing Highly Efficient and Long-Term Durable Electrocatalyst for Oxygen Evolution by Coupling B and P into Amorphous Porous NiFe-Based Material. Small 2019, 15, 1901020. [Google Scholar] [CrossRef]
- Zhang, H.T.; Guo, H.R.; Zhang, Y.; Zhao, J.Y.; Li, Y.Y.; Li, X.P.; Ren, J.K.; Song, R. Metal–Organic Framework-Derived Multidimensional Hierarchical Assembling Body with a Superhydrophilic and Superaerophobic Surface Toward Efficient Electrochemical Overall Water Splitting. ACS Sustain. Chem. Eng. 2022, 10, 6402–6413. [Google Scholar] [CrossRef]
- Yu, H.Y.; Liang, H.O.; Bai, J.; Li, C.P. Controllable growth of coral-like CuInS2 on one-dimensional SiO2 nanotube with super-hydrophilicity for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2022, 47, 28410–28422. [Google Scholar] [CrossRef]
- Feng, X.T.; Jiao, Q.Z.; Dai, Z.; Dang, Y.L.; Suib, S.L.; Zhang, J.T.; Zhao, Y.; Li, H.S.; Feng, C.H.; Li, A. Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 12244–12254. [Google Scholar] [CrossRef]
- Luo, X.; Ji, P.X.; Wang, P.Y.; Cheng, R.L.; Chen, D.; Lin, C.; Zhang, J.N.; He, J.W.; Shi, Z.H.; Li, N.; et al. Interface Engineering of Hierarchical Branched Mo-Doped Ni3S2/NixPy Hollow Heterostructure Nanorods for Efficient Overall Water Splitting. Adv. Energy Mater. 2020, 10, 1903891. [Google Scholar] [CrossRef]
- Wei, X.J.; Zhang, Y.H.; He, H.C.; Peng, L.; Xiao, S.H.; Yao, S.R.; Xiao, P. Carbon-incorporated porous honeycomb NiCoFe phosphide nanospheres derived from a MOF precursor for overall water splitting. Chem. Commun. 2019, 55, 10896–10899. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Zhang, Y.; Shen, X.C.; Tao, J.Y.; Yang, X.W.; Xiong, Y.J.; Peng, Z.M. Porous amorphous NiFeOx/NiFeP framework with dual electrocatalytic functions for water electrolysis. J. Power Sources 2019, 428, 76–81. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C.H.; Liu, M.; Lu, X.H. Cr-Doped FeNi-P Nanoparticles Encapsulated into N-Doped Carbon Nanotube as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting. Adv. Mater. 2019, 31, 1900178. [Google Scholar] [CrossRef] [PubMed]
- Bu, F.X.; Chen, W.S.; Aly Aboud, M.F.; Shakir, I.; Gu, J.J.; Xu, Y.X. Microwave-assisted ultrafast synthesis of adjustable bimetal phosphide/graphene heterostructures from MOFs for efficient electrochemical water splitting. J. Mater. Chem. A 2019, 7, 14526–14535. [Google Scholar] [CrossRef]
- Shin, H.J.; Park, S.W.; Kim, D.W. Highly active and stable electrocatalytic transition metal phosphides (Ni2PandFeP) nanoparticles on porous carbon cloth for overall water splitting at high current density. Int. J. Energy Res. 2020, 44, 11894–11907. [Google Scholar] [CrossRef]
- Xuan, C.J.; Wang, J.; Xia, W.W.; Peng, Z.K.; Wu, Z.X.; Lei, W.; Xia, K.D.; Xin, H.L.; Wang, D.L. Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 26134–26142. [Google Scholar] [CrossRef]
- Hei, J.C.; Xu, G.C.; Wei, B.; Zhang, L.; Ding, H.; Liu, D. NiFeP nanosheets on N-doped carbon sponge as a hierarchically structured bifunctional electrocatalyst for efficient overall water splitting. Appl. Surf.Sci. 2021, 549, 149297. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.S.; Zhang, B.; Ruan, Y.J.; Lv, L.; Ji, X.; Xu, K.; Miao, L.; Jiang, J.J. Hierarchical NiCo2S4@NiFe LDH Heterostructures Supportedon Nickel Foam for Enhanced Overall-Water-Splitting Activity. ACS Appl. Mater. Interfaces 2017, 9, 15364–15372. [Google Scholar] [CrossRef]
- Ji, P.X.; Jin, H.H.; Xia, H.L.; Luo, X.; Zhu, J.K.; Pu, Z.H.; Mu, S.C. Double Metal Diphosphide Pair Nanocages Coupled with P-doped Carbon for Accelerated Oxygen and Hydrogen Evolution Kinetics. ACS Appl. Mater. Interfaces 2020, 12, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Li, X.P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S.L.; Maijenburg, A.W.; Wehrspohn, R.B. Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting. Adv. Funct. Mater. 2018, 28, 1706847. [Google Scholar] [CrossRef]
- Ibraheem, S.; Chen, S.G.; Li, J.; Li, W.; Gao, X.Y.; Wang, Q.M.; Wei, Z.D. Three-Dimensional Fe,N-Decorated Carbon-Supported NiFeP Nanoparticles as an Efficient Bifunctional Catalyst for Rechargeable Zinc-O2 Batteries. ACS Appl. Mater. Interfaces 2019, 11, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Yi, Y.Y.; Sun, Z.T.; Sun, H.; Guo, T.Q.; Zhang, M.H.; Cui, L.F.; Jiang, K.; Peng, Y.; Sun, J.Y. Bimetallic Fe-Ni Phosphide Carved Nanoframes towardEfficient Overall Water Splitting and Potassium-Ion Storage. Chem. Eng. J. 2020, 390, 124515. [Google Scholar] [CrossRef]
- Stern, L.-A.; Feng, L.G.; Song, F.; Hu, X.L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351. [Google Scholar] [CrossRef]
- Ren, J.T.; Hu, Z.P.; Chen, C.; Liu, Y.P.; Yuan, Z.Y. Integrated Ni2P nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation. J. Energy Chem. 2017, 26, 1196–1202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.S.; Wang, J.W.; Luo, J.; Liu, R.R.; Zhang, Z.M.; He, C.T.; Lu, T.B. Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci. 2018, 5, 1075–1394. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xie, Y.C.; Deng, H.; Zhang, C.; Su, J.-W.; Dong, Y.; Lin, J. Ternary nickel iron phosphide supported on nickel foam as a high-efficiency electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2018, 43, 7299–7306. [Google Scholar] [CrossRef]
- Chang, C.P.; Zhu, S.L.; Liu, X.Y.; Chen, Y.M.; Sun, Y.Z.; Tang, Y.; Wan, P.Y.; Pan, J.Q. One-Step Electrodeposition Synthesis of Bimetal Fe- and Co-Doped NiPi/P for Highly Efficient Overall Water Splitting. Ind. Eng. Chem. Res. 2021, 60, 2070–2078. [Google Scholar] [CrossRef]
- Yan, Y.T.; Lin, J.H.; Bao, K.; Xu, T.X.; Qi, J.L.; Cao, J.; Zhong, Z.X.; Fei, W.D.; Feng, J.C. Free-standing porous Ni2P-Ni5P4 heterostructured arrays for efficient electrocatalytic water splitting. J. Colloid Interface Sci. 2019, 552, 332–336. [Google Scholar] [CrossRef]
- Li, M.; Li, S.; Wang, J.L.; Wang, C.R.; Li, W.; Chu, P.K. NiFeP nanoflakes composite with CoP on carbon cloth as flexible and durable electrocatalyst for efficient overall water splitting. Nanotechnology 2019, 30, 485402. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Yu, X.; Guo, K.; Dong, L.; Miao, X. Alkaline Media Regulated NiFe-LDH-Based Nickel–Iron Phosphides toward Robust Overall Water Splitting. Catalysts 2023, 13, 198. https://doi.org/10.3390/catal13010198
Xu X, Yu X, Guo K, Dong L, Miao X. Alkaline Media Regulated NiFe-LDH-Based Nickel–Iron Phosphides toward Robust Overall Water Splitting. Catalysts. 2023; 13(1):198. https://doi.org/10.3390/catal13010198
Chicago/Turabian StyleXu, Xiaohu, Xinyue Yu, Kaiwei Guo, Lijuan Dong, and Xiangyang Miao. 2023. "Alkaline Media Regulated NiFe-LDH-Based Nickel–Iron Phosphides toward Robust Overall Water Splitting" Catalysts 13, no. 1: 198. https://doi.org/10.3390/catal13010198
APA StyleXu, X., Yu, X., Guo, K., Dong, L., & Miao, X. (2023). Alkaline Media Regulated NiFe-LDH-Based Nickel–Iron Phosphides toward Robust Overall Water Splitting. Catalysts, 13(1), 198. https://doi.org/10.3390/catal13010198