Xanthan Gum-Mediated Silver Nanoparticles for Ultrasensitive Electrochemical Detection of Hg2+ Ions from Water
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Preparation of Xanthan Gum Solution
2.3. Preparation of Nafion (1%) and Buffer Solutions
2.4. Synthesis of AgNPs Using XG
2.5. Sample Preparation for FTIR and AFM
2.6. Preparation of XG-AgNPs/Nafion-Modified GCE
2.7. Voltammetric Analysis of Hg2+
2.8. Instrumentation
3. Results and Discussion
3.1. Characterization of XG-AgNPs
3.2. AgNO3 Volume Effect on AgNPs Synthesis
3.3. Effect of Power and Irradiation Duration on AgNPs
3.4. Stability Profile
3.5. FTIR Study of AgNPs Bonded-XG
3.6. AFM Study
3.7. Mechanism of Xanthan Gum-Capped AgNP Synthesis
3.8. Electrochemical Behavior of Hg2+ at XG-AgNPs–GCE
3.9. Square wave voltammetric studies
3.9.1. Effect of Various Electrodes on Ip of Hg2+ Solutions
3.9.2. Influence of Supporting Electrolyte
3.9.3. Influence of pH of Supporting Electrolyte
3.9.4. Electrochemical Process
3.9.5. Influence of Nafion Volume on GCE
3.9.6. Influence of Starting Potential and Accumulating Potential Variations on Hg2+Ip
3.9.7. Effect of Accumulation Time
3.9.8. Stability of the Sensor
3.9.9. Calibration Curve, Detection Limit, and Reproducibility
3.9.10. Ion Interference
3.9.11. The Voltammetric Determination of Hg2+ by the Proposed Sensor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alemayehu, D.; Chandravanshi, B.S.C.; Hailu, T.; Tessema, M. Square wave anodic stripping voltammetric determination of Hg (II) with Np-chlorophenylcinnamohydroxamic acid modified carbon paste electrode. Bull. Chem. Soc. Ethiop. 2020, 34, 25–39. [Google Scholar] [CrossRef]
- Agarwal, A.; Verma, A.K.; Yoshida, M.; Naik, R.M.; Prasad, S. A novel catalytic kinetic method for the determination of mercury (ii) in water samples. RSC Adv. 2020, 10, 25100–25106. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.S.; Zhou, C.; Wang, C.; Sillanpää, M.; Wang, F. Facile strategy to fabricate palladium-based nanoarchitectonics as efficient catalytic converters for water treatment. Sep. Purif. Technol. 2023, 304, 122307. [Google Scholar] [CrossRef]
- Bashir, M.S.; Ramzan, N.; Najam, T.; Abbas, G.; Gu, X.; Arif, M.; Qasim, M.; Bashir, H.; Shah, S.S.A.; Sillanpää, M. Metallic nanoparticles for catalytic reduction of toxic hexavalent chromium from aqueous medium: A state-of-the-art review. Sci. Total Environ. 2022, 829, 154475. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.S. Benign fabrication process of hierarchal porous polyurea microspheres with tunable pores and porosity: Their Pd immobilization and use for hexavalent chromium reduction. Chem. Eng. Res. Des. 2021, 175, 102–114. [Google Scholar] [CrossRef]
- Li, L.; Qiu, Y.; Feng, Y.; Li, Y.; Wu, K.; Zhu, L. Stripping voltammetric analysis of mercury ions at nitrogen-doped reduced graphene oxide modified electrode. J. Electroanal. Chem. 2020, 865, 114121. [Google Scholar] [CrossRef]
- Moutcine, A.; Chtaini, A. Electrochemical determination of trace mercury in water sample using EDTA-CPE modified electrode. Sens. Bio-Sens. Res. 2018, 17, 30–35. [Google Scholar] [CrossRef]
- Suherman, A.L.; Tanner, E.E.; Compton, R.G. Recent developments in inorganic Hg2+ detection by voltammetry. TrAC—Trends Anal. Chem. 2017, 94, 161–172. [Google Scholar] [CrossRef]
- Javanbakht, M.; Khoshsafar, H.; Ganjali, M.R.; Badiei, A.; Norouzi, P.; Hasheminasab, A. Determination of nanomolar mercury (II) concentration by anodic-stripping voltammetry at a carbon paste electrode modified with functionalized nanoporous silica gel. Curr. Anal. Chem. 2009, 5, 35–41. [Google Scholar] [CrossRef]
- Anandhakumar, S.; Mathiyarasu, J.; Phani, K. Anodic stripping voltammetric detection of mercury (ii) using Au-PEDOT modified carbon paste electrode. Anal. Methods 2012, 4, 2486–2489. [Google Scholar] [CrossRef]
- Suherman, A.L.; Kuss, S.; Tanner, E.E.; Young, N.P.; Compton, R.G. Electrochemical Hg2+ detection at tannic acid-gold nanoparticle modified electrodes by square wave voltammetry. Analyst 2018, 143, 2035–2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzoor, A.; Kokab, T.; Nawab, A.; Shah, A.; Siddiqi, H.M.; Iqbal, A. Electrochemical detection of mercuric (ii) ions in aqueous media using glassy carbon electrode modified with synthesized tribenzamides and silver nanoparticles. RSC Adv. 2022, 12, 1682–1693. [Google Scholar] [CrossRef] [PubMed]
- Eksin, E.; Erdem, A.; Fafal, T.; Kıvçak, B. Eco-friendly Sensors Developed by Herbal Based Silver Nanoparticles for Electrochemical Detection of Mercury (II) Ion. Electroanalysis 2019, 31, 1075–1082. [Google Scholar] [CrossRef]
- Meenakshi, S.; Devi, S.; Pandian, K.; Chitra, K.; Tharmaraj, P. Aniline-mediated synthesis of carboxymethyl cellulose protected silver nanoparticles modified electrode for the differential pulse anodic stripping voltammetry detection of mercury at trace level. Ionics 2019, 25, 3431–3441. [Google Scholar] [CrossRef]
- Cinti, S.; Santella, F.; Moscone, D.; Arduini, F. Hg2+ detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles. Environ. Sci. Pollut. Res. 2016, 23, 8192–8199. [Google Scholar] [CrossRef]
- Kanchana, P.; Sudhan, N.; Anandhakumar, S.; Mathiyarasu, J.; Manisankar, P.; Sekar, C. Electrochemical detection of mercury using biosynthesized hydroxyapatite nanoparticles modified glassy carbon electrodes without preconcentration. RSC Adv. 2015, 5, 68587–68594. [Google Scholar] [CrossRef]
- Laffont, L.; Hezard, T.; Gros, P.; Heimbürger, L.-E.; Sonke, J.E.; Behra, P.; Evrard, D. Mercury (II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step. Talanta 2015, 141, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Amanulla, B.; Perumal, K.N.; Ramaraj, S.K. Chitosan functionalized gold nanoparticles assembled on sulphur doped graphitic carbon nitride as a new platform for colorimetric detection of trace Hg2+. Sens. Actuators B Chem. 2019, 281, 281–287. [Google Scholar] [CrossRef]
- Abbasi, A.; Hanif, S.; Shakir, M. Gum acacia-based silver nanoparticles as a highly selective and sensitive dual nanosensor for Hg (ii) and fluorescence turn-off sensor for S2− and malachite green detection. RSC Adv. 2020, 10, 3137–3144. [Google Scholar] [CrossRef] [Green Version]
- Mao, C.-F.; Klinthong, W.; Zeng, Y.-C.; Chen, C.-H. On the interaction between konjac glucomannan and xanthan in mixed gels: An analysis based on the cascade model. Carbohydr. Polym. 2012, 89, 98–103. [Google Scholar] [CrossRef]
- Xu, W.; Jin, W.; Lin, L.; Zhang, C.; Li, Z.; Li, Y.; Song, R.; Li, B. Green synthesis of xanthan conformation-based silver nanoparticles: Antibacterial and catalytic application. Carbohydr. Polym. 2014, 101, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Venkatesham, M.; Ayodhya, D.; Veerabhadram, G. Green synthesis, characterization and catalytic activity of palladium nanoparticles by xanthan gum. Appl. Nanosci. 2015, 5, 315–320. [Google Scholar]
- Rao, K.; Roome, T.; Aziz, S.; Razzak, A.; Abbas, G.; Imran, M.; Jabri, T.; Gul, J.; Hussain, M.; Sikandar, B. Bergenin loaded gum xanthan stabilized silver nanoparticles suppress synovial inflammation through modulation of the immune response and oxidative stress in adjuvant induced arthritic rats. J. Mater. Chem. B 2018, 6, 4486–4501. [Google Scholar] [CrossRef] [PubMed]
- Akele, M.L.; Assefa, A.G.; Alle, M. Microwave-assisted green synthesis of silver nanoparticles by using gum acacia: Synthesis, characterization and catalytic activity studies. Int. J. Green Chem. Bioprocess 2015, 5, 21–27. [Google Scholar]
- Ortega, M.P.; López-Marín, L.M.; Millán-Chiu, B.; Manzano-Gayosso, P.; Acosta-Torres, L.S.; García-Contreras, R.; Manisekaran, R. Polymer mediated synthesis of cationic silver nanoparticles as an effective anti-fungal and anti-biofilm agent against Candida species. Colloid Interface Sci. Commun. 2021, 43, 100449. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Xu, X.; Zhang, L. Triple helical polysaccharide-induced good dispersion of silver nanoparticles in water. Biomacromolecules 2011, 12, 2864–2871. [Google Scholar] [CrossRef] [PubMed]
- Pooja, D.; Panyaram, S.; Kulhari, H.; Rachamalla, S.S.; Sistla, R. Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydr. Polym. 2014, 110, 1–9. [Google Scholar] [CrossRef]
- Tsuji, M.; Hashimoto, M.; Nishizawa, Y.; Kubokawa, M.; Tsuji, T. Microwave-assisted synthesis of metallic nanostructures in solution. Chem.-A Eur. J. 2005, 11, 440–452. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, N.; Zhang, X.; Xu, J. Cellulose/silver nanoparticles composite microspheres: Eco-friendly synthesis and catalytic application. Cellulose 2012, 19, 1239–1249. [Google Scholar] [CrossRef]
- Xin, S.; Li, Y.; Li, W.; Du, J.; Huang, R.; Du, Y.; Deng, H. Carboxymethyl chitin/organic rectorite composites based nanofibrous mats and their cell compatibility. Carbohydr. Polym. 2012, 90, 1069–1074. [Google Scholar] [CrossRef]
- Emam, H.E.; Zahran, M.K. Ag0 nanoparticles containing cotton fabric: Synthesis, characterization, color data and antibacterial action. Int. J. Biol. Macromol. 2015, 75, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.M.; Kumar, A.; Haider, A.; Han, S.S. Polysaccharides based antibacterial polyelectrolyte hydrogels with silver nanoparticles. Mater. Lett. 2016, 184, 189–192. [Google Scholar] [CrossRef]
- Tagar, Z.A.; Memon, N.; Agheem, M.H.; Junejo, Y.; Hassan, S.S.; Kalwar, N.H.; Khattak, M.I. Selective, simple and economical lead sensor based on ibuprofen derived silver nanoparticles. Sens. Actuators B Chem. 2011, 157, 430–437. [Google Scholar] [CrossRef]
- Tagar, Z.A.; Memon, N.; Kalhoro, M.S.; O’Brien, P.; Malik, M.A.; Abro, M.I.; Hassan, S.S.; Kalwar, N.H.; Junejo, Y. Highly sensitive, selective and stable multi-metal ions sensor based on ibuprofen capped mercury nanoparticles. Sens. Actuators B Chem. 2012, 173, 745–751. [Google Scholar] [CrossRef]
- Shah, A.; Nisar, A.; Khan, K.; Nisar, J.; Niaz, A.; Ashiq, M.N.; Akhter, M.S. Amino acid functionalized glassy carbon electrode for the simultaneous detection of thallium and mercuric ions. Electrochim. Acta 2019, 321, 134658. [Google Scholar] [CrossRef]
- Shah, A.; Sultan, S.; Zahid, A.; Aftab, S.; Nisar, J.; Nayab, S.; Qureshi, R.; Khan, G.S.; Hussain, H.; Ozkan, S.A. Highly sensitive and selective electrochemical sensor for the trace level detection of mercury and cadmium. Electrochim. Acta 2017, 258, 1397–1403. [Google Scholar] [CrossRef]
- Hassan, S.S.; Nafady, A.; Solangi, A.R.; Kalhoro, M.S.; Abro, M.I.; Sherazi, S.T.H. Ultra-trace level electrochemical sensor for methylene blue dye based on nafion stabilized ibuprofen derived gold nanoparticles. Sens. Actuators B Chem. 2015, 208, 320–326. [Google Scholar] [CrossRef]
- Ugo, P.; Cavalieri, F.; Rudello, D.; Moretto, L.M.; Argese, E. Nafion coated electrodes as voltammetric sensors for iron analysis in sediments and pore waters: An example from the lagoon of Venice. Sensors 2001, 1, 102–113. [Google Scholar] [CrossRef]
Electrode Type | Techniques | Linear Range | LOD | Samples Analyzed | Ref. |
---|---|---|---|---|---|
a CMC@AgNPs/GCE | DPASV | 5 and 75 μM | 0.19 nM | Various water samples | [13] |
b Av-HA modified GCE | SWV | 2.0 × 10−7 to 2.1 ×10−4 M | 141 nM | Drinking water | [23] |
c NRGO/GCE | DPASV | 1 nM to 800 nM | 0.58 nM | Water samples | [6] |
d Ag@Hg nanoalloy | UV | 3 n mol L−1 to 13 m mol L−1 | 2.1 n mol L−1 | Aqueous samples | [22] |
e EDTA-CPE | SWV | 5 to 35 × 10−4 mol/L | 16, 6 × 10−9 mol L−1 | River water samples | [8] |
f GK–AgNPs | UV | 0–500 nM | 50 nM (LOQ) | Water samples | [4] |
g CPHA-CPE | SWASV | 1–25 μM | 12.9 Nm | Various water samples | [5] |
h AgNPs & FA-PGE | CV | 25 µM | 8.43 µM | Tap water | [12] |
XG-AgNPs/GCE | SWV | 0.2 ppb—6 ppb. | 0.18 ppb | Different water samples | Present work |
Interfering Species | Tolerance Limit | Interference (%) |
---|---|---|
(µgmL−1) | ||
Cd(II) | 97.50% | +2.5 |
Pb+2 | 103.60% | −3.6 |
Cr2O4 | 96.30% | +3.7 |
Co(II) | 97.60% | +2.5 |
Cu(II) | 96.30% | +3.7 |
CuSO4 | 98.70% | +1.3 |
Water Samples | Added | Found (µgmL−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|
(µgmL−1) | ||||
River water (Jamshoro) | 0 | 0.9 ± 0.03 | ------------- | 3.33 |
2 | 2.87 ± 0.15 | 98.97 | 5.23 | |
4 | 4.86 ± 0.21 | 99.18 | 4.32 | |
6 | 6.88 ± 0.28 | 99.71 | 4.07 | |
Municipal treated water (Latifabad, Hyderabad) | 0 | 0.58 ± 0.02 | _______ | |
2 | 2.52 ± 0.13 | 97.67 | 5.16 | |
4 | 4.54 ± 0.24 | 99.13 | 5.29 | |
6 | 6.55 ± 0.31 | 99.54 | 4.73 | |
Municipal treated water (Suhrab Goth, Karachi) | 0 | 0.62 ± 0.02 | ------------- | |
2 | 2.59 ± 0.16 | 98.85 | 6.18 | |
4 | 4.6 ± 0.22 | 99.57 | 4.78 | |
6 | 6.61 ± 0.34 | 99.85 | 4.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shakeel, S.; Talpur, F.N.; Sirajuddin; Anwar, N.; Iqbal, M.A.; Ibrahim, A.; Afridi, H.I.; Unar, A.; Khalid, A.; Ahmed, I.A.; et al. Xanthan Gum-Mediated Silver Nanoparticles for Ultrasensitive Electrochemical Detection of Hg2+ Ions from Water. Catalysts 2023, 13, 208. https://doi.org/10.3390/catal13010208
Shakeel S, Talpur FN, Sirajuddin, Anwar N, Iqbal MA, Ibrahim A, Afridi HI, Unar A, Khalid A, Ahmed IA, et al. Xanthan Gum-Mediated Silver Nanoparticles for Ultrasensitive Electrochemical Detection of Hg2+ Ions from Water. Catalysts. 2023; 13(1):208. https://doi.org/10.3390/catal13010208
Chicago/Turabian StyleShakeel, Sadia, Farah Naz Talpur, Sirajuddin, Nadia Anwar, Muhammad Aamir Iqbal, Adnan Ibrahim, Hassan Imran Afridi, Ahsanullah Unar, Awais Khalid, Inas A. Ahmed, and et al. 2023. "Xanthan Gum-Mediated Silver Nanoparticles for Ultrasensitive Electrochemical Detection of Hg2+ Ions from Water" Catalysts 13, no. 1: 208. https://doi.org/10.3390/catal13010208
APA StyleShakeel, S., Talpur, F. N., Sirajuddin, Anwar, N., Iqbal, M. A., Ibrahim, A., Afridi, H. I., Unar, A., Khalid, A., Ahmed, I. A., Lai, W. -C., & Bashir, M. S. (2023). Xanthan Gum-Mediated Silver Nanoparticles for Ultrasensitive Electrochemical Detection of Hg2+ Ions from Water. Catalysts, 13(1), 208. https://doi.org/10.3390/catal13010208