Insights into a Removal Mechanism of Triclosan Using an Electroactivated Persulfate-Coupled Carbon Membrane System
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Degradation of TCS
2.2. Characterization of the Electrodes
2.3. Free Radical Recognition
2.4. Effects of Radical Scavengers
2.5. PDS Concentration, Cycle Pump Flow Rate, and pH Impact
2.6. Proposed Mechanism for the Removal of TCS
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Carbon Membrane Electrode
3.3. Degradation Experiments
3.4. Analytical Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantwell, M.G.; Katz, D.R.; Sullivan, J.C.; Shapley, D.; Lipscomb, J.; Epstein, J.; Juhl, A.R.; Knudson, C.; O’Mullan, G.D. Spatial Patterns of Pharmaceuticals and Wastewater Tracers in the Hudson River Estuary. Water Res. 2018, 137, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Wang, Y.; Zhao, B.; Ding, J.; Zhang, J.; Yin, M.H.; Zhang, Z.H.; Ma, S.M.; Liu, Y.Q.; Tan, Z.L. Unraveling Kinetics and Mechanism of Electrocatalytic Hydrodechlorination of Chlorinated PPCPs by Nickel-Cobalt Metal Organic Framework Supported Palladium Composite Electrode. Appl. Catal. B Environ. 2023, 332, 122754. [Google Scholar] [CrossRef]
- Li, J.J.; Kong, K.Z. Efficient Palladium Catalysts: Application and Challenges of Electrocatalytic Hydrodechlorination Technology in Wastewater Treatment. ChemCatChem 2023, e202300908. [Google Scholar] [CrossRef]
- Qi, Y.M.; Zou, M.T.; Ajarem, J.S.; Allam, A.A.; Wang, Z.Y.; Qu, R.J.; Zhu, F.; Huo, Z.L. Catalytic Degradation of Pharmaceutical and Personal Care Products in Aqueous Solution by Persulfate Activated with Nanoscale FeCoNi-ternary Mixed Metal Oxides. Sep. Purif. Technol. 2023, 314, 123585. [Google Scholar] [CrossRef]
- Li, J.J.; Ma, S.M.; Qi, Z.Y.; Ding, J.; Yin, M.H.; Zhao, B.; Zhang, Z.H.; Wang, Y.; Zhang, H.W.; Wang, L. Insights into the Removal of Chloramphenicol by Electrochemical Reduction on Pd/NiFe-MOF/foam-Ni Electrode: Performance and Mechanism. Appl. Catal. B Environ. 2023, 322, 122076. [Google Scholar] [CrossRef]
- Chen, X.J.; Richard, J.; Liu, Y.L.; Dopp, E.; Tuerk, J.; Bester, K. Ozonation Products of Triclosan in Advanced Wastewater Treatment. Water Res. 2012, 46, 2247–2256. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.P.; Chen, J.B.; Zhang, Y.L.; Zhou, X.F. Sulfate Radicals Induced Degradation of Triclosan in Thermally Activated Persulfate System. Chem. Eng. J. 2016, 306, 522–530. [Google Scholar] [CrossRef]
- Cai, S.; Hu, X.X.; Lu, D.; Zhang, L.; Jiang, C.L.; Cai, T.M. Ferrous-Activated Persulfate Oxidation of Triclosan in Soil and Groundwater: The Roles of Natural Mineral and Organic Matter. Sci. Total Environ. 2021, 762, 143092. [Google Scholar] [CrossRef]
- Quan, B.Y.; Li, X.; Zhang, H.; Zhang, C.; Ming, Y.; Huang, Y.C.; Xi, Y.N.; Xu, W.H.; Liu, Y.G.; Tang, Y.Q. Technology and Principle of Removing Triclosan from Aqueous Media: A Review. Chem. Eng. J. 2019, 378, 122185. [Google Scholar] [CrossRef]
- Li, J.J.; Liang, Y.Q.; Jin, P.L.; Zhao, B.; Zhang, Z.H.; He, X.J.; Tan, Z.L.; Wang, L.; Cheng, X.W. Heterogeneous Metal-Activated Persulfate and Electrochemically Activated Persulfate: A Review. Catalysts 2022, 12, 1024. [Google Scholar] [CrossRef]
- Sabaliunas, D.; Webb, S.F.; Hauk, A.; Jacob, M.; Eckhoff, W.S. Environmental Fate of Triclosan in the River Aire Basin, UK. Water Res. 2003, 37, 3145–3154. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, H.P. Triclosan: A Widely Used Biocide and Its Link to Antibiotics. FEMS Microbiol. Lett. 2001, 202, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Singer, H.; Muller, S.; Tixier, C.; Pillonel, L. Triclosan: Occurrence and Fate of a Widely Used Biocide in the Aquatic Environment: Field Measurements in Wastewater Treatment Plants, Surface Waters, and Lake Sediments. Environ. Sci. Technol. 2002, 36, 4998–5004. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.L.; De Sylor, M.A.; Slocombe, A.J.; Lew, M.G.; Unice, K.M.; Donovan, E.P. Triclosan Occurrence in Freshwater Systems in the United States (1999-2012): A Meta-Analysis. Environ. Toxicol. Chem. 2013, 32, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Liang, W. Occurrence, Toxicity, and Removal Methods of Triclosan: A Timely Review. Curr. Pollut. Rep. 2021, 7, 31–39. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, J.Z.; Ren, L.; Fan, R.F.; Zhang, J.Q.; Liu, G.H.; Zhou, L.; Chen, D.Y.; Yu, Y.X.; Lu, S.Y. Urinary Bisphenol Analogues and Triclosan in Children from South China and Implications for Human Exposure. Environ. Pollut. 2018, 238, 299–305. [Google Scholar] [CrossRef]
- Kalloo, G.; Wellenius, G.A.; McCandless, L.; Calafat, A.M.; Sjodin, A.; Karagas, M.; Chen, A.M.; Yolton, K.; Lanphear, B.P.; Braun, J.M. Profiles and Predictors of Environmental Chemical Mixture Exposure among Pregnant Women: The Health Outcomes and Measures of the Environment Study. Environ. Sci. Technol. 2018, 52, 10104–10113. [Google Scholar] [CrossRef]
- Lu, S.Y.; Wang, N.; Ma, S.T.; Hu, X.; Kang, L.; Yu, Y.X. Parabens and Triclosan in Shellfish from Shenzhen Coastal Waters: Bioindication of Pollution and Human Health Risks. Environ. Pollut. 2019, 246, 257–263. [Google Scholar] [CrossRef]
- Possenti, C.D.; Poma, G.; Defosse, S.; Caprioli, M.; De Felice, B.; Romano, A.; Saino, N.; Covaci, A.; Parolini, M. Embryotoxic Effects of In-ovo Triclosan Injection to the Yellow-Legged Gull. Chemosphere 2019, 218, 827–835. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Pulicharla, R.; Brar, S.K.; Cledon, M.; Verma, M.; Surampalli, R.Y. Triclosan: Current Status, Occurrence, Environmental Risks and Bioaccumulation Potential. Int. J. Environ. Res. Public Health 2015, 12, 5657–5684. [Google Scholar] [CrossRef]
- Wang, B.W.; Wang, Y. A comprehensive Review on Persulfate Activation Treatment of Wastewater. Sci. Total Environ. 2022, 831, 154906. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.C.; Couttenye, R.A.; Hoag, G.E. Kinetics of Heat-Assisted Persulfate Oxidation of Methyl Tert-butyl Ether (MTBE). Chemosphere 2002, 49, 413–420. [Google Scholar] [CrossRef]
- Cong, J.; Wen, G.; Huang, T.L.; Deng, L.Y.; Ma, J. Study on Enhanced Ozonation Degradation of Para-Chlorobenzoic Acid by Peroxymonosulfate in Aqueous Solution. Chem. Eng. J. 2015, 264, 399–403. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Liu, M.J.; Liu, Y.; Liu, X.R.; Chu, C.C.; Yao, D.C.; Mao, S. Peroxydisulfate Activation by 2D MOF-derived Ni/Fe3O4 Nanoparticles Decorated in 3D Graphene Oxide Network. Sep. Purif. Technol. 2022, 301, 121967. [Google Scholar] [CrossRef]
- Qiu, H.B.; Guo, P.C.; Yuan, L.; Sheng, G.P. Different Non-Radical Oxidation Processes of Persulfate and Peroxymonosulfate Activation by Nitrogen-doped Mesoporous Carbon. Chin. Chem. Lett. 2020, 31, 2614–2618. [Google Scholar] [CrossRef]
- Dubois, V.; Rodrigues, C.S.D.; Alves, A.S.P.; Madeira, L.M. UV/Vis-Based Persulphate Activation for p-Nitrophenol Degradation. Catalysts 2021, 11, 480. [Google Scholar] [CrossRef]
- Li, Z.D.; Sun, Y.M.; Liu, D.F.; Yi, M.L.; Chang, F.; Li, H.T.; Du, Y.Y. A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects. Catalysts 2022, 12, 1092. [Google Scholar] [CrossRef]
- Lu, K.; Min, Z.; Qin, J.; Shi, P.; Wu, J.; Fan, J.; Min, Y.; Xu, Q. Preparation of Nitrogen Self-Doped Hierarchical Porous Carbon with Rapid-Freezing Support for Cooperative Pollutant Adsorption and Catalytic Oxidation of Persulfate. Sci. Total Environ. 2021, 752, 142282. [Google Scholar] [CrossRef]
- Li, Z.L.; Cao, D.; Cheng, H.; Chen, F.; Nan, J.; Liang, B.; Sun, K.; Huang, C.; Wang, A.J. Ordered Mesoporous Carbon as An Efficient Heterogeneous Catalyst to Activate Peroxydisulfate for Degradation of Sulfadiazine. Chin. Chem. Lett. 2022, 33, 2747–2752. [Google Scholar] [CrossRef]
- Lan, R.J.; Su, W.B.; Li, J.T. Preparation and Catalytic Performance of Expanded Graphite for Oxidation of Organic Pollutant. Catalysts 2019, 9, 280. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Q.; Ji, G.Z.; Li, A.M. Degradation of Antibiotic Pollutants by Persulfate Activated with Various Carbon Materials. Chem. Eng. J. 2022, 429, 132387. [Google Scholar] [CrossRef]
- Liang, J.; Chen, K.X.; Duan, X.G.; Zhao, L.; Qiu, H.; Xu, X.Y.; Cao, X.D. pH-Dependent Generation of Radical and Nonradical Species for Sulfamethoxazole Degradation in Different Carbon/Persulfate Systems. Water Res. 2022, 224, 119113. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.C.C.; Yen, C.H. The Use of Different Materials to form the Intermediate Layers of Tubular Carbon Nanofibers/Carbon/Alumina Composite Membranes for Removing Pharmaceuticals from Aqueous Solutions. J. Membr. Sci. 2013, 425, 121–130. [Google Scholar] [CrossRef]
- Nimai, S.L.; Zhang, H.; Wu, Z.L.; Li, N.W.; Lai, B. Efficient Degradation of Sulfamethoxazole by Acetylene Black Activated Peroxydisulfate. Chin. Chem. Lett. 2020, 31, 2657–2660. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.J.; Jeong, J.; Lee, J.; Park, N.B.; Lee, C. Activation of Persulfates by Carbon Nanotubes: Oxidation of Organic Compounds by Nonradical Mechanism. Chem. Eng. J. 2015, 266, 28–33. [Google Scholar] [CrossRef]
- Guan, C.T.; Jiang, J.; Luo, C.W.; Pang, S.Y.; Yang, Y.; Wang, Z.; Ma, J.; Yu, J.; Zhao, X. Oxidation of Bromophenols by Carbon Nanotube Activated Peroxymonosulfate (PMS) and Formation of Brominated Products: Comparison to Peroxydisulfate (PDS). Chem. Eng. J. 2018, 337, 40–50. [Google Scholar] [CrossRef]
- Chen, S.H.; Ma, L.Y.; Du, Y.G.; Zhan, W.; Zhang, T.C.; Du, D.Y. Highly Efficient Degradation of Rhodamine B by Carbon Nanotubes-Activated Persulfate. Sep. Purif. Technol. 2021, 256, 117788. [Google Scholar] [CrossRef]
- Ho, S.H.; Chen, Y.D.; Li, R.X.; Zhang, C.F.; Ge, Y.M.; Cao, G.L.; Ma, M.; Duan, X.G.; Wang, S.B.; Ren, N.Q. N-Doped Graphitic Biochars from C-Phycocyanin Extracted Spirulina Residue for Catalytic Persulfate Activation toward Nonradical Disinfection and Organic Oxidation. Water Res. 2019, 159, 77–86. [Google Scholar] [CrossRef]
- Zhang, M.J.; Han, C.; Chen, W.Y.; Luo, W.; Cao, Y.Q.; Qian, G.; Zhou, X.G.; Duan, X.G.; Wang, S.B.; Duan, X.Z. Active Sites and Reaction Mechanism for N-Doped Carbocatalysis of Phenol Removal. Green. Energy Environ. 2020, 5, 444–452. [Google Scholar] [CrossRef]
- Dippel, B.; Jander, H.; Heintzenberg, J. NIR FT Raman Spectroscopic Study of Flame Soot. Phys. Chem. Chem. Phys. 1999, 1, 4707–4712. [Google Scholar] [CrossRef]
- Yan, J.; Gao, W.; Dong, M.; Han, L.; Qian, L.; Nathanail, C.P.; Chen, M. Degradation of Trichloroethylene by Activated Persulfate Using a Reduced Graphene Oxide Supported Magnetite Nanoparticle. Chem. Eng. J. 2016, 295, 309–316. [Google Scholar] [CrossRef]
- Rasines, G.; Lavela, P.; Macias, C.; Zafra, M.C.; Tirado, J.L.; Parra, J.B.; Ania, C.O. N-doped Monolithic Carbon Aerogel Electrodes with Optimized Features for the Electrosorption of Ions. Carbon 2015, 83, 262–274. [Google Scholar] [CrossRef]
- Di, J.; Zhu, M.; Jamakanga, R.; Gai, X.; Li, Y.; Yang, R. Electrochemical Activation Combined with Advanced Oxidation on NiCo2O4 Nanoarray Electrode for Decomposition of Rhodamine B. J. Water Process Eng. 2020, 37, 101386. [Google Scholar] [CrossRef]
- Yang, S.J.; Guo, X.Y.; Wang, Z.R.; Dzakpasu, M.; Dai, X.F.; Ding, D.H.; Wu, K.; Huang, Y.; Zhang, Q.H.; Jin, P.K.; et al. Significance of B-Site Cobalt on Bisphenol A Degradation by MOFs-Templated CoxFe3-xO4 Catalysts and its Severe Attenuation by Excessive Cobalt-Rich Phase. Chem. Eng. J. 2019, 359, 552–563. [Google Scholar] [CrossRef]
- Luo, R.; Li, M.Q.; Wang, C.H.; Zhang, M.; Khan, M.A.N.; Sun, X.Y.; Shen, J.Y.; Han, W.Q.; Wang, L.J.; Li, J.S. Singlet Oxygen-Dominated Non-Radical Oxidation Process for Efficient Degradation of Bisphenol A under High Salinity Condition. Water Res. 2019, 148, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhang, Y. Enhancing the Activation of Persulfate Using Nitrogen-Doped Carbon Materials in the Electric Field for the Effective Removal of P-Nitrophenol. RSC Adv. 2021, 11, 38003–38015. [Google Scholar] [CrossRef] [PubMed]
- Yun, E.T.; Lee, J.H.; Kim, J.; Park, H.D.; Lee, J. Identifying the Nonradical Mechanism in the Peroxymonosulfate Activation Process: Singlet Oxygenation Versus Mediated Electron Transfer. Environ. Sci. Technol. 2018, 52, 7032–7042. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Cheng, X.W.; Zhang, H.X.; Gou, J.F.; Zhang, X.Y.; Wu, D.; Dionysiou, D.D. Insights into Performance and Mechanism of ZnO/CuCo2O4 Composite as Heterogeneous Photoactivator of Peroxymonosulfate for Enrofloxacin Degradation. J. Hazard. Mater. 2023, 448, 130946. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, B.F.; Liu, H.J.; Chen, F.Y.; Li, A.Z.; Qu, J.H. Transformation Characteristics of Refractory Pollutants in Plugboard Wastewater by an Optimal Electrocoagulation and Electro-Fenton Process. Chemosphere 2012, 87, 631–636. [Google Scholar] [CrossRef]
- Li, T.T.; Lu, S.; Lin, W.W.; Ren, H.J.; Zhou, R. Heat-Activated Persulfate Oxidative Degradation of Ofloxacin: Kinetics, Mechanisms, and Toxicity Assessment. Chem. Eng. J. 2022, 433, 133801. [Google Scholar] [CrossRef]
- Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S. Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant. Environ. Sci. Technol. 2005, 39, 2383–2388. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.J.; Wang, Z.S.; Bruell, C.J. Influence of pH on Persulfate Oxidation of TCE at Ambient Temperatures. Chemosphere 2007, 66, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.N.; Wang, Y.Y.; Li, J.J.; Cheng, X.W.; Dionysiou, D.D. Sulfamethoxazole Degradation by Visible Light Assisted Peroxymonosulfate Process Based on Nanohybrid Manganese Dioxide Incorporating Ferric Oxide. Appl. Catal. B Environ. 2020, 278, 119297. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, L.Y.; Xue, Y.; Lv, J.; Yu, Q.M.; Yuan, X.L. Nitrogen-Doped Carbon Material as a Catalyst for the Degradation of Direct Red23 Based on Persulfate Oxidation. Sep. Purif. Technol. 2017, 184, 213–219. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yuan, R.X.; Guo, Y.G.; Xu, L.; Liu, J.S. Effects of Chloride Ions on Bleaching of Azo Dyes by Co2+/oxone Regent: Kinetic Analysis. J. Hazard. Mater. 2011, 190, 1083–1087. [Google Scholar] [CrossRef]
- Bandala, E.R.; Pelaez, M.A.; Dionysiou, D.D.; Gelover, S.; Garcia, J.; Macias, D. Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Using Cobalt-Peroxymonosulfate in Fenton-Like Process. J. Photochem. Photobiol. A-Chem. 2007, 186, 357–363. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wu, D.; Zhang, H.; Wang, L.; Wang, H.; Ba, Z. Insights into a Removal Mechanism of Triclosan Using an Electroactivated Persulfate-Coupled Carbon Membrane System. Catalysts 2023, 13, 1321. https://doi.org/10.3390/catal13101321
Li J, Wu D, Zhang H, Wang L, Wang H, Ba Z. Insights into a Removal Mechanism of Triclosan Using an Electroactivated Persulfate-Coupled Carbon Membrane System. Catalysts. 2023; 13(10):1321. https://doi.org/10.3390/catal13101321
Chicago/Turabian StyleLi, Junjing, Di Wu, Hongying Zhang, Liang Wang, Hong Wang, and Zhengchun Ba. 2023. "Insights into a Removal Mechanism of Triclosan Using an Electroactivated Persulfate-Coupled Carbon Membrane System" Catalysts 13, no. 10: 1321. https://doi.org/10.3390/catal13101321
APA StyleLi, J., Wu, D., Zhang, H., Wang, L., Wang, H., & Ba, Z. (2023). Insights into a Removal Mechanism of Triclosan Using an Electroactivated Persulfate-Coupled Carbon Membrane System. Catalysts, 13(10), 1321. https://doi.org/10.3390/catal13101321