Performance of Modified Alumina-Supported Ruthenium Catalysts in the Reforming of Methane with CO2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.1.1. A/AE Modified Supports
2.1.2. Metallic Phase
2.2. Dry Reforming Test of Ru Catalysts
2.2.1. Influence of the Reduction Time
2.2.2. Study of the Catalysts in Conditions Close to the Equilibrium State
2.2.3. Study of Ru Catalyst Activities Far from Equilibrium Conditions
2.2.4. Study of the Influence of Lower Ru Loading
2.2.5. Study of the A/AE Metal Loading Increase from 1 wt% to 5 or 10 wt%
2.2.6. Catalyst Performance at Long Reaction Times Stability Test
3. Materials and Methods
3.1. Preparation of the Catalysts and Supports
3.2. Characterization of the Catalysts and Supports
3.3. Catalytic Tests: Methane Dry Reforming Reaction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pompeo, F.; Nichio, N.N.; Ferretti, O.A.; Resasco, D. Study of Ni catalysts on different supports to obtain synthesis gas. Int. J. Hydrog. Energy 2005, 30, 1399–1405. [Google Scholar] [CrossRef]
- Jang, W.J.; Shim, J.O.; Kim, H.M.; Yoo, S.Y.; Roh, H.S. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 2019, 324, 15–26. [Google Scholar] [CrossRef]
- Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Hamid, M.Y.S. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175–193. [Google Scholar] [CrossRef]
- Abdullah, B.; Abd Ghani, N.A.; Vo, D.-V.N. Recent advances in dry reforming of methane over Ni-based catalysts. J. Clean. Prod. 2017, 162, 170–185. [Google Scholar] [CrossRef]
- Palma, V.; Ricca, A.; Meloni, E.; Martino, M.; Miccio, M.; Ciambelli, P. Experimental and numerical investigations on structured catalysts for methane steam reforming intensification. J. Clean. Prod. 2016, 111, 217–230. [Google Scholar] [CrossRef]
- Joensen, F.; Rostrup-Nielsen, J.R. Conversion of hydrocarbons and alcohols for fuel cells. J. Powers Sources 2002, 105, 195–201. [Google Scholar] [CrossRef]
- de Miguel, S.R.; Jablonski, E.L.; Castro, A.A.; Scelza, O.A. Some aspects on reforming of methane with CO2 over Ni-based catalysts. Trends Chem. Eng. 2000, 6, 113–124. [Google Scholar]
- Wang, C.; Wang, Y.; Chen, M.; Liang, D.; Yang, Z.; Cheng, W.; Tang, Z.; Wang, J.; Zhang, H. Recent advances during CH4 dry reforming for syngas production: A mini review. Int. J. Hydrog. Energy 2021, 46, 5852–5874. [Google Scholar] [CrossRef]
- Aziz, M.; Setiabudi, H.D.; Teh, L.P.; Annuar, N.H.R.; Jalil, A. A review of heterogeneous catalysts for syngas production via dry reforming. J. Taiwan Inst. Chem. Eng. 2019, 101, 139–158. [Google Scholar] [CrossRef]
- Aramouni, N.; Touma, J.; Tarboush, B.; Zeaiter, J.; Ahmad, M. Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Ashcroft, A.T.; Cheetham, A.K.; Green, M.L.H.; Vernon, P.D.F. Partial Oxidation of Methane to Synthesis Gas Using Carbon Dioxide. Nature 1991, 352, 225–226. [Google Scholar] [CrossRef]
- Richardson, J.T.; Paripatyadar, S.A. Carbon dioxide reforming of methane with supported rhodium. Appl. Catal. 1990, 61, 293–309. [Google Scholar] [CrossRef]
- Kurz, G.; Teuner, S. CALCOR Process for CO Production. Erdoel Und Kohle Erdgas Petrochem. 1990, 43, 171–172. [Google Scholar]
- van den Oosterkamp, P.F.; Chen, Q.; Overwater, J.A.S.; Ross, J.R.H.; Keulen, A.N.J. In Proceedings of the Meeting of “Large Chemical Plants”, Antwerp, Belgium, 4–6 October 1995.
- Hileman, B. Greenhouse gas economics: Cutting CO to comply with the Kyoto Protocol will have economic costs, but the size of the costs is unknown. Chem. Eng. News 1998, 76, 28–31. [Google Scholar] [CrossRef]
- Bosch, H.; Janssen, F. Catalytic reduction of nitrogen oxides—A review on the fundamentals and technology. Catal. Today 1998, 2, 369–531. [Google Scholar]
- Udengaard, N.R.; Bak Hansen, J.H.; Hanson, D.C.; Stal, J.A. Sulfur passivated reforming process lowers syngas H2/CO ratio. Oil Gas J. 1992, 90, 62–67. [Google Scholar]
- Nichio, N.N.; Casella, M.L.; Santori, G.F.; Ponzi, E.N.; Ferretti, O.A. Stability- promotion of Ni/α-Al2O3 catalysts by tin added via surface organometallic chemistry on metals: Application in methane reforming processes. Catal. Today 2000, 62, 231–240. [Google Scholar] [CrossRef]
- Wu, H.; La Parola, V.; Pantaleo, G.; Puleo, F.; Venezia, A.M.; Liotta, L.F. Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems. Catalysts 2013, 3, 563–583. [Google Scholar] [CrossRef]
- Alipour, Z.; Rezaei, M.; Meshkani, F. Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming of methane. Fuel 2014, 129, 197–203. [Google Scholar] [CrossRef]
- Juan-Juan, J.; Román-Martínez, M.C.; Illán-Gómez, M.J. Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Appl. Catal. A General 2006, 301, 9–15. [Google Scholar] [CrossRef]
- Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Marin, G.B. Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe. ACS Catal. 2015, 5, 3028–3039. [Google Scholar] [CrossRef]
- Zhang, Z.; Verykios, X.E.; Mac Donald, S.M.; Affrossman, S. Comparative Study of Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 and Conventional Nickel-Based Catalysts. J. Phys. Chem. 1996, 100, 744–754. [Google Scholar] [CrossRef]
- Lucrédio, A.F.; Assaf, E.M. Cobalt catalysts prepared from hydrotalcite precursors and tested in methane steam reforming. J. Power Sources 2006, 159, 667–672. [Google Scholar] [CrossRef]
- Özkara-Aydınoğlu, Ş.; Erhan Aksoylu, A. Carbon dioxide reforming of methane over CoX/ZrO2 catalysts (X = La, Ce, Mn, Mg, K). Catal. Commun. 2010, 11, 1165–1170. [Google Scholar] [CrossRef]
- Tomishige, K.; Yamazaki, O.; Chen, Y.; Yokoyama, K.; Li, X.; Fujimoto, K. Development of ultra-stable Ni catalysts for CO2 reforming of methane. Catal. Today 1998, 45, 35–39. [Google Scholar] [CrossRef]
- Wang, S.; Lu, G.Q. Reforming of methane with carbon dioxide over Ni/Al2O3 catalysts: Effect of nickel precursor. Appl. Catal. A General 1998, 169, 271–280. [Google Scholar] [CrossRef]
- Tsyganok, A.I.; Inaba, M.; Tsunoda, T.; Hamakawa, S.; Suzuki, K.; Hayakawa, T. Dry reforming of methane over supported noble metals: A novel approach to preparing catalysts. Catal. Commun. 2003, 4, 493–498. [Google Scholar] [CrossRef]
- Ballarini, A.D.; Virgens, C.F.; Rangel, M.C.; de Miguel, S.R.; Grau, J.M. Characterization and behaviour of Pt catalysts supported on basic materials in dry reforming of methane. Braz. J. Chem. Eng. 2019, 36, 275–284. [Google Scholar] [CrossRef]
- de Miguel, S.R.; Vilella, I.M.J.; Maina, S.P.; San José-Alonso, D.; Román-Martínez, M.C.; Illán-Gómez, M.J. Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane. Appl. Catal. A General 2012, 435–436, 10–18. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef]
- Efstathiou, A.M.; Kladi, A.; Tsipouriari, V.A.; Verykios, X.E. Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts: II. A Steady-State Tracing Analysis: Mechanistic Aspects of the Carbon and Oxygen Reaction Pathways to Form CO. J. Catal. 1996, 158, 64–75. [Google Scholar] [CrossRef]
- Bitter, J.H.; Seshan, K.; Lercher, J.A. The State of Zirconia Supported Platinum Catalysts for CO2/CH4 Reforming. J. Catal. 1997, 171, 279–286. [Google Scholar] [CrossRef]
- Stagg, S.M.; Romeo, E.; Padró, C.; Resasco, D.E. Effect of Promotion with Sn on Supported Pt Catalysts for CO2 Reforming of CH4. J. Catal. 1998, 178, 137–145. [Google Scholar] [CrossRef]
- Nakagawa, K.; Anzai, K.; Matsui, N.; Ikenaga, N.; Suzuki, T.; Teng, Y.; Kobayashi, T.; Haruta, M. Effect of support on the conversion of methane to synthesis gas over supported iridium catalysts. Catal. Lett. 1998, 51, 163–167. [Google Scholar] [CrossRef]
- van Keulen, A.N.J.; Seshan, K.; Hoebink, J.H.B.J.; Ross, J.R.H. TAP Investigations of the CO2 Reforming of CH4 over Pt/ZrO2. J. Catal. 1997, 166, 306–314. [Google Scholar] [CrossRef]
- Bitter, J.H.; Seshan, K.; Lercher, J.A. Mono and Bifunctional Pathways of CO2/CH4 Reforming over Pt and Rh Based Catalysts. J. Catal. 1998, 176, 93–101. [Google Scholar] [CrossRef]
- Maina, S.C.P.; Ballarini, A.D.; Vilella, J.I.; de Miguel, S.R. Study of the performance and stability in the dry reforming of methane of doped alumina supported iridium catalysts. Catal. Today 2020, 344, 129–142. [Google Scholar] [CrossRef]
- Whang, H.S.; Choi, M.S.; Lim, J.; Kim, C.; Heo, I.; Chang, T.S.; Lee, H. Enhanced activity and durability of Ru catalyst dispersed on zirconia for dry reforming of methane. Catal. Today 2017, 293, 122–128. [Google Scholar] [CrossRef]
- Singh, S.; Madras, G. Sonochemical synthesis of Pt, Ru doped TiO2 for methane reforming. Appl. Catal. A General 2016, 518, 102–114. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Rui, N.; Li, X.; Lin, L.; Betancourt, L.; Su, D.; Xu, W.; Cen, J.; Attenkofer, K.; et al. Highly Active Ceria-Supported Ru Catalyst for the Dry Reforming of Methane: In Situ Identification of Ruδ+–Ce3+ Interactions for Enhanced Conversion. ACS Catal. 2019, 9, 3349–3359. [Google Scholar] [CrossRef]
- Li, D.; Li, R.; Lu, M.; Lin, X.; Zhan, Y.; Jiang, L. Carbon dioxide reforming of methane over Ru catalysts supported on Mg-Al oxides: A highly dispersed and stable Ru/Mg(Al)O catalyst. Appl. Catal. B Environ. 2017, 200, 566–577. [Google Scholar] [CrossRef]
- Yan, Q.G.; Wu, T.H.; Weng, W.Z.; Toghiani, H.; Toghiani, R.Q.; Wan, H.L.; Pittman, C.U., Jr. Partial oxidation of methane to H2 and CO over Rh/SiO2 and Ru/SiO2 catalysts. J. Catal. 2004, 226, 247–259. [Google Scholar] [CrossRef]
- Faroldi, B.; Carrara, C.; Lombardo, E.A.; Cornaglia, L.M. Production of ultrapure hydrogen in a Pd–Ag membrane reactor using Ru/La2O3 catalysts. Appl. Catal. A General 2007, 319, 38–46. [Google Scholar] [CrossRef]
- Elmasides, C.; Kondarides, D.I.; Grünert, W.; Verykios, X.E. XPS and FTIR Study of Ru/Al2O3 and Ru/TiO2 Catalysts: Reduction Characteristics and Interaction with a Methane-Oxygen Mixture. J. Phys. Chem. B 1999, 103, 5227–5239. [Google Scholar] [CrossRef]
- Rochefort, D.; Dabo, P.; Guay, D.; Sherwood, P.M.A. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochim. Acta. 2003, 48, 4245–4252. [Google Scholar] [CrossRef]
- NIST X-ray Photoelectron Spectroscopy Database. Available online: http://srdata.nist.gov/xps/ (accessed on 28 August 2020).
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Waltham, MA, USA, 1979. [Google Scholar]
- Mazzieri, V.; Coloma-Pascual, F.; Arcoya, A.; L’Argentière, P.C.; Fígoli, N.S. XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Appl. Surf. Sci. 2003, 210, 222–230. [Google Scholar] [CrossRef]
- Ballarini, A.; Basile, F.; Benito, P.; Bersani, I.; Fornasari, G.; de Miguel, S.; Maina, S.C.P.; Vilella, J.; Vaccari, A.; Scelza, O.A. Platinum supported on alkaline and alkaline earth metal-doped alumina as catalysts for dry reforming and partial oxidation of methane. Appl. Catal. A General 2012, 433–434, 1–11. [Google Scholar] [CrossRef]
- Mei, D.; Glezakou, V.A.; Lebarbier, V.; Kovarik, L.; Wan, H.; Albrecht, K.O.; Gerber, M.; Rousseau, R.; Dagle, R.A. Highly active and stable MgAl2O4-supported Rh and Ir catalysts for methane steam reforming: A combined experimental and theoretical study. J. Catal. 2014, 316, 11–23. [Google Scholar] [CrossRef]
- Souza, M.M.V.M.; Aranda, D.A.G.; Schmal, M. Reforming of Methane with Carbon Dioxide over Pt/ZrO2/Al2O3 Catalysts. J. Catal. 2001, 204, 498–511. [Google Scholar] [CrossRef]
- Nagaoka, K.; Seshan, K.; Aika, K.-i.; Lercher, J.A. Carbon Deposition during Carbon Dioxide Reforming of Methane-Comparison between Pt/Al2O3 and Pt/ZrO2. J. Catal. 2001, 197, 34–42. [Google Scholar] [CrossRef]
- Stagg-Williams, S.M.; Noronha, F.B.; Fendley, G.; Resasco, D.E. CO2 Reforming of CH4 over Pt/ZrO2 Catalysts Promoted with La and Ce Oxides. J. Catal. 2000, 194, 240–249. [Google Scholar] [CrossRef]
- Bradford, M.C.J.; Vannice, M.A. CO2 Reforming of CH4 over Supported Pt Catalysts. J. Catal. 1998, 173, 157–171. [Google Scholar] [CrossRef]
- Bitter, J.H.; Seshan, K.; Lercher, J.A. Deactivation and Coke Accumulation during CO2/CH4 Reforming over Pt Catalysts. J. Catal. 1999, 183, 336–343. [Google Scholar] [CrossRef] [Green Version]
Catalyst | d (nm) | |
---|---|---|
x = 1 wt% | x = 10 wt% | |
Ru/Al2O3-Ba(x) | - | 5.2 |
Ru/Al2O3-Ca(x) | - | 4.7 |
Ru/Al2O3-Mg(x) | 1.6 | 5.7 |
Ru/Al2O3-Na(x) | 1.5 | 4.3 |
Ru/Al2O3-K(x) | 1.6 | 2.8 |
Catalyst | X CH4 (%) | X CO2 (%) | Molar Ratio H2/CO |
---|---|---|---|
Ru/Al2O3 | 62.4 | 86.1 | 0.45 |
Ru/Al2O3-Ba(1 wt%) | 67.3 | 89.3 | 0.48 |
Ru/Al2O3-Ca(1 wt%) | 62.7 | 87.4 | 0.48 |
Ru/Al2O3-Mg(1 wt%) | 67.1 | 89.8 | 0.48 |
Ru/Al2O3-Na(1 wt%) | 67.6 | 90.9 | 0.50 |
Ru/Al2O3-K(1 wt%) | 69.7 | 91.7 | 0.49 |
Catalyst | X CH4 (%) | X CO2 (%) | Molar Ratio H2/CO |
---|---|---|---|
Ru/Al2O3 | 34.1 | 59.2 | 0.41 |
Ru/Al2O3-Ba(1 wt%) | 35.2 | 61.5 | 0.40 |
Ru/Al2O3-Ca(1 wt%) | 42.6 | 67.7 | 0.46 |
Ru/Al2O3-Mg(1 wt%) | 38.7 | 64.0 | 0.38 |
Ru/Al2O3-Na(1 wt%) | 48.3 | 75.9 | 0.41 |
Ru/Al2O3-K(1 wt%) | 56.9 | 83.2 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maina, S.C.P.; Vilella, I.M.J.; Ballarini, A.D.; de Miguel, S.R. Performance of Modified Alumina-Supported Ruthenium Catalysts in the Reforming of Methane with CO2. Catalysts 2023, 13, 338. https://doi.org/10.3390/catal13020338
Maina SCP, Vilella IMJ, Ballarini AD, de Miguel SR. Performance of Modified Alumina-Supported Ruthenium Catalysts in the Reforming of Methane with CO2. Catalysts. 2023; 13(2):338. https://doi.org/10.3390/catal13020338
Chicago/Turabian StyleMaina, Silvia Carolina Palmira, Irene María Julieta Vilella, Adriana Daniela Ballarini, and Sergio Rubén de Miguel. 2023. "Performance of Modified Alumina-Supported Ruthenium Catalysts in the Reforming of Methane with CO2" Catalysts 13, no. 2: 338. https://doi.org/10.3390/catal13020338
APA StyleMaina, S. C. P., Vilella, I. M. J., Ballarini, A. D., & de Miguel, S. R. (2023). Performance of Modified Alumina-Supported Ruthenium Catalysts in the Reforming of Methane with CO2. Catalysts, 13(2), 338. https://doi.org/10.3390/catal13020338