Mechanochemical Synthesized CaO/ZnCo2O4 Nanocomposites for Biodiesel Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD
2.2. HRTEM Analysis
2.3. FT-IR
2.4. N2 Gas Physisorption Measurements
2.5. XPS
2.6. CO2-TPD
2.7. Catalytic Activity
2.8. Selectivity
2.9. Reusability
2.10. Kinetic Studies
- (1)
- The reaction does not depend on the methanol concentration (due to it being an excess reagent), and as such, the reaction could be fitted well with pseudo-first-order rate law [51].
- (2)
- The production of intermediate species is negligible.
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Nanosized Materials
3.2.1. Synthesis of ZnCo2O4 Spinel
3.2.2. Synthesis of Calcium Oxide
3.2.3. Synthesis of CaO/ZnCo2O4 Nanocomposites
3.3. Material Characterization
3.4. Transesterification of Tributyrin with Methanol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acosta, P.I.; Campedelli, R.R.; Correa, E.L.; Bazani, H.A.; Nishida, E.N.; Souza, B.S.; Mora, J.R. Efficient production of biodiesel by using a highly active calcium oxide prepared in presence of pectin as heterogeneous catalyst. Fuel 2020, 271, 117651. [Google Scholar] [CrossRef]
- Elias, S.; Rabiu, A.M.; Okeleye, B.I.; Okudoh, V.; Oyekola, O. Bifunctional Heterogeneous Catalyst for Biodiesel Production from Waste Vegetable Oil. Appl. Sci. 2020, 10, 3153. [Google Scholar] [CrossRef]
- Sebestyén, V. Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants. Renew. Sustain. Energy Rev. 2021, 151, 111626. [Google Scholar] [CrossRef]
- Ahmad, S.; Chaudhary, S.; Pathak, V.V.; Kothari, R.; Tyagi, V. Optimization of direct transesterification of Chlorella pyrenoidosa catalyzed by waste egg shell based heterogenous nano-CaO catalyst. Renew. Energy 2020, 160, 86–97. [Google Scholar] [CrossRef]
- Sayed, M.R.; Abukhadra, M.R.; Ahmed, S.A.; Shaban, M.; Javed, U.; Betiha, M.A.; Shim, J.-J.; Rabie, A.M. Synthesis of advanced MgAl-LDH based geopolymer as a potential catalyst in the conversion of waste sunflower oil into biodiesel: Response surface studies. Fuel 2020, 282, 118865. [Google Scholar] [CrossRef]
- Warkhade, G.S.; Babu, A.V. Experimental investigations on the feasibility of higher blends of biodiesel in variable compression ratio diesel engine. Int. J. Ambient. Energy 2020, 41, 1617–1627. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Bhatia, R.K.; Jeon, J.-M.; Pugazhendhi, A.; Awasthi, M.K.; Kumar, D.; Kumar, G.; Yoon, J.-J.; Yang, Y.-H. An overview on advancements in biobased transesterification methods for biodiesel production: Oil resources, extraction, biocatalysts, and process intensification technologies. Fuel 2021, 285, 119117. [Google Scholar] [CrossRef]
- Ferreira, R.; Menezes Passos, R.; Sampaio, K.; Batista, E.A.C.; Sousa Barros Ferreira, R.; Menezes dos Passos, R.; Araujo Sampaio, K.; Augusto Caldas Batista, E. Heterogeneous Catalysts for Biodiesel Production: A Review. Food Public Health 2019, 9, 125–137. [Google Scholar] [CrossRef]
- Abdullah, B.; Muhammad, S.A.F.S.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Kumar, P.; Aslam, M.; Singh, N.; Mittal, S.; Bansal, A.; Jha, M.K.; Sarma, A.K. Characterization, activity and process optimization with a biomass-based thermal power plant’s fly ash as a potential catalyst for biodiesel production. RSC Adv. 2015, 5, 9946–9954. [Google Scholar] [CrossRef]
- Malpani, M.; Varma, A.K.; Mondal, P. Production of bio-oil from algal biomass and its upgradation to biodiesel using CaO-based heterogeneous catalysts. Int. J. Green Energy 2016, 13, 969–976. [Google Scholar] [CrossRef]
- Chakraborty, R.; Chatterjee, S.; Mukhopadhyay, P.; Barman, S. Progresses in Waste Biomass Derived Catalyst for Production of Biodiesel and Bioethanol: A Review. Procedia Environ. Sci. 2016, 35, 546–554. [Google Scholar] [CrossRef]
- Lim, S.; Ling, P.Y.; Jun, L.W. Synthesis and characterisation of carbon-based solid acid catalyst from Jatropha biomass for biodiesel production. AIP Conf. Proc. 2019, 2157, 020052. [Google Scholar] [CrossRef]
- Delgado-Mellado, N.; Ayuso, M.; Villar-Chavero, M.M.; García, J.; Rodríguez, F. Ecotoxicity evaluation towards Vibrio fischeri of imidazolium- and pyridinium-based ionic liquids for their use in separation processes. SN Appl. Sci. 2019, 1, 896. [Google Scholar] [CrossRef]
- Ling, J.S.J.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Saptoro, A.; Nolasco-Hipolito, C. A review of heterogeneous calcium oxide based catalyst from waste for biodiesel synthesis. SN Appl. Sci. 2019, 1, 810. [Google Scholar] [CrossRef]
- Katre, G.; Raskar, S.; Zinjarde, S.; Kumar, V.R.; Kulkarni, B.; RaviKumar, A. Optimization of the insitu transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil. Energy 2018, 142, 944–952. [Google Scholar] [CrossRef]
- Kaur, M.; Malhotra, R.; Ali, A. Tungsten supported Ti/SiO2 nanoflowers as reusable heterogeneous catalyst for biodiesel production. Renew. Energy 2018, 116, 109–119. [Google Scholar] [CrossRef]
- Kusiak, A.; Zhang, Z.; Verma, A. Prediction, operations, and condition monitoring in wind energy. Energy 2013, 60, 1–12. [Google Scholar] [CrossRef]
- Guariento, A.H.; Furtado, K.S.; de Conti, A.; Campos, A.; Purgatto, E.; Carrilho, J.; Shinohara, E.M.G.; Tryndyak, V.; Han, T.; Fuscoe, J.C.; et al. Transcriptomic responses provide a new mechanistic basis for the chemopreventive effects of folic acid and tributyrin in rat liver carcinogenesis. Int. J. Cancer 2014, 135, 7–18. [Google Scholar] [CrossRef]
- Odude, V.O.; Adesina, A.J.; Oyetunde, O.O.; Adeyemi, O.O.; Ishola, N.B.; Etim, A.O.; Betiku, E. Application of Agricultural Waste-Based Catalysts to Transesterification of Esterified Palm Kernel Oil into Biodiesel: A Case of Banana Fruit Peel Versus Cocoa Pod Husk. Waste Biomass Valorization 2019, 10, 877–888. [Google Scholar] [CrossRef]
- Gohain, M.; Devi, A.; Deka, D. Musa balbisiana Colla peel as highly effective renewable heterogeneous base catalyst for biodiesel production. Ind. Crop. Prod. 2017, 109, 8–18. [Google Scholar] [CrossRef]
- de Lima, A.L.; Ronconi, C.M.; Mota, C.J.A. Heterogeneous basic catalysts for biodiesel production. Catal. Sci. Technol. 2016, 6, 2877–2891. [Google Scholar] [CrossRef]
- Li, Z.; Ding, S.; Chen, C.; Qu, S.; Du, L.; Lu, J.; Ding, J. Recyclable Li/NaY zeolite as a heterogeneous alkaline catalyst for biodiesel production: Process optimization and kinetics study. Energy Convers. Manag. 2019, 192, 335–345. [Google Scholar] [CrossRef]
- Sulaiman, N.F.; Hashim, A.N.N.; Toemen, S.; Rosid, S.J.M.; Mokhtar, W.N.A.W.; Nadarajan, R.; Abu Bakar, W.A.W. Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification. Renew. Energy 2020, 153, 1–11. [Google Scholar] [CrossRef]
- Banković–Ilić, I.B.; Miladinović, M.R.; Stamenković, O.S.; Veljković, V.B. Application of nano CaO–based catalysts in biodiesel synthesis. Renew. Sustain. Energy Rev. 2017, 72, 746–760. [Google Scholar] [CrossRef]
- Bharadwaj, A.S.; Singh, M.; Niju, S.; Begum, K.M.S.; Anantharaman, N. Biodiesel production from rubber seed oil using calcium oxide derived from eggshell as catalyst—Optimization and modeling studies. Green Process. Synth. 2019, 8, 430–442. [Google Scholar] [CrossRef]
- Thitsartarn, W.; Kawi, S. An active and stable CaO–CeO2 catalyst for transesterification of oil to biodiesel. Green Chem. 2011, 13, 3423–3430. [Google Scholar] [CrossRef]
- Yu, X.; Wen, Z.; Li, H.; Tu, S.-T.; Yan, J. Transesterification of Pistacia chinensis oil for biodiesel catalyzed by CaO–CeO2 mixed oxides. Fuel 2011, 90, 1868–1874. [Google Scholar] [CrossRef]
- Vozniuk, O.; Tabanelli, T.; Tanchoux, N.; Millet, J.-M.M.; Albonetti, S.; Di Renzo, F.; Cavani, F. Mixed-Oxide Catalysts with Spinel Structure for the Valorization of Biomass: The Chemical-Loop Reforming of Bioethanol. Catalysts 2018, 8, 332. [Google Scholar] [CrossRef]
- Wei, R.; Bu, X.; Gao, W.; Villaos, R.A.B.; Macam, G.; Huang, Z.-Q.; Lan, C.; Chuang, F.-C.; Qu, Y.; Ho, J.C. Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2019, 11, 33012–33021. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, P.; Fan, M.; Jiang, P. Biodiesel production from soybean oil catalyzed by magnetic nanoparticle MgFe2O4@CaO. Fuel 2016, 164, 314–321. [Google Scholar] [CrossRef]
- Galmiz, O.; Stupavska, M.; Wulff, H.; Kersten, H.; Brablec, A.; Cernak, M. Deposition of Zn-containing films using atmospheric pressure plasma jet. Open Chem. 2015, 13, 198–203. [Google Scholar] [CrossRef]
- Xu, J.; He, L.; Wang, Y.; Zhang, C.; Zhang, Y. Preparation of bi-component ZnO/ZnCo2O4 nanocomposites with improved electrochemical performance as anode materials for lithium-ion batteries. Electrochim. Acta 2016, 191, 417–425. [Google Scholar] [CrossRef]
- Fu, J.-X.; Wong, W.-T.; Liu, W.-R. Temperature effects on a nano-porous ZnCo2O4 anode with excellent capability for Li-ion batteries. RSC Adv. 2015, 5, 75838–75845. [Google Scholar] [CrossRef]
- Xiao, X.; Peng, B.; Cai, L.; Zhang, X.; Liu, S.; Wang, Y. The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method. Sci. Rep. 2018, 8, 7571. [Google Scholar] [CrossRef]
- Priya, M.; Premkumar, V.; Vasantharani, P.; Sivakumar, G. Structural and electrochemical properties of ZnCo2O4 nanoparticles synthesized by hydrothermal method. Vacuum 2019, 167, 307–312. [Google Scholar] [CrossRef]
- Mirghiasi, Z.; Bakhtiari, F.; Darezereshki, E.; Esmaeilzadeh, E. Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J. Ind. Eng. Chem. 2014, 20, 113–117. [Google Scholar] [CrossRef]
- Roy, A.; Bhattacharya, J. Microwave-assisted synthesis and characterization of CaO nanoparticles. Int. J. Nanosci. 2011, 10, 413–418. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, G.; Zhang, M.; Wang, Z.; Zhao, R.; Wang, Y. Electrochemical performance of mesoporous ZnCo2O4 nanosheets as an electrode material for supercapacitor. Ionics 2018, 24, 2435–2443. [Google Scholar] [CrossRef]
- Hao, S.; Zhang, B.; Ball, S.; Copley, M.; Xu, Z.; Srinivasan, M.; Zhou, K.; Mhaisalkar, S.; Huang, Y. Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. J. Power Sources 2015, 294, 112–119. [Google Scholar] [CrossRef]
- Abouzir, E.; Elansary, M.; Belaiche, M.; Jaziri, H. Magnetic and structural properties of single-phase Gd3+-substituted Co–Mg ferrite nanoparticles. RSC Adv. 2020, 10, 11244–11256. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J.; Wexler, D.; Shi, D.; Liang, J.; Liu, H.; Xiong, S.; Qian, Y. Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J. Mater. Chem. A 2013, 1, 15292–15299. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, Q. Mesoporous MCo2O4 (M = Cu, Mn and Ni) spinels: Structural replication, characterization and catalytic application in CO oxidation. Microporous Mesoporous Mater. 2009, 124, 144–152. [Google Scholar] [CrossRef]
- Wu, H.; Qin, M.; Zhang, L. NiCo2O4 constructed by different dimensions of building blocks with superior electromagnetic wave absorption performance. Compos. Part B Eng. 2020, 182, 107620. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Zhou, C.; Liu, J.; Zeng, H. Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. NPG Asia Mater. 2015, 7, e165. [Google Scholar] [CrossRef]
- Zhang, P.; Han, Q.; Fan, M.; Jiang, P. Magnetic solid base catalyst CaO/CoFe2O4 for biodiesel production: Influence of basicity and wettability of the catalyst in catalytic performance. Appl. Surf. Sci. 2014, 317, 1125–1130. [Google Scholar] [CrossRef]
- Bai, L.; Tajikfar, A.; Tamjidi, S.; Foroutan, R.; Esmaeili, H. Synthesis of MnFe2O4@graphene oxide catalyst for biodiesel production from waste edible oil. Renew. Energy 2021, 170, 426–437. [Google Scholar] [CrossRef]
- Al-Shammari, B.; Alsulami, Q.A.; Narasimharao, K. Lanthanum Exchanged Keggin Structured Heteropoly Compounds for Biodiesel Production. Catalysts 2019, 9, 979. [Google Scholar] [CrossRef]
- Zhang, N.; Xue, H.; Hu, R. The activity and stability of CeO2@CaO catalysts for the production of biodiesel. RSC Adv. 2018, 8, 32922–32929. [Google Scholar] [CrossRef]
- Ullah, Z.; Bustam, M.A.; Man, Z.; Khan, A.S.; Muhammad, N.; Sarwono, A. Preparation and kinetics study of biodiesel production from waste cooking oil using new functionalized ionic liquids as catalysts. Renew. Energy 2017, 114, 755–765. [Google Scholar] [CrossRef]
- Feyzi, M.; Norouzi, L. Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production. Renew. Energy 2016, 94, 579–586. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Sun, X.; Wu, C.; Gao, Z. Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Renew. Energy 2017, 107, 522–530. [Google Scholar] [CrossRef]
- Rabee, A.I.M.; Manayil, J.C.; Isaacs, M.A.; Parlett, C.M.A.; Durndell, L.J.; Zaki, M.I.; Lee, A.F.; Wilson, K. On the Impact of the Preparation Method on the Surface Basicity of Mg–Zr Mixed Oxide Catalysts for Tributyrin Transesterification. Catalysts 2018, 8, 228. [Google Scholar] [CrossRef] [Green Version]
Catalyst | Crystallite Size (nm) | |
---|---|---|
ZnCo2O4 | CaO | |
CaO | - | 38 |
ZnCo2O4 | 27 | - |
CaO/ZnCo2O4-5 | 16 | 30 |
CaO/ZnCo2O4-10 | 14 | 28 |
CaO/ZnCo2O4-15 | 12 | 25 |
CaO/ZnCo2O4-20 | 12 | 25 |
Sample | SBET (m2/g) | Smicro (m2/g) | Smeso (m2/g) | Vtotal (cc/g) | Vmicro (cc/g) | Vmeso (cc/g) | Average Pore Size (nm) |
---|---|---|---|---|---|---|---|
CaO/ZnCo2O4-20 | 23.0 | 7.0 | 14 | 0.033 | 0.006 | 0.023 | 3.0 |
ZnCo2O4 | 32.0 | 12.0 | 16 | 0.041 | 0.007 | 0.027 | 3.0 |
CaO | 6.0 | 0.0 | 5.8 | 0.01 | 0.00 | 0.01 | 4.0 |
Catalyst | Temp. (°C) | CO2 Uptake (μmol/g) | Total CO2 Uptake (μmol/g) |
---|---|---|---|
CaO/ZnCo2O4-20 | 750 | 251 | 1276 |
800 | 539 | ||
908 | 486 | ||
ZnCo2O4 | 620 | 152 | 677 |
720 | 545 | ||
CaO | 638 | 904 | 904 |
Catalyst | Reaction Rate Constant (k) | Ea kJ mol−1 | |||||
---|---|---|---|---|---|---|---|
40 °C | 50 °C | 60 °C | 70 °C | 80 °C | 90 °C | ||
CaO | 34 × 10−3 | 41 × 10−3 | 52 × 10−3 | 64 × 10−3 | 75 × 10−3 | 82 × 10−3 | 17 |
ZnCo2O4 | 0.07 × 10−3 | 0.1 × 10−3 | 0.2 × 10−3 | 0.4 × 10−3 | 0.5 × 10−3 | 0.7 × 10−3 | 48 |
CaO/ZnCo2O4-20 | 32 × 10−3 | 41 × 10−3 | 49 × 10−3 | 55 × 10−3 | 70 × 10−3 | 79 × 10−3 | 16 |
CaO/ZnCo2O4-15 | 2 × 10−3 | 7 × 10−3 | 9 × 10−3 | 11 × 10−3 | 14 × 10−3 | 18 × 10−3 | 22 |
CaO/ZnCo2O4-10 | 0.3 × 10−3 | 0.7 × 10−3 | 1 × 10−3 | 1.4 × 10−3 | 1.7 × 10−3 | 4 × 10−3 | 34 |
CaO/ZnCo2O4-5 | 0.1 × 10−3 | 0.3 × 10−3 | 0.4 × 10−3 | 0.6 × 10−3 | 1 × 10−3 | 1.6 × 10−3 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narasimharao, K.; Mostafa, M.M.M.; Al-Amshany, Z.M.; Bajafar, W. Mechanochemical Synthesized CaO/ZnCo2O4 Nanocomposites for Biodiesel Production. Catalysts 2023, 13, 398. https://doi.org/10.3390/catal13020398
Narasimharao K, Mostafa MMM, Al-Amshany ZM, Bajafar W. Mechanochemical Synthesized CaO/ZnCo2O4 Nanocomposites for Biodiesel Production. Catalysts. 2023; 13(2):398. https://doi.org/10.3390/catal13020398
Chicago/Turabian StyleNarasimharao, Katabathini, Mohamed Mokhtar M. Mostafa, Zahra M. Al-Amshany, and Wejdan Bajafar. 2023. "Mechanochemical Synthesized CaO/ZnCo2O4 Nanocomposites for Biodiesel Production" Catalysts 13, no. 2: 398. https://doi.org/10.3390/catal13020398
APA StyleNarasimharao, K., Mostafa, M. M. M., Al-Amshany, Z. M., & Bajafar, W. (2023). Mechanochemical Synthesized CaO/ZnCo2O4 Nanocomposites for Biodiesel Production. Catalysts, 13(2), 398. https://doi.org/10.3390/catal13020398