Removal of Safranin O from Water by UV/TiO2/IO3− Advanced Oxidation Process: Parametric Study and Impact of Inorganic Ions and Humic Acid
Abstract
:1. Introduction
2. Results
2.1. Photocatalytic Degradation of Safranin O through Iodate Process
2.2. Effect of Operational Conditions
2.2.1. Effect of Initial Concentration of SO
2.2.2. Effect of Photocatalyst Concentration
2.2.3. Effect of Iodate Loading
2.2.4. Effect of Liquid Temperature
2.2.5. Effect of Initial Solution pH
2.3. Mineral and Organic Additives Impact on Degradation Efficiency
2.4. Degradation in Real Water Matrices
3. Materials and Methods
3.1. Reagents
3.2. Photocatalytic Experiments and Apparatus
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Wang, W.; Xiao, H.; Hong, C.; Zhu, F.; Yao, Y.; Xue, Z. Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 2012, 193–194, 290–295. [Google Scholar] [CrossRef]
- Rajeev, J.; Nidhi, S.; Nimisha, J.; Keisham, R. Electrochemical studies on a textile azine dye: Safranin T. Environ. Pollut. 2006, 27, 121–134. [Google Scholar]
- Venkataraman, K. The Chemistry of Synthetic Dyes. Academic Press: London, UK, 1971; ISBN ISBN 978-0-12-717005-3. [Google Scholar]
- Waring, D.R.; Hallas, G. The Chemistry and Application of Dyes. Plenum Press: New York, NY, USA, 1990; ISBN 9781468477177. [Google Scholar]
- Piscopo, A.; Robert, D.; Weber, J.V. Influence of pH and chloride anion on the photocatalytic degradation of organic compounds Part I. Effect on the benzamide and para -hydroxybenzoic acid in TiO2 aqueous solution. Appl. Catal. B Environ. 2001, 35, 117–124. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B.; Buxton, G.V.; Greenstock, C.L.; Helman, P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH /•O in Aqueous Solution. J. Phys. Chem. Ref. Data 2011, 17, 023103. [Google Scholar] [CrossRef] [Green Version]
- Choy, W.K.; Chu, W. Photo-oxidation of o-chloroaniline in the presence of TiO2 and IO3−: A study of photo-intermediates and successive IO3− dose. Chem. Eng. J. 2008, 136, 180–187. [Google Scholar] [CrossRef]
- Wu, M.-C.; Wu, C.-H. Decolorization of C.I. reactive red 198 in UV/oxidant and UV/TiO2 /oxidant systems. Reac Kinet Mech Cat 2011, 104, 281–290. [Google Scholar] [CrossRef]
- Bekkouche, S.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M. Efficient photocatalytic degradation of Safranin O by integrating solar-UV/TiO2/persulfate treatment: Implication of sulfate radical in the oxidation process and effect of various water matrix components. J. Photochem. Photobiol. A Chem. 2017, 345, 80–91. [Google Scholar] [CrossRef]
- Gözmen, B.; Turabik, M.; Hesenov, A. Photocatalytic degradation of Basic Red 46 and Basic Yellow 28 in single and binary mixture by UV/TiO2/periodate system. J. Hazard. Mater. 2009, 164, 1487–1495. [Google Scholar] [CrossRef]
- Yun, E.T.; Yoo, H.Y.; Kim, W.; Kim, H.E.; Kang, G.; Lee, H.; Lee, S.; Park, T.; Lee, C.; Kim, J.H.; et al. Visible-light-induced activation of periodate that mimics dye-sensitization of TiO2: Simultaneous decolorization of dyes and production of oxidizing radicals. Appl. Catal. B Environ. 2017, 203, 475–484. [Google Scholar] [CrossRef]
- Bendjama, M.; Hamdaoui, O.; Ferkous, H.; Alghyamah, A. Degradation of Safranin O in Water by UV/TiO2/IO4−Process: Effect of Operating Conditions and Mineralization. Catalysts 2022, 12, 1460. [Google Scholar] [CrossRef]
- Choy, W.K.; Chu, W. The use of oxyhalogen in photocatalytic reaction to remove o-chloroaniline in TiO2 dispersion. Chemosphere 2007, 66, 2106–2113. [Google Scholar] [CrossRef]
- Zhang, X.; Kamali, M.; Yu, X.; Costa, M.E.V.; Appels, L.; Cabooter, D.; Dewil, R. Kinetics and mechanisms of the carbamazepine degradation in aqueous media using novel iodate-assisted photochemical and photocatalytic systems. Sci. Total Environ. 2022, 825, 153871. [Google Scholar] [CrossRef]
- Amichai, O.; Treinin, A. On the Oxyiodine Radicals in Aqueous Solution. J. Phys. Chem. 1970, 74, 830–835. [Google Scholar] [CrossRef]
- Barat, F.; Gilles, L.; Hickel, B.; Sutton, J. The Flash Photolysis of Aqueous Solutions of Halate Ions. Chem. Commun. 1969, 1485. [Google Scholar] [CrossRef]
- Haddad, A.; Merouani, S.; Hannachi, C.; Hamdaoui, O.; Hamrouni, B. Intensi fi cation of light green SF yellowish (LGSFY) photodegradion in water by iodate ions: Iodine radicals implication in the degradation process and impacts of water matrix components. Sci. Total Environ. 2019, 652, 1219–1227. [Google Scholar] [CrossRef]
- Wu, C.-H.; Yu, C.-H. Effects of TiO2 dosage, pH and temperature on decolorization of C.I. Reactive Red 2 in a UV/US/TiO2 system. J. Hazard. Mater. 2009, 169, 1179–1183. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, B.; Zhang, Z.; Song, M.; Zhao, X. Temperature effect on the photocatalytic degradation of methyl orange under UV-vis light irradiation. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2010, 25, 210–213. [Google Scholar] [CrossRef]
- Chatzitakis, A.; Berberidou, C.; Paspaltsis, I.; Kyriakou, G.; Sklaviadis, T.; Poulios, I. Photocatalytic degradation and drug activity reduction of Chloramphenicol. Water Res. 2008, 42, 386–394. [Google Scholar] [CrossRef]
- Chadi, N.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. H2O2/Periodate (IO4−): A novel advanced oxidation technology for the degradation of refractory organic pollutants. Water Res. Technol. 2019, 5, 1113–1123. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef]
- Buxton, V.; Sellers, M. Radiation-induced Redox Reactions of Iodine Species in Aqueous Solution. J. Chem. Soc. Faraday Trans. I 1985, 1, 449–471. [Google Scholar] [CrossRef]
- Bielan, Z.; Dudziak, S.; Sulowska, A.; Pelczarski, D.; Ryl, J.; Zielinska-Jurek, A. Preparation and Characterization of Defective TiO2. The E ff ect of the Reaction Environment on Titanium Vacancies Formation. Materials 2020, 13, 2763. [Google Scholar] [CrossRef]
- Fkhami, A.A.; Adrakian, T.M.; Arei, A.R.Z. Spectrophotometric Determination of Periodate, Iodate and Bromate Mixtures Based on Their Reaction with Iodide. Anal. Sci. 2001, 17, 1199–1202. [Google Scholar] [CrossRef] [Green Version]
- Palmer, F.L.; Eggins, B.R.; Coleman, H.M. The effect of operational parameters on the photocatalytic degradation of humic acid. J. Photochem. Photobiol. A Chem. 2002, 148, 137–143. [Google Scholar] [CrossRef]
Initial SO Concentration (mg∙L−1) | 5 | 10 | 20 | 30 |
---|---|---|---|---|
r0 (mg∙L−1∙min−1) | 1.5 | 0.765 | 0.342 | 0.1 |
[TiO2]0 (g∙L−1) | 0.01 | 0.05 | 0.1 | 0.4 | 1 | 3 |
---|---|---|---|---|---|---|
r0 (mg∙L−1∙min−1) | 0.15 | 0.397 | 0.526 | 0.765 | 1.017 | 1.32 |
Mineral Water | Seawater | |
---|---|---|
pH | 7.2 | 7.5 |
Ca2+ | 99 mg∙L−1 | 0.4 g∙L−1 |
Mg2+ | 24 mg∙L−1 | 1.3 g∙L−1 |
K+ | 2.1 mg∙L−1 | - |
Na+ | 15.8 mg∙L−1 | 11.0 g∙L−1 |
HCO3− | 265 mg∙L−1 | - |
SO42− | 68 mg∙L−1 | 3.0 g∙L−1 |
Cl− | 72 mg∙L−1 | 20.0 g∙L−1 |
NO3− | 15 mg∙L−1 | - |
NO2− | <0.02 mg∙L−1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bendjama, M.; Hamdaoui, O.; Ferkous, H.; Alghyamah, A. Removal of Safranin O from Water by UV/TiO2/IO3− Advanced Oxidation Process: Parametric Study and Impact of Inorganic Ions and Humic Acid. Catalysts 2023, 13, 447. https://doi.org/10.3390/catal13020447
Bendjama M, Hamdaoui O, Ferkous H, Alghyamah A. Removal of Safranin O from Water by UV/TiO2/IO3− Advanced Oxidation Process: Parametric Study and Impact of Inorganic Ions and Humic Acid. Catalysts. 2023; 13(2):447. https://doi.org/10.3390/catal13020447
Chicago/Turabian StyleBendjama, Meriem, Oualid Hamdaoui, Hamza Ferkous, and Abdulaziz Alghyamah. 2023. "Removal of Safranin O from Water by UV/TiO2/IO3− Advanced Oxidation Process: Parametric Study and Impact of Inorganic Ions and Humic Acid" Catalysts 13, no. 2: 447. https://doi.org/10.3390/catal13020447
APA StyleBendjama, M., Hamdaoui, O., Ferkous, H., & Alghyamah, A. (2023). Removal of Safranin O from Water by UV/TiO2/IO3− Advanced Oxidation Process: Parametric Study and Impact of Inorganic Ions and Humic Acid. Catalysts, 13(2), 447. https://doi.org/10.3390/catal13020447