Photoelectrochemical Conversion of Sewage Water into H2 Fuel over the CuFeO2/CuO/Cu Composite Electrode
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CuFeO2/CuO/Cu Nanomaterials Photoelectrode
2.2. Photoelectrochemical Water Splitting
3. Materials and Methods
3.1. CuFeO2 Delafossite Nanomaterial Preparation
3.2. Characterization
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, F.; Rabia, M.; Shaban, M. Synthesis and Characterization of Biogenic Iron Oxides of Different Nanomorphologies from Pomegranate Peels for Efficient Solar Hydrogen Production. J. Mater. Res. Technol. 2020, 9, 4255–4271. [Google Scholar] [CrossRef]
- Shaban, M.; Ali, S.; Rabia, M. Design and Application of Nanoporous Graphene Oxide Film for CO2, H2, and C2H2 Gases Sensing. J. Mater. Res. Technol. 2019, 8, 4510–4520. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Rabia, M.; Shaban, M.; Aly, A.H.; Ahmed, A.M. Preparation of Hexagonal Nanoporous Al2O3/TiO2/TiN as a Novel Photodetector with High Efficiency. Sci. Rep. 2021, 11, 17572. [Google Scholar] [CrossRef]
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; et al. Photocatalytic Solar Hydrogen Production from Water on a 100-M2 Scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Hisatomi, K.D.T. Reaction Systems for Solar Hydrogen Production via Water Splitting with Particulate Semiconductor. Nat. Catal. 2019, 2, 387–399. [Google Scholar] [CrossRef]
- Pagliaro, M. Preparing for the Future: Solar Energy and Bioeconomy in the United Arab Emirates. Energy Sci. Eng. 2019, 7, 1451–1457. [Google Scholar] [CrossRef] [Green Version]
- Takata, T. Photocatalytic Water Splitting with Quantum Efficiency of Almost Unity. Nature 2020, 581, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Cheng, Y.; Zheng, Z.; Cheng, F.; Chen, Z.; Li, L.; Tan, X.; Xiong, L.; Zhai, T.; Gao, Y. MoS2-Based Photodetectors Powered by Asymmetric Contact Structure with Large Work Function Difference. Nano-Micro Lett. 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Lee, W.W.; Yang, D.W.; Chang, W.J.; Kwon, S.S.; Park, W. Il Anomalous Photovoltaic Response of Graphene-on-GaN Schottky Photodiodes. ACS Appl. Mater. Interfaces 2018, 10, 14170–14174. [Google Scholar] [CrossRef]
- Shaban, M.; Rabia, M.; El-Sayed, A.M.A.; Ahmed, A.; Sayed, S. Photocatalytic Properties of PbS/Graphene Oxide/Polyaniline Electrode for Hydrogen Generation. Sci. Rep. 2017, 7, 14100. [Google Scholar] [CrossRef] [Green Version]
- Rabia, M.; Mohamed, H.S.H.; Shaban, M.; Taha, S. Preparation of Polyaniline/PbS Core-Shell Nano/Microcomposite and Its Application for Photocatalytic H2 Electrogeneration from H2O. Sci. Rep. 2018, 8, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, H.S.H.; Rabia, M.; Zhou, X.G.; Qin, X.S.; Khabiri, G.; Shaban, M.; Younus, H.A.; Taha, S.; Hu, Z.Y.; Liu, J.; et al. Phase-Junction Ag/TiO2 Nanocomposite as Photocathode for H2 Generation. J. Mater. Sci. Technol. 2021, 83, 179–187. [Google Scholar] [CrossRef]
- Rabia, M.; Shaban, M.; Jibali, B.M.; Abdelkhaliek, A.A. Effect of Annealing Temperature on the Photoactivity of ITO/VO2 (M)/Au Film Electrodes for Water Splitting. J. Nanosci. Nanotechnol. 2020, 20, 4120–4130. [Google Scholar] [CrossRef] [PubMed]
- Rabia, M.; Mohamed, S.H.; Zhao, H.; Shaban, M.; Lei, Y.; Ahmed, A.M. TiO2/TiOxNY Hollow Mushrooms-like Nanocomposite Photoanode for Hydrogen Electrogeneration. J. Porous Mater. 2020, 27, 133–139. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Yang, W.; Leng, B.; Niu, P.; Jiang, X.; Liu, B. High-Performance Flexible Ultraviolet Photodetectors Based on AZO/ZnO/PVK/PEDOT:PSS Heterostructures Integrated on Human Hair. ACS Appl. Mater. Interfaces 2019, 11, 24459–24467. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.C.; Kim, K.H.; Hwang, M.S.; Park, J.S.; Lee, J.M.; So, J.P.; Choi, J.H.; Kwon, S.H.; Barrelet, C.J.; et al. Photon-Triggered Nanowire Transistors. Nat. Nanotechnol. 2017, 12, 963–968. [Google Scholar] [CrossRef]
- Li, M.; Yu, M.; Su, D.; Zhang, J.; Jiang, S.; Wu, J.; Wang, Q.; Liu, S. Ultrahigh Responsivity UV Photodetector Based on Cu Nanostructure/ZnO QD Hybrid Architectures. Small 2019, 15, 1901606. [Google Scholar] [CrossRef]
- Almohammedi, A.; Shaban, M.; Mostafa, H.; Rabia, M. Nanoporous TiN/TiO2/Alumina Membrane for Photoelectrochemical Hydrogen Production from Sewage Water. Nanomaterials 2021, 11, 2617. [Google Scholar] [CrossRef]
- Schultze, J.W.; Lohrengel, M.M. Stability, Reactivity and Breakdown of Passive Films. Problems of Recent and Future Research. Electrochim. Acta 2000, 45, 2499–2513. [Google Scholar] [CrossRef]
- Basnet, P.; Zhao, Y. Tuning the CuxO Nanorod Composition for Efficient Visible Light Induced Photocatalysis. Catal. Sci. Technol. 2016, 6, 2228–2238. [Google Scholar] [CrossRef]
- Chiang, C.Y.; Shin, Y.; Aroh, K.; Ehrman, S. Copper Oxide Photocathodes Prepared by a Solution Based Process. Int. J. Hydrogen Energy 2012, 37, 8232–8239. [Google Scholar] [CrossRef]
- Chiang, C.-Y.; Chang, M.-H.; Liu, H.-S.; Tai, C.Y.; Ehrman, S. Process Intensification in the Production of Photocatalysts for Solar Hydrogen Generation. Ind. Eng. Chem. Res. 2012, 51, 5207–5215. [Google Scholar] [CrossRef]
- Li, C.; Kurniawan, M.; Sun, D.; Tabata, H.; Delaunay, J.J. Nanoporous CuO Layer Modified Cu Electrode for High Performance Enzymatic and Non-Enzymatic Glucose Sensing. Nanot 2015, 26, 015503. [Google Scholar] [CrossRef]
- Sagadevan, S.; Vennila, S.; Marlinda, A.R.; Al-Douri, Y.; Rafie Johan, M.; Anita Lett, J. Synthesis and Evaluation of the Structural, Optical, and Antibacterial Properties of Copper Oxide Nanoparticles. Appl. Phys. A Mater. Sci. Process. 2019, 125, 489. [Google Scholar] [CrossRef]
- Ragupathi, V.; Raja, M.A.; Panigrahi, P.; Ganapathi Subramaniam, N. CuO/g-C3N4 Nanocomposite as Promising Photocatalyst for Photoelectrochemical Water Splitting. Optik 2020, 208, 164569. [Google Scholar] [CrossRef]
- Thi Quyen, V.; Jitae, K.; Thi Huong, P.; Thi Thu Ha, L.; My Thanh, D.; Minh Viet, N.; Quang Thang, P. Copper Doped Titanium Dioxide as a Low-Cost Visible Light Photocatalyst for Water Splitting. Sol. Energy 2021, 218, 150–156. [Google Scholar] [CrossRef]
- Chen, J.; Shen, S.; Guo, P.; Wang, M.; Wu, P.; Wang, X.; Guo, L. In-Situ Reduction Synthesis of Nano-Sized Cu2O Particles Modifying g-C3N4 for Enhanced Photocatalytic Hydrogen Production. Appl. Catal. B Environ. 2014, 152–153, 335–341. [Google Scholar] [CrossRef]
- Liu, Q.L.; Zhao, Z.Y.; Zhao, R.D.; Yi, J.H. Fundamental Properties of Delafossite CuFeO2 as Photocatalyst for Solar Energy Conversion. J. Alloys Compd. 2020, 819, 153032. [Google Scholar] [CrossRef]
- He, B.; Zhao, Z.; Song, L.; Liu, W.; Yang, Y.; Shang, J.; Cheng, X. Highly Efficient Activation of Peroxymonosulfate by the (3R + 2H)-CuFeO2 Nanocomposite Photocatalyst: Intermediate Toxicity, BVS Validation Ionic Migration and Degradation Pathway. Sep. Purif. Technol. 2022, 289, 120729. [Google Scholar] [CrossRef]
- Dai, C.; Nie, Y.; Tian, X.; Yang, C.; Hu, Y.; Lin, H.M.; Dionysiou, D.D. Insight into Enhanced Fenton-like Degradation of Antibiotics over CuFeO2 Based Nanocomposite: To Improve the Utilization Efficiency of OH/O 2- via Minimizing Its Migration Distance. Chemosphere 2022, 294, 133743. [Google Scholar] [CrossRef]
- Mao, L.; Mohan, S.; Gupta, S.K.; Mao, Y. Multifunctional Delafossite CuFeO2 as Water Splitting Catalyst and Rhodamine B Sensor. Mater. Chem. Phys. 2022, 278, 125643. [Google Scholar] [CrossRef]
- Baiano, C.; Schiavo, E.; Gerbaldi, C.; Bella, F.; Meligrana, G.; Talarico, G.; Maddalena, P.; Pavone, M.; Muñoz-García, A.B. Role of Surface Defects in CO2 Adsorption and Activation on CuFeO2 Delafossite Oxide. Mol. Catal. 2020, 496, 111181. [Google Scholar] [CrossRef]
- Nien, Y.T.; Chen, Y.Z.; Hsu, Y.R.; Ye, H.J. Enhanced Antibacterial Effect of CuFeO2 Ceramic Powders by Glycine Combustion Process and Visible Light Irradiation. Mater. Chem. Phys. 2022, 276, 125423. [Google Scholar] [CrossRef]
- Chang, Y.H.; Wang, H.; Siao, T.F.; Lee, Y.H.; Bai, S.Y.; Liao, C.W.; Zhuang, J.K.; Chiu, T.W.; Kuo, C.H. A New Solution Route for the Synthesis of CuFeO2 and Mg-Doped CuFeO2 as Catalysts for Dye Degradation and CO2 Conversion. J. Alloys Compd. 2021, 854, 157235. [Google Scholar] [CrossRef]
- Teixeira, G.F.; Silva Junior, E.; Vilela, R.; Zaghete, M.A.; Colmati, F. Perovskite Structure Associated with Precious Metals: Influence on Heterogenous Catalytic Process. Catalysts 2019, 9, 721. [Google Scholar] [CrossRef] [Green Version]
- Mishra, M.; Chun, D.M. α-Fe2O3 as a Photocatalytic Material: A Review. Appl. Catal. A Gen. 2015, 498, 126–141. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I.; Naterer, G.F. Review of Photocatalytic Water-Splitting Methods for Sustainable Hydrogen Production. Int. J. Energy Res. 2016, 40, 1449–1473. [Google Scholar] [CrossRef]
- Chiang, C.Y.; Aroh, K.; Franson, N.; Satsangi, V.R.; Dass, S.; Ehrman, S. Copper Oxide Nanoparticle Made by Flame Spray Pyrolysis for Photoelectrochemical Water Splitting—Part II. Photoelectrochemical Study. Int. J. Hydrogen Energy 2011, 36, 15519–15526. [Google Scholar] [CrossRef]
- Guo, X.; Diao, P.; Xu, D.; Huang, S.; Yang, Y.; Jin, T.; Wu, Q.; Xiang, M.; Zhang, M. CuO/Pd Composite Photocathodes for Photoelectrochemical Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2014, 39, 7686–7696. [Google Scholar] [CrossRef]
- Cheng, X.; Ding, J.; Wu, Y.; Liu, H.; Dawson, G. The Photocathodic Properties of a Fe2O3 Wrapped CuFeO2 Layer on ITO Glass for Water Splitting. Chem. Phys. 2018, 513, 241–245. [Google Scholar] [CrossRef]
- Siddiqui, H.; Parra, M.R.; Qureshi, M.S.; Malik, M.M.; Haque, F.Z. Studies of Structural, Optical, and Electrical Properties Associated with Defects in Sodium-Doped Copper Oxide (CuO/Na) Nanostructures. J. Mater. Sci. 2018, 53, 8826–8843. [Google Scholar] [CrossRef]
- Mohamed, W.S.; Alzaid, M.; Abdelbaky, M.S.M.; Amghouz, Z.; García-Granda, S.; Abu-Dief, A.M. Impact of Co2+ Substitution on Microstructure and Magnetic Properties of CoxZn1-XFe2O4 Nanoparticles. Nanomaterials 2019, 9, 1602. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, W.S.; Hadia, N.M.A.; Al Bakheet, B.; Alzaid, M.; Abu-Dief, A.M. Impact of Cu2+ Cations Substitution on Structural, Morphological, Optical and Magnetic Properties of Co1-XCuxFe2O4 Nanoparticles Synthesized by a Facile Hydrothermal Approach. Solid State Sci. 2022, 125, 106841. [Google Scholar] [CrossRef]
- Mohamed, W.S.; Abu-Dief, A.M. Impact of Rare Earth Europium (RE-Eu3+) Ions Substitution on Microstructural, Optical and Magnetic Properties of CoFe2−xEuxO4 Nanosystems. Ceram. Int. 2020, 46, 16196–16209. [Google Scholar] [CrossRef]
- Zúñiga, A.; Fonseca, L.; Souza, J.A.; Rivaldo-Gomez, C.; Pomar, C.D.; Criado, D. Anomalous Ferromagnetic Behavior and Size Effects in CuO Nanowires. J. Magn. Magn. Mater. 2019, 471, 77–81. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Z.; Hu, J.; Chen, X. Vertical CuO Nanowires Array Electrodes: Visible Light Sensitive Photoelectrochemical Biosensor of Ethanol Detection. Mater. Sci. Semicond. Process. 2018, 85, 90–97. [Google Scholar] [CrossRef]
- Mahmoodi, A.; Solaymani, S.; Amini, M.; Nezafat, N.B.; Ghoranneviss, M. Structural, Morphological and Antibacterial Characterization of CuO Nanowires. Silicon 2017, 10, 1427–1431. [Google Scholar] [CrossRef]
- Kim, J.-H.; Katoch, A.; Choi, S.-W.; Kim, S.S. Growth and Sensing Properties of Networked P-CuO Nanowires. Sens. Actuators B. Chem. 2015, 212, 190–195. [Google Scholar] [CrossRef]
- Hadia, N.M.A.; Hajjiah, A.; Elsayed, A.M.; Mohamed, S.H.; Alruqi, M.; Shaban, M.; Alzahrani, F.M.; Abdelazeez, A.A.A.; Rabia, M. Bunch of Grape-Like Shape PANI/Ag2O/Ag Nanocomposite Photocatalyst for Hydrogen Generation from Wastewater. Adsorpt. Sci. Technol. 2022, 2022, 4282485. [Google Scholar] [CrossRef]
- Sayyah, S.M.; Shaban, M.; Rabia, M. Electropolymerization of m -Toluidin on Platinum Electrode from Aqueous Acidic Solution and Character of the Obtained Polymer. Adv. Polym. Technol. 2018, 37, 126–136. [Google Scholar] [CrossRef]
- Sayyah, S.M.; Shaban, M.; Rabia, M. A High-Sensitivity Potentiometric Mercuric Ion Sensor Based on m-Toluidine Films. IEEE Sens. J. 2016, 16, 1541–1548. [Google Scholar] [CrossRef]
- Helmy, A.; Rabia, M.; Shaban, M.; Ashraf, A.M.; Ahmed, S.; Ahmed, A.M. Graphite/Rolled Graphene Oxide/Carbon Nanotube Photoelectrode for Water Splitting of Exhaust Car Solution. Int. J. Energy Res. 2020, 44, 7687–7697. [Google Scholar] [CrossRef]
- Mohamed, H.S.H.; Rabia, M.; Shaban, M.; Taha, S. Controlled Synthesis of CdS Nanoflowers Thin Films for H2 Electro-Generation. Mater. Sci. Semicond. Process. 2020, 120, 105307. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, G.; Mi, J.; Wu, Z. Fabrication of Visible-Light-Driven One-Dimensional Anatase TiO2/Ag Heterojunction Plasmonic Photocatalyst. Catal. Commun. 2012, 24, 48–51. [Google Scholar] [CrossRef]
- Sayyah, S.M.; Shaban, M.; Rabia, M. M-Toluidine Polymer Film Coated Platinum Electrode as a pH Sensor by Potentiometric Methods. Sens. Lett. 2015, 13, 961–966. [Google Scholar] [CrossRef]
- Li, Z.; Qu, Y.; He, G.; Humayun, M.; Chen, S.; Jing, L. Enhanced Visible-Light Activities for PEC Water Reduction of CuO Nanoplates by Coupling with Anatase TiO2 and Mechanism. Appl. Surf. Sci. 2015, 351, 681–685. [Google Scholar] [CrossRef]
- Rabia, M.; Hadia, N.M.A.; Farid, O.M.; Abdelazeez, A.A.A.; Mohamed, S.H.; Shaban, M. Poly(m-Toluidine)/Rolled Graphene Oxide Nanocomposite Photocathode for Hydrogen Generation from Wastewater. Int. J. Energy Res. 2022, 46, 11943–11956. [Google Scholar] [CrossRef]
- Khalafalla, M.A.H.; Hadia, N.M.A.; Elsayed, A.M.; Alruqi, M.; El Malti, W.; Shaban, M.; Rabia, M. ATO/Polyaniline/PbS Nanocomposite as Highly Efficient Photoelectrode for Hydrogen Production from Wastewater with Theoretical Study for the Water Splitting. Adsorpt. Sci. Technol. 2022, 2022, 5628032. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, M.; Sun, R.; Long, G.; Liu, Y.; Zhao, W. Enhanced Hydrogen Evolution from CuOx-C/TiO2 with Multiple Electron Transport Pathways. PLoS ONE 2019, 14, e0215339. [Google Scholar] [CrossRef]
- Sherman, B.D.; Ashford, D.L.; Lapides, A.M.; Sheridan, M.V.; Wee, K.-R.; Meyer, T.J. Light-Driven Water Splitting with a Molecular Electroassembly-Based Core/Shell Photoanode. J. Phys. Chem. Lett. 2015, 6, 3213–3217. [Google Scholar] [CrossRef]
- Naldoni, A.; Guler, U.; Wang, Z.; Marelli, M.; Malara, F.; Meng, X.; Besteiro, L.V.; Govorov, A.O.; Kildishev, A.V.; Boltasseva, A.; et al. Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. Adv. Opt. Mater. 2017, 5, 1601031. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Karuturi, S.K.; Chen, H.; Wang, D.; Ager, J.W.; Simonov, A.N.; Tricoli, A. Enhancement of the Photoelectrochemical Water Splitting by Perovskite BiFeO3 via Interfacial Engineering. Sol. Energy 2020, 202, 198–203. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, D.; Wen, L.; Xu, R.; Obergfell, M.; Mi, Y.; Zhan, Z.; Nasori, N.; Demsar, J.; Lei, Y. Manipulation of Charge Transfer and Transport in Plasmonic-Ferroelectric Hybrids for Photoelectrochemical Applications. Nat. Commun. 2016, 7, 10348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, E.; Kumar, S.; Thomas, S.R.; Pickering, H.; Fermin, D.J.; Eslava, S. PrFeO3 Photocathodes Prepared Through Spray Pyrolysis. ChemElectroChem 2020, 7, 1365–1372. [Google Scholar] [CrossRef]
- Modibane, K.D.; Waleng, N.J.; Ramohlola, K.E.; Maponya, T.C.; Monama, G.R.; Makgopa, K.; Hato, M.J. Poly(3-Aminobenzoic Acid) Decorated with Cobalt Zeolitic Benzimidazolate Framework for Electrochemical Production of Clean Hydrogen. Polymers 2020, 12, 1581. [Google Scholar] [CrossRef]
Species | Concentration (mg/L) |
---|---|
Phenols | 0.015 |
F− | 1.0 |
Al3+ | 3.0 |
NH3 | 5.0 |
Hg2+ | 0.005 |
Pb2+ | 0.5 |
Cd3+ | 0.05 |
As3+ | 0.05 |
Cr3+ | 1.0 |
Cu2+ | 1.5 |
Ni3+ | 0.1 |
Fe3+ | 1.5 |
Mn2+ | 1.0 |
Zn2+ | 5.0 |
Ag+ | 0.1 |
Ba3+ | 2.0 |
Co2+ | 2.0 |
Other cations | 0.1 |
Pesticides | 0.2 |
CN−1 | 0.1 |
Industrial washing | 0.5 |
Coli groups | 400 |
Photoelectrode | Electrolyte | Jph (mA/cm2) |
---|---|---|
g-C3N4-CuO [25] | NaOH | 0.01 |
CuO-C/TiO2 [59] | Glycerol | 0.012 |
SnO2/TiO2 [60] | Na2S2O3 | 0.4 |
TiN-TiO2 [61] | NaOH | 3.0 × 10−4 |
BiFeO3 [62] | NaOH | 0.1 |
Au/Pb(Zr, Ti)O3 [63] | NaOH | 0.06 |
PrFeO [64] | Na2SO4 | 0.130 |
Poly(3-aminobenzoic acid) frame [65] | H2SO4 | 0.08 |
CuFeO2/CuO/Cu (present study) | Sewage water | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadia, N.M.A.; Shaban, M.; Ahmed, A.M.; Mohamed, W.S.; Alzaid, M.; Ezzeldien, M.; Hasaneen, M.F.; El Malti, W.; Abdelazeez, A.A.A.; Rabia, M. Photoelectrochemical Conversion of Sewage Water into H2 Fuel over the CuFeO2/CuO/Cu Composite Electrode. Catalysts 2023, 13, 456. https://doi.org/10.3390/catal13030456
Hadia NMA, Shaban M, Ahmed AM, Mohamed WS, Alzaid M, Ezzeldien M, Hasaneen MF, El Malti W, Abdelazeez AAA, Rabia M. Photoelectrochemical Conversion of Sewage Water into H2 Fuel over the CuFeO2/CuO/Cu Composite Electrode. Catalysts. 2023; 13(3):456. https://doi.org/10.3390/catal13030456
Chicago/Turabian StyleHadia, N. M. A., Mohamed Shaban, Ashour M. Ahmed, W. S. Mohamed, Meshal Alzaid, Mohammed Ezzeldien, M. F. Hasaneen, Wassim El Malti, Ahmed Adel A. Abdelazeez, and Mohamed Rabia. 2023. "Photoelectrochemical Conversion of Sewage Water into H2 Fuel over the CuFeO2/CuO/Cu Composite Electrode" Catalysts 13, no. 3: 456. https://doi.org/10.3390/catal13030456
APA StyleHadia, N. M. A., Shaban, M., Ahmed, A. M., Mohamed, W. S., Alzaid, M., Ezzeldien, M., Hasaneen, M. F., El Malti, W., Abdelazeez, A. A. A., & Rabia, M. (2023). Photoelectrochemical Conversion of Sewage Water into H2 Fuel over the CuFeO2/CuO/Cu Composite Electrode. Catalysts, 13(3), 456. https://doi.org/10.3390/catal13030456