The Efficiency of Carbon Conversion and Hydrogen Production from Tar Steam Reforming of Biomass Using Ni-Based Catalysts with Alkaline Earth Promoters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Catalytic Activity
2.3. Characterization Spent Catalyst
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Activity Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, Y.; Chu, M.; Xie, C.; Huang, F.; Zhang, C.; Zhang, Y.; Liu, H.; Wang, H.; Gao, Y. Synergetic Effect of B and O Dopants for Aerobic Oxidative Coupling of Amines to Imines. ACS Sustain. Chem. Eng. 2018, 6, 17410–17418. [Google Scholar] [CrossRef]
- Cao, L.; Yu, I.K.M.; Xiong, X.; Tsang, D.C.W.; Zhang, S.; Clark, J.H.; Hu, C.; Ng, Y.H.; Shang, J.; Ok, Y.S. Biorenewable hydrogen production through biomass gasification: A review and future prospects. Env. Res 2020, 186, 109547. [Google Scholar] [CrossRef]
- Savuto, E.; Di Carlo, A.; Gallucci, K.; Natali, S.; Bocci, E. Characterization and performance analysis of an innovative Ni/Mayenite catalyst for the steam reforming of raw syngas. Fuel 2017, 194, 348–356. [Google Scholar] [CrossRef]
- Lotfi, S. Technologies for Tar Removal from Biomass-Derived Syngas. Pet. Petrochem. Eng. J. 2021, 5, 1–35. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.; Arshad, A.; Haydar, Z.; Yaqoob, N.; Hussain, S. Evaluating removal of tar contents in syngas produced from downdraft biomass gasification system. Int. J. Green Energy 2018, 15, 724–731. [Google Scholar] [CrossRef]
- Chiodo, V.; Urbani, F.; Zafarana, G.; Prestipino, M.; Galvagno, A.; Maisano, S. Syngas production by catalytic steam gasification of citrus residues. Int. J. Hydrog. Energy 2017, 42, 28048–28055. [Google Scholar] [CrossRef]
- Zeng, R.; Wang, S.; Cai, J.; Kuang, C. A review on Biomass Tar Formation and Catalytic Cracking. Adv. Eng. Res. 2018, 163, 160–165. [Google Scholar]
- Zeng, X.; Ueki, Y.; Yoshiie, R.; Naruse, I.; Wang, F.; Han, Z.; Xu, G. Recent progress in tar removal by char and the applications: A comprehensive analysis. Carbon Resour. Convers. 2020, 3, 1–18. [Google Scholar] [CrossRef]
- Tan, R.S.; Tuan Abdullah, T.A.; Johari, A.; Md Isa, K. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: A review. Front. Energy 2020, 14, 545–569. [Google Scholar] [CrossRef]
- Franchi, G.; Capocelli, M.; De Falco, M.; Piemonte, V.; Barba, D. Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies. Membranes 2020, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Kalamaras, C.M.; Efstathiou, A.M. Hydrogen Production Technologies: Current State and Future Developments. Conf. Pap. Energy 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Aljbour, S.; Kawamoto, K. Cerium-Promoted Nickel / Alumina Catalyst for Producer Gas Reforming and Tar Conversion. J. Ecol. Eng. 2022, 23, 58–66. [Google Scholar] [CrossRef]
- Josuinkas, F.M.; Quitete, C.P.B.; Ribeiro, N.F.P.; Souza, M.M.V.M. Steam reforming of model gasification tar compounds over nickel catalysts prepared from hydrotalcite precursors. Fuel Process. Technol. 2014, 121, 76–82. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Wang, Y.; Wang, C.; Liang, T.; Zhang, H.; Yang, Z.; Zhou, Z.; Wang, J. Hydrogen generation by steam reforming of tar model compounds using lanthanum modified Ni/sepiolite catalysts. Energy Convers. Manag. 2019, 184, 315–326. [Google Scholar] [CrossRef]
- Savuto, E.; Navarro, R.M.; Mota, N.; Di Carlo, A.; Bocci, E.; Carlini, M.; Fierro, J.L.G. Steam reforming of tar model compounds over Ni/Mayenite catalysts: Effect of Ce addition. Fuel 2018, 224, 676–686. [Google Scholar] [CrossRef]
- Lu, M.; Xiong, Z.; Fang, K.; Li, J.; Li, X.; Li, T. Effect of Promoters on Steam Reforming of Toluene over a Ni-Based Catalyst Supported on Coal Gangue Ash. ACS Omega 2020, 5, 26335–26346. [Google Scholar] [CrossRef]
- Vivanpatarakij, S.; Rulerk, D.; Assabumrungrat, S. Removal of Tar from Biomass Gasification Process by Steam Reforming over Nickel Catalysts. Chem. Eng. Trans. 2014, 37, 205–210. [Google Scholar] [CrossRef]
- Chen, G.; Tao, J.; Liu, C.; Yan, B.; Li, W.; Li, X. Steam reforming of acetic acid using Ni/Al 2 O 3 catalyst: Influence of crystalline phase of Al2O3 support. Int. J. Hydrog. Energy 2017, 42, 20729–20738. [Google Scholar] [CrossRef]
- Park, S.Y.; Oh, G.; Kim, K.; Seo, M.W.; Ra, H.W.; Mun, T.Y.; Lee, J.G.; Yoon, S.J. Deactivation characteristics of Ni and Ru catalysts in tar steam reforming. Renew. Energy 2017, 105, 76–83. [Google Scholar] [CrossRef]
- Gao, N.; Salisu, J.; Quan, C.; Williams, P. Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review. Renew. Sustain. Energy Rev. 2021, 145, 111023. [Google Scholar] [CrossRef]
- Zamzuri, N.H.; Mat, R.; Saidina Amin, N.A.; Talebian-Kiakalaieh, A. Hydrogen production from catalytic steam reforming of glycerol over various supported nickel catalysts. Int. J. Hydrog. Energy 2017, 42, 9087–9098. [Google Scholar] [CrossRef]
- Santamaria, L.; Lopez, G.; Arregi, A.; Amutio, M.; Artetxe, M.; Bilbao, J.; Olazar, M. Influence of the support on Ni catalysts performance in the in-line steam reforming of biomass fast pyrolysis derived volatiles. Appl. Catal. B Environ. 2018, 229, 105–113. [Google Scholar] [CrossRef]
- Tan, R.S.; Abd Jalil, A.; Alir, A.; Mohamad, S.A.; Md Isa, K.; Tuan Abdullah, T.A. Ni-based catalysts for steam reforming of tar model derived from biomass gasification. E3S Web Conf. 2019, 90, 01015. [Google Scholar] [CrossRef]
- Santamaria, L.; Artetxe, M.; Lopez, G.; Cortazar, M.; Amutio, M.; Bilbao, J.; Olazar, M. Effect of CeO2 and MgO promoters on the performance of a Ni/Al2O3 catalyst in the steam reforming of biomass pyrolysis volatiles. Fuel Process. Technol. 2020, 198, 106223. [Google Scholar] [CrossRef]
- Yan, H.; Yao, S.; Zhao, S.; Liu, M.; Zhang, W.; Zhou, X.; Zhang, G.; Jin, X.; Liu, Y.; Feng, X.; et al. Insight into the basic strength-dependent catalytic performance in aqueous phase oxidation of glycerol to glyceric acid. Chem. Eng. Sci. 2021, 230, 116191. [Google Scholar] [CrossRef]
- Sisinni, M.; Di Carlo, A.; Bocci, E.; Micangeli, A.; Naso, V. Hydrogen-Rich Gas Production by Sorption Enhanced Steam Reforming of Woodgas Containing TAR over a Commercial Ni Catalyst and Calcined Dolomite as CO2 Sorbent. Energies 2013, 6, 3167–3181. [Google Scholar] [CrossRef] [Green Version]
- Clough, P.T.; Boot-Handford, M.E.; Zheng, L.; Zhang, Z.; Fennell, P.S. Hydrogen Production by Sorption Enhanced Steam Reforming (SESR) of Biomass in a Fluidised-Bed Reactor Using Combined Multifunctional Particles. Materials 2018, 11, 859. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, F.G.E.; Assaf, P.G.M.; Carvalho, H.W.P.; Assaf, E.M. Catalytic steam reforming of acetic acid as a model compound of bio-oil. Appl. Catal. B Environ. 2014, 160–161, 188–199. [Google Scholar] [CrossRef]
- Baidya, T.; Cattolica, R.J. Improved catalytic performance of CaO and CeO2 promoted Ni catalyst on gasifier bed material for tar removal from producer gas. Appl. Catal. A Gen. 2015, 498, 150–158. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Kumar, R.; Fakeeha, A.H.; Kasim, S.O.; Khatri, J.; Ibrahim, A.A.; Arasheed, R.; Alabdulsalam, M.; Lanre, M.S.; Osman, A.I.; et al. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Sci. Rep. 2020, 10, 13861. [Google Scholar] [CrossRef]
- Kim, S.; Chun, D.; Rhim, Y.; Lim, J.; Kim, S.; Choi, H.; Lee, S.; Yoo, J. Catalytic reforming of toluene using a nickel ion-exchanged coal catalyst. Int. J. Hydrog. Energy 2015, 40, 11855–11862. [Google Scholar] [CrossRef]
- Wu, Y.; Pei, C.; Tian, H.; Liu, T.; Zhang, X.; Chen, S.; Xiao, Q.; Wang, X.; Gong, J. Role of Fe Species of Ni-Based Catalysts for Efficient Low-Temperature Ethanol Steam Reforming. JACS Au 2021, 1, 1459–1470. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.H.; Lee, R.; Hwang, J.H.; Sohn, J.M. The effect of addition of Ca, K and Mn over Ni-based catalyst on steam reforming of toluene as model tar compound. Catal. Today 2016, 265, 95–102. [Google Scholar] [CrossRef]
- Mosinska, M.; Maniukiewicz, W.; Szynkowska-Jozwik, M.I.; Mierczynski, P. Influence of NiO/La2O3 Catalyst Preparation Method on Its Reactivity in the Oxy-Steam Reforming of LNG Process. Catalysts 2021, 11, 1174. [Google Scholar] [CrossRef]
- Shtyka, O.; Dimitrova, Z.; Ciesielski, R.; Kedziora, A.; Mitukiewicz, G.; Leyko, J.; Maniukewicz, W.; Czylkowska, A.; Maniecki, T. Steam reforming of ethanol for hydrogen production: Influence of catalyst composition (Ni/Al2O3, Ni/Al2O3–CeO2, Ni/Al2O3–ZnO) and process conditions. React. Kinet. Mech. Catal. 2021, 132, 907–919. [Google Scholar] [CrossRef]
- Wurzler, G.T.; Rabelo-Neto, R.C.; Mattos, L.V.; Fraga, M.A.; Noronha, F.B. Steam reforming of ethanol for hydrogen production over MgO—Supported Ni-based catalysts. Appl. Catal. A Gen. 2016, 518, 115–128. [Google Scholar] [CrossRef]
- Zhao, X.; Xue, Y.; Lu, Z.; Huang, Y.; Guo, C.; Yan, C. Encapsulating Ni/CeO2-ZrO2 with SiO2 layer to improve it catalytic activity for steam reforming of toluene. Catal. Commun. 2017, 101, 138–141. [Google Scholar] [CrossRef]
- Valle, B.; Aramburu, B.; Olazar, M.; Bilbao, J.; Gayubo, A.G. Steam reforming of raw bio-oil over Ni/La2O3-αAl2O3: Influence of temperature on product yields and catalyst deactivation. Fuel 2018, 216, 463–474. [Google Scholar] [CrossRef]
- Yu, L.; Song, M.; Williams, P.T.; Wei, Y. Alumina-Supported Spinel NiAl2O4 as a Catalyst for Re-forming Pyrolysis Gas. Ind. Eng. Chem. Res. 2019, 58, 11770–11778. [Google Scholar] [CrossRef]
- Syuhada, A.; Ameen, M.; Sher, F.; Azizan, M.T.; Aqsha, A.; Yusoff, M.H.M.; Ruslan, M.S.H. Effect of Calcium Doping Using Aqueous Phase Reforming of Glycerol over Sonochemically Synthesized Nickel-Based Supported ZrO2 Catalyst. Catalysts 2021, 11, 977. [Google Scholar] [CrossRef]
- Al-Najar, A.M.A.; Al-Doghachi, F.A.J.; Al-Riyahee, A.A.A.; Taufiq-Yap, Y.H. Effect of La2O3 as a Promoter on the Pt,Pd,Ni/MgO Catalyst in Dry Reforming of Methane Reaction. Catalysts 2020, 10, 750. [Google Scholar] [CrossRef]
- Junior, R.B.S.; Rabelo-Neto, R.C.; Gomes, R.S.; Noronha, F.B.; Fréty, R.; Brandão, S.T. Steam reforming of acetic acid over Ni-based catalysts derived from La1−xCaxNiO3 perovskite type oxides. Fuel 2019, 254, 115714. [Google Scholar] [CrossRef]
- Higo, T.; Saito, H.; Ogo, S.; Sugiura, Y.; Sekine, Y. Promotive effect of Ba addition on the catalytic performance of Ni/LaAlO3 catalysts for steam reforming of toluene. Appl. Catal. A Gen. 2017, 530, 125–131. [Google Scholar] [CrossRef]
- Wu, P.; Tao, Y.; Ling, H.; Chen, Z.; Ding, J.; Zeng, X.; Liao, X.; Stampfl, C.; Huang, J. Cooperation of Ni and CaO at Interface for CO2 Reforming of CH4: A Combined Theoretical and Experimental Study. ACS Catal. 2019, 9, 10060–10069. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, J.; Chu, M.; Yue, J.; Cui, Y.; Xu, G. Cooperation Between Active Metal and Basic Support in Ni-Based Catalyst for Low-Temperature CO2 Methanation. Catal. Lett. 2019, 150, 1418–1426. [Google Scholar] [CrossRef]
- Phuong, P.H.; Loc, L.C.; Cuong, H.T.; Tri, N. Effect of NiO Loading and Thermal Treatment Duration on Performance of Ni/SBA-15 Catalyst in Combined Steam and CO2 Reforming of CH4. Mater. Trans. 2018, 59, 1898–1902. [Google Scholar] [CrossRef] [Green Version]
- Ishii, T.; Kyotani, T. Temperature Programmed Desorption. In Materials Science and Engineering of Carbon; Butterworth-Heinemann: Oxford, UK, 2016; pp. 287–305. [Google Scholar]
- Artetxe, M.; Nahil, M.A.; Olazar, M.; Williams, P.T. Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst. Fuel 2017, 184, 629–636. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Shen, B.; Wu, C. Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification. Renew. Sustain. Energy Rev. 2018, 94, 1086–1109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hu, X.; Zhang, L.; Yang, Y.; Li, Q.; Fan, H.; Liu, Q.; Wei, T.; Li, C.-Z. Steam reforming of guaiacol over Ni/Al2O3 and Ni/SBA-15: Impacts of support on catalytic behaviors of nickel and properties of coke. Fuel Process. Technol. 2019, 191, 138–151. [Google Scholar] [CrossRef]
- Silveira, E.B.; Rabelo-Neto, R.C.; Noronha, F.B. Steam reforming of toluene, methane and mixtures over Ni/ZrO2 catalysts. Catal. Today 2017, 289, 289–301. [Google Scholar] [CrossRef]
- Oni, B.A.; Sanni, S.E.; Oyedepo, S.O.; Ibegbu, A.J. Catalytic reforming of tar and volatiles from walnut shell pyrolysis over a novel Ni/olivine/La2O3 supported on ZrO2. J. Energy Inst. 2022, 103, 33–46. [Google Scholar] [CrossRef]
- Gao, X.; Ge, Z.; Zhu, G.; Wang, Z.; Ashok, J.; Kawi, S. Anti-Coking and Anti-Sintering Ni/Al2O3 Catalysts in the Dry Reforming of Methane: Recent Progress and Prospects. Catalysts 2021, 11, 1003. [Google Scholar] [CrossRef]
- Kim, H.-J.; Yang, E.-H.; Noh, Y.S.; Hong, G.H.; Park, J.I.; Shin, S.A.; Lee, K.-Y.; Moon, D.J. Studies on the steam CO2 reforming of methane over ordered mesoporous nickel–magnesium–alumina catalysts. Res. Chem. Intermed. 2017, 44, 1131–1148. [Google Scholar] [CrossRef]
- Oh, G.; Park, S.Y.; Seo, M.W.; Kim, Y.K.; Ra, H.W.; Lee, J.-G.; Yoon, S.J. Ni/Ru–Mn/Al2O3 catalysts for steam reforming of toluene as model biomass tar. Renew. Energy 2016, 86, 841–847. [Google Scholar] [CrossRef]
- Lu, M.; Xiong, Z.; Fang, K.; Li, X.; Li, J.; Li, T. Steam reforming of toluene over nickel catalysts supported on coal gangue ash. Renew. Energy 2020, 160, 385–395. [Google Scholar] [CrossRef]
- Nabgan, W.; Tuan Abdullah, T.A.; Mat, R.; Nabgan, B.; Gambo, Y.; Triwahyono, S. Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production. Int. J. Hydrog. Energy 2016, 41, 22922–22931. [Google Scholar] [CrossRef]
- El-Shafie, M.; Kambara, S.; Hayakawa, Y. Hydrogen Production Technologies Overview. J. Power Energy Eng. 2019, 7, 107–154. [Google Scholar] [CrossRef] [Green Version]
- Quan, C.; Wang, H.; Gao, N. Development of activated biochar supported Ni catalyst for enhancing toluene steam reforming. Int. J. Energy Res. 2020, 44, 5749–5764. [Google Scholar] [CrossRef]
- Chae, H.J.; Kim, J.-H.; Lee, S.C.; Kim, H.-S.; Jo, S.B.; Ryu, J.-H.; Kim, T.Y.; Lee, C.H.; Kim, S.J.; Kang, S.-H.; et al. Catalytic Technologies for CO Hydrogenation for the Production of Light Hydrocarbons and Middle Distillates. Catalysts 2020, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Łamacz, A. Toluene Steam Reforming over Ni/CeZrO2—The Influence of Steam to Carbon Ratio and Contact Time on the Catalyst Performance and Carbon Deposition. Catalysts 2022, 12, 219. [Google Scholar] [CrossRef]
- Xiaoxu, C.; Duo, W.; Yunquan, L.; Yueyuan, Y.; Shuirong, L.; Yingru, Z. H2/CO Ratio Adjustment and Tar Removal in Steam Ref orming of Bio-syngas over Nickel-Supported Catalysts. Acad. J. Agric. Res. 2016, 4, 205–211. [Google Scholar] [CrossRef]
- Saad, J.M.; Williams, P.T. Manipulating the H2/CO ratio from dry reforming of simulated mixed waste plastics by the addition of steam. Fuel Process. Technol. 2017, 156, 331–338. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A. Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst. Fuel 2017, 187, 128–136. [Google Scholar] [CrossRef] [Green Version]
- de Castro, T.P.; Silveira, E.B.; Rabelo-Neto, R.C.; Borges, L.E.P.; Noronha, F.B. Study of the performance of Pt/Al2O3 and Pt/CeO2/Al2O3 catalysts for steam reforming of toluene, methane and mixtures. Catal. Today 2018, 299, 251–262. [Google Scholar] [CrossRef]
- Tsiotsias, A.I.; Charisiou, N.D.; Yentekakis, I.V.; Goula, M.A. The Role of Alkali and Alkaline Earth Metals in the CO2 Methanation Reaction and the Combined Capture and Methanation of CO2. Catalysts 2020, 10, 812. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, M.; Zhu, L.; Wang, S.; Zhou, J.; Luo, Z. A comparative research on the catalytic activity of La2O3 and γ-Al2O3 supported catalysts for acetic acid steam reforming. Int. J. Hydrog. Energy 2017, 42, 3667–3675. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Gholizadeh, M.; Westernhof, R.; Cui, Z.; Liu, B.; Tang, Y.; Jin, X.; Xu, Z.; Hu, X. Impact of Acidic/Basic Sites of the Catalyst on Properties of the Coke Formed in Pyrolysis of Guaiacol: A Model Compound of the Phenolics in Bio-oil. Energy Fuels 2020, 34, 11026–11040. [Google Scholar] [CrossRef]
- Ochoa, A.; Bilbao, J.; Gayubo, A.G.; Castaño, P. Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review. Renew. Sustain. Energy Rev. 2020, 119, 109600. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, J.; Zhang, J.; Zhang, T.; Ye, M.; Liu, Z. Regeneration of catalysts deactivated by coke deposition: A review. Chin. J. Catal. 2020, 41, 1048–1061. [Google Scholar] [CrossRef]
- Palma, V.; Ruocco, C.; Cortese, M.; Martino, M. Bioalcohol Reforming: An Overview of the Recent Advances for the Enhancement of Catalyst Stability. Catalysts 2020, 10, 665. [Google Scholar] [CrossRef]
- Jang, E.J.; Lee, J.; Jeong, H.Y.; Kwak, J.H. Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts. Appl. Catal. A Gen. 2019, 572, 1–8. [Google Scholar] [CrossRef]
- Kauppi, E.I.; Honkala, K.; Krause, A.O.I.; Kanervo, J.M.; Lefferts, L. ZrO2 Acting as a Redox Catalyst. Top. Catal. 2016, 59, 823–832. [Google Scholar] [CrossRef] [Green Version]
- Sumarasingha, W.; Supasitmongkol, S.; Phongaksorn, M. The Effect of ZrO2 as Different Components of Ni-Based Catalysts for CO2 Reforming of Methane and Combined Steam and CO2 Reforming of Methane on Catalytic Performance with Coke Formation. Catalysts 2021, 11, 984. [Google Scholar] [CrossRef]
- Rakesh, N.; Dasappa, S. A critical assessment of tar generated during biomass gasification—Formation, evaluation, issues and mitigation strategies. Renew. Sustain. Energy Rev. 2018, 91, 1045–1064. [Google Scholar] [CrossRef]
- Madav, V.; Das, D.; Kumar, M.; Surwade, M.; Parikh, P.P.; Sethi, V. Studies for removal of tar from producer gas in small scale biomass gasifiers using biodiesel. Biomass Bioenergy 2019, 123, 123–133. [Google Scholar] [CrossRef]
- Singh, R.N.; Singh, S.P.; Balwanshi, J.B. Tar removal producer gas: A review. Res. J. Eng. Sci. 2014, 3, 16–22. [Google Scholar]
- Kulkarni, S.R.; Velisoju, V.K.; Tavares, F.; Dikhtiarenko, A.; Gascon, J.; Castaño, P. Silicon carbide in catalysis: From inert bed filler to catalytic support and multifunctional material. Catal. Rev. 2022, 65, 174–237. [Google Scholar] [CrossRef]
- Duong-Viet, C.; Ba, H.; El-Berrichi, Z.; Nhut, J.-M.; Ledoux, M.J.; Liu, Y.; Pham-Huu, C. Silicon carbide foam as a porous support platform for catalytic applications. New J. Chem. 2016, 40, 4285–4299. [Google Scholar] [CrossRef]
- Zhu, H.L.; Pastor-Pérez, L.; Millan, M. Catalytic Steam Reforming of Toluene: Understanding the Influence of the Main Reaction Parameters over a Reference Catalyst. Energies 2020, 13, 813. [Google Scholar] [CrossRef] [Green Version]
Catalyst | Weight Loss (%) | Overall Weight Loss (%) | |
---|---|---|---|
Below 200 °C | Above 200 °C | ||
NiLa | 2.02 | 23.11 | 25.13 |
NiZr | 8.71 | 16.16 | 24.87 |
NiAl | 6.93 | 14.17 | 21.10 |
NiLaMgCa | 11.19 | 29.39 | 40.57 |
NiZrMgCa | 10.55 | 18.70 | 29.25 |
NiAlMgCa | 12.06 | 19.88 | 31.94 |
Catalyst | BET Surface Area (m2/g) 1 | Pore Volume (cm3/g) 2 | Average Pore Size (nm) 3 | Ni crystallite Size (nm) 4 | Ni Dispersion (%) 5 |
---|---|---|---|---|---|
NiLaMgCa | 15.80 | 0.184 | 46.57 | 37.64 | 2.68 |
NiAlMgCa | 68.57 | 0.23 | 13.42 | 39.46 | 2.56 |
NiZrMgCa | 5.48 | 0.035 | 25.51 | 53.11 | 1.90 |
NiLa | 28.85 | 0.16 | 22.18 | - | - |
NiAl | 92.95 | 0.27 | 11.62 | - | - |
NiZr | 9.79 | 0.082 | 33.65 | - | - |
Catalyst | Condition | Catalytic Performance | Ref. |
---|---|---|---|
Ni/dolomite, Ni/dolomite/Al2O3, Ni/dolomite/La2O3, Ni/dolomite/CeO2, Ni/dolomite/ZrO2 | Toluene/pyrene/naphthalene/phenol Temperature = 700 °C; S/C molar ratio = 1 | Carbon conversion = 58.84–77.6% H2 yield = 55.44–66.20% | [23] |
Ni/ CHA-t, Ni/Al2O3, Ni/SiO2 | Toluene Temperature = 650–800 °C; S/C = 2 | H2 yield = 48–52% | [56] |
Ni/Al2O3 | Phenol, toluene, indene, furfural, methylnaphthalene Temperature = 750 °C; S/C = 2 | Carbon conversion = 63–75% H2 yield = 8–12% | [48] |
Ni/ZrO2, Ni/Co/ZrO2 | Phenol Temperature = 600 °C; S/C = 1.7 | H2 yield = 25–50% | [57] |
Catalyst | Symbol | Ni (wt.%) | MgO (wt.%) | CaO (wt.%) | Al2O3 (wt.%) | La2O3 (wt.%) | ZrO2 (wt.%) |
---|---|---|---|---|---|---|---|
Ni/MgO/CaO/Al2O3 | NiAlMgCa | 10 | 5 | 5 | 80 | - | - |
Ni/MgO/CaO/La2O3 | NiLaMgCa | 10 | 5 | 5 | - | 80 | - |
Ni/MgO/CaO/ZrO2 | NiZrMgCa | 10 | 5 | 5 | - | - | 80 |
Ni/La2O3 | NiLa | 10 | - | - | - | 90 | - |
Ni/Al2O3 | NiAl | 10 | - | - | 90 | - | - |
Ni/ZrO2 | NiZr | 10 | - | - | - | - | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alir, A.; Tuan Abdullah, T.A.; Johari, A.; Mohamud, M.Y.; Phey, M.L.P.; Nabgan, W.; Medina, F.; Ikram, M. The Efficiency of Carbon Conversion and Hydrogen Production from Tar Steam Reforming of Biomass Using Ni-Based Catalysts with Alkaline Earth Promoters. Catalysts 2023, 13, 472. https://doi.org/10.3390/catal13030472
Alir A, Tuan Abdullah TA, Johari A, Mohamud MY, Phey MLP, Nabgan W, Medina F, Ikram M. The Efficiency of Carbon Conversion and Hydrogen Production from Tar Steam Reforming of Biomass Using Ni-Based Catalysts with Alkaline Earth Promoters. Catalysts. 2023; 13(3):472. https://doi.org/10.3390/catal13030472
Chicago/Turabian StyleAlir, Afizah, Tuan Amran Tuan Abdullah, Anwar Johari, Mohamed Yusuf Mohamud, Melissa Low Phey Phey, Walid Nabgan, Francisco Medina, and Muhammad Ikram. 2023. "The Efficiency of Carbon Conversion and Hydrogen Production from Tar Steam Reforming of Biomass Using Ni-Based Catalysts with Alkaline Earth Promoters" Catalysts 13, no. 3: 472. https://doi.org/10.3390/catal13030472
APA StyleAlir, A., Tuan Abdullah, T. A., Johari, A., Mohamud, M. Y., Phey, M. L. P., Nabgan, W., Medina, F., & Ikram, M. (2023). The Efficiency of Carbon Conversion and Hydrogen Production from Tar Steam Reforming of Biomass Using Ni-Based Catalysts with Alkaline Earth Promoters. Catalysts, 13(3), 472. https://doi.org/10.3390/catal13030472