Ionic Liquids: Advances and Applications in Phase Transfer Catalysis
Abstract
:1. Introduction
2. The Concept of Phase Transfer Catalysis
2.1. Principles of Phase Transfer Catalysis
2.2. The Chronicle of PTC
3. Ionic Liquids: A Brief History and Applications
4. Application of Ionic Liquids in Phase Transfer Catalysis
4.1. SN Displacement Reactions
4.2. Alkylation Reactions
4.3. Hydrogenation
4.4. Etherification
4.5. Esterification
4.6. Carboxylic Acid Synthesis
4.7. Olefin Dimerization
4.8. Oxidation
4.8.1. Epoxidation
4.8.2. Desulfurization
4.9. Nitration
4.10. Aldol Condensation
4.11. Dichlorocarbene Formation
4.12. Polymerization
4.13. Organometallic Coupling Reactions
4.14. Michael Coupling Reaction
4.15. Polyoxometalate-Based Ionic Liquids
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussey, C.L. Room Temperature Molten Salt Systems. Adv. Molten Salt Chem. 1983, 5, 185–230. [Google Scholar]
- Paczal, A.; Kotschy, A. Asymmetric Synthesis in Ionic Liquids. Monatsh. Chem. 2007, 138, 1115–1123. [Google Scholar] [CrossRef]
- Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef] [PubMed]
- Plechkova, N.V.; Seddon, K.R. Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef]
- Bonhôte, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem. 1996, 35, 1168–1178. [Google Scholar] [CrossRef]
- Rogers, R.D.; Seddon, K.R. Ionic Liquids-Solvents of the Future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Hallett, J.P.; Welton, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef] [PubMed]
- Pârvulescu, V.I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2615–2665. [Google Scholar] [CrossRef]
- Grätzel, M. Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells. J. Photochem. Photobiol. A Chem. 2004, 164, 3–14. [Google Scholar] [CrossRef]
- Seddon, K.R. Ionic Liquids for Clean Technology. J. Chem. Technol. Biotechnol. 1997, 68, 351–356. [Google Scholar] [CrossRef]
- Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H. CO2 Capture by a Task-Specific Ionic Liquid. J. Am. Chem. Soc. 2002, 124, 926–927. [Google Scholar] [CrossRef]
- Wilkes, J.S. A Short History of Ionic Liquids—From Molten Salts to Neoteric Solvents. Green Chem. 2002, 4, 73–80. [Google Scholar] [CrossRef]
- Hollóczki, O.; Nyulászi, L. Carbenes from Ionic Liquids. In Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 2013; Volume 351, pp. 1–24. [Google Scholar]
- Pagni, R.M. Ionic Liquids as Alternatives to Traditional Organic and Inorganic Solvents. In Green Industrial Applications of Ionic Liquids; Springer: Dordrecht, Netherlands, 2003; Volume 92, pp. 105–127. [Google Scholar]
- Tzani, A.; Vaitsis, C.; Kritsi, E.; Smiljkovic, M.; Sokovic, M.; Zoumpoulakis, P.; Detsi, A. Green Synthesis of Bis-(β-Dicarbonyl)-Methane Derivatives and Biological Evaluation as Putative Anticandidial Agents. J. Mol. Struct. 2020, 1216, 128276–128284. [Google Scholar] [CrossRef]
- Honarmand, M.; Tzani, A.; Detsi, A. Synthesis of Novel Multi-OH Functionalized Ionic Liquid and Its Application as Dual Catalyst-Solvent for the One-Pot Synthesis 4H-Pyrans. J. Mol. Liq. 2019, 290, 111358. [Google Scholar] [CrossRef]
- Tzani, A.; Douka, A.; Papadopoulos, A.; Pavlatou, E.A.; Voutsas, E.; Detsi, A. Synthesis of Biscoumarins Using Recyclable and Biodegradable Task-Specific Ionic Liquids. ACS Sustain. Chem. Eng 2013, 1, 1180–1185. [Google Scholar] [CrossRef]
- Honarmand, M.; Tzani, A.; Detsi, A. 2-Hydroxyethyl-1-Ammonium 3-Hydroxypropane-1-Sulfonate: A Biodegradable and Recyclable Ionic Liquid for the One-Pot Synthesis of 2-Amino-3-Cyano-4H-Pyrans. J. Iran. Chem. Soc. 2019, 16, 571–581. [Google Scholar] [CrossRef]
- Papadopoulou, A.A.; Tzani, A.; Alivertis, D.; Katsoura, M.H.; Polydera, A.C.; Detsi, A.; Stamatis, H. Hydroxyl Ammonium Ionic Liquids as Media for Biocatalytic Oxidations. Green Chem. 2016, 18, 1147–1158. [Google Scholar] [CrossRef]
- Gordon, J.E.; Kutina, R.E. Theory of Phase-Transfer Catalysis. J. Am. Chem. Soc. 1977, 99, 3903–3909. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y. Bridging Heterogeneous and Homogeneous Catalysis: Concepts, Strategies, and Applications; Wiley: Hoboken, NJ, USA, 2014; ISBN 9783527335831. [Google Scholar]
- Lombardo, M.; Quintavalla, A.; Chiarucci, M.; Trombini, C. Multiphase Homogeneous Catalysis: Common Procedures and Recent Applications. Synlett 2010, 2010, 1746–1765. [Google Scholar] [CrossRef]
- He, R.; Ding, C.; Maruoka, K. Phosphonium Salts as Chiral Phase-Transfer Catalysts: Asymmetric Michael and Mannich Reactions of 3-Aryloxindoles. Angew. Chem. Int. Ed. 2009, 48, 4559–4561. [Google Scholar] [CrossRef]
- Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K.M.; Kothe, J.; vom Stein, T.; Englert, U.; Hölscher, M.; Klankermayer, J.; et al. Hydrogenation of Carbon Dioxide to Methanol Using a Homogeneous Ruthenium-Triphos Catalyst: From Mechanistic Investigations to Multiphase Catalysis. Chem. Sci. 2015, 6, 693–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herriott, A.W.; Picker, D. Phase Transfer Catalysis. An Evaluation of Catalysis. J. Am. Chem. Soc. 1975, 97, 2345–2349. [Google Scholar] [CrossRef]
- Dubé, M.A.; Tremblay, A.Y.; Liu, J. Biodiesel Production Using a Membrane Reactor. Bioresour. Technol. 2007, 98, 639–647. [Google Scholar] [CrossRef]
- Weber, W.P.; Gokel, G.W.; Ugi, I.K. Phase Transfer Catalysis in the Hofmann Carbylamine Reaction. Angew. Chem. Int. Ed. Engl. 1972, 11, 530–531. [Google Scholar] [CrossRef]
- Vicario, J.; Badía, D.; Carrillo, L. Organocatalytic Enantioselective Michael and Hetero-Michael Reactions. Synthesis 2007, 2007, 2065–2092. [Google Scholar] [CrossRef]
- Mąkosza, M.; Fedoryński, M. Phase Transfer Catalysis. Catal. Rev. 2003, 45, 321–367. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, W. A Minireview of Phase-Transfer Catalysis and Recent Trends. Biomed. J. Sci. Tech. Res. 2022, 45, 36691–36702. [Google Scholar] [CrossRef]
- Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872. [Google Scholar] [CrossRef]
- Shirakawa, S.; Maruoka, K. Recent Developments in Asymmetric Phase-Transfer Reactions. Angew. Chem. Int. Ed. 2013, 52, 4312–4348. [Google Scholar] [CrossRef]
- Bordet, A.; Leitner, W. Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis. Acc. Chem. Res. 2021, 54, 2144–2157. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, W.; Yin, Z.; Chen, Y.; Wu, Y.; Hu, X. A Novel Proton-Gradient-Transfer Acid Complexes as an Efficient and Reusable Catalyst for Fatty Acid Esterification. Green Energy Environ. 2022, 7, 137–144. [Google Scholar] [CrossRef]
- Chatel, G.; Monnier, C.; Kardos, N.; Voiron, C.; Andrioletti, B.; Draye, M. Green, Selective and Swift Oxidation of Cyclic Alcohols to Corresponding Ketones. Appl. Catal. A Gen. 2014, 478, 157–164. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Jin, Z. Progress in Thermoregulated Liquid/Liquid Biphasic Catalysis. Catal. Today 2015, 247, 82–89. [Google Scholar] [CrossRef]
- Feng, C.; Wang, Y.; Jin, Z. The Development in Hydroformylation of Higher Olefin in Liquid/Liquid Biphase Systems. Prog. Chem. 2005, 17, 209–216. [Google Scholar]
- Maity, S.K.; Sen, S.; Pradhan, N.C. A New Mechanistic Model for Liquid-Liquid Phase Transfer Catalysis: Reaction of Benzyl Chloride with Aqueous Ammonium Sulfide. Chem. Eng. Sci. 2009, 64, 4365–4374. [Google Scholar] [CrossRef]
- Csányi, L.J.; Jáky, K. Liquid-Phase Oxidation of Hydrocarbons in the Presence of Different Types of Phase-Transfer Reagents. J. Mol. Catal. A Chem. 1997, 120, 125–138. [Google Scholar] [CrossRef]
- Joó, F. Biphasic Catalysis-Homogeneous. In Encyclopedia of Catalysis; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Mąkosza, M.; Fedoryński, M. Interfacial Processes—The Key Steps of Phase Transfer Catalyzed Reactions. Catalysts 2020, 10, 1436–1451. [Google Scholar] [CrossRef]
- González Adelantado, F.V. Phase-Transfer Catalysis and the Ion Pair Concept. Phys. Sci. Rev. 2020, 5, 20180094–20180112. [Google Scholar] [CrossRef]
- Starks, C.M.; Owens, R.M. Phase-Transfer Catalysis. II. Kinetic Details of Cyanide Displacement on 1-Halooctañes. J. Am. Chem. Soc. 1973, 95, 3613–3617. [Google Scholar] [CrossRef]
- Holmberg, K. Organic and Bioorganic Reactions in Microemulsions. Adv. Colloid Interface Sci. 1994, 51, 137–174. [Google Scholar] [CrossRef]
- Starks, C.M. Phase-Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts. J. Am. Chem. Soc. 1971, 93, 195–199. [Google Scholar] [CrossRef]
- Noroozi-Shad, N.; Gholizadeh, M.; Sabet-Sarvestani, H. Quaternary Phosphonium Salts in the Synthetic Chemistry: Recent Progress, Development, and Future Perspectives. J. Mol. Struct. 2022, 1257, 132628. [Google Scholar] [CrossRef]
- Regen, S.L. Triphase Catalysis. Angew. Chem. Int. Ed. Engl. 1979, 18, 421–429. [Google Scholar] [CrossRef]
- Ma̧kosza, M.; Wawrzyniewicz, M. Reactions of Organic Anions. XXIV. Catalytic Method for Preparation of Dichlorocyclopropane Derivatives in Aqueous Medium. Tetrahedron Lett. 1969, 10, 4659–4662. [Google Scholar] [CrossRef]
- McKillop, A.; Fiaud, J.C.; Hug, R.P. The Use of Phase-Transfer Catalysis for the Synthesis of Phenol Ethers. Tetrahedron 1974, 30, 1379–1382. [Google Scholar] [CrossRef]
- Phillip Cox, D.; Terpinski, J.; Lawrynowicz, W. “Anhydrous” Tetrabutylammonium Fluoride: A Mild but Highly Efficient Source of Nucleophilic Fluoride Ion. J. Org. Chem. 1984, 49, 3216–3219. [Google Scholar] [CrossRef]
- Zhang, W.H.; Shen, J.J.; Wu, J.; Liang, X.Y.; Xu, J.; Liu, P.; Xue, B.; Li, Y.X. An Amphiphilic Graphene Oxide-Immobilized Polyoxometalate-Based Ionic Liquid: A Highly Efficient Triphase Transfer Catalyst for the Selective Oxidation of Alcohols with Aqueous H2O2. Mol. Catal. 2017, 443, 262–269. [Google Scholar] [CrossRef]
- Bai, Z.; Lodge, T.P. Pluronic Micelle Shuttle between Water and an Ionic Liquid. Langmuir 2010, 26, 8887–8892. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, L.; Liu, X.; Zhang, L.; Cheng, Z.; Zhu, X. Facilely Recyclable Cu(II) Macrocomplex with Thermoregulated Poly(Ionic Liquid) Macroligand: Serving as a Highly Efficient Atom Transfer Radical Polymerization Catalyst. ACS Sustain. Chem. Eng 2016, 4, 7066–7073. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; Bennett, W.D.; Wu, S. The Stereoselective Synthesis of Alpha-Amino Acids by Phase-Transfer Catalysis. J. Am. Chem. Soc. 1989, 111, 2353–2355. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; Wu, S.; Huffman, J.C. A New Active Catalyst Species for Enantioselective Alkylation by Phase-Transfer Catalysis. Tetrahedron 1994, 50, 4507–4518. [Google Scholar] [CrossRef]
- Duncan, D.C.; Chambers, R.C.; Hecht, E.; Hill, C.L. Mechanism and Dynamics in the H3[PW12O40]-Catalyzed Selective Epoxidation of Terminal Olefins by H2O2. Formation, Reactivity, and Stability of {PO4[WO(O2)2]4}3-. J. Am. Chem. Soc. 1995, 117, 681–691. [Google Scholar] [CrossRef]
- Zuwei, X.; Ning, Z.; Yu, S.; Kunlan, L. Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene Oxide. Science 2001, 292, 1139–1141. [Google Scholar] [CrossRef]
- Fedorynski, M.; Wojciechowski, K.; Matacz, Z. Makosza, Sodium and Potassium Carbonates: Efficient Strong Bases in Solid-Liquid Two-Phase Systems. J. Org. Chem. 1978, 43, 4682–4684. [Google Scholar] [CrossRef]
- Bouda, H.; Borredon, M.E.; Delmas, M.; Gaset, A. Aldehydes and Ketones Epoxidation with Trimethylsulfonium Bromide in a Slightly Hydrated Solid-Liquid Medium. Synth. Commun. 1987, 17, 503–513. [Google Scholar] [CrossRef]
- Jończyk, A.; Konarska, A. Generation and Reactions of Ammonium Ylides in Basic Two-Phase Systems: Convenient Synthesis of Cyclopropanes, Oxiranes and Alkenes Substituted with Electron-Withdrawing Groups. Synlett 1999, 1999, 1085–1087. [Google Scholar] [CrossRef]
- Januszkiewicz, K.R.; Alper, H. Exceedingly Mild, Selective and Stereospecific Phase-Transfer-Catalyzed Hydrogenation of Arenes. Organometallics 1983, 2, 1055–1057. [Google Scholar] [CrossRef]
- Lygo, B.; To, D.C.M. Improved Procedure for the Room Temperature Asymmetric Phase-Transfer Mediated Epoxidation of α,β-Unsaturated Ketones. Tetrahedron Lett. 2001, 42, 1343–1346. [Google Scholar] [CrossRef]
- Corey, E.J.; Xu, F.; Noe, M.C. A Rational Approach to Catalytic Enantioselective Enolate Alkylation Using a Structurally Rigidified and Defined Chiral Quaternary Ammonium Salt under Phase Transfer Conditions. J. Am. Chem. Soc. 1997, 119, 12414–12415. [Google Scholar] [CrossRef]
- Deshayes, S.; Liagre, M.; Loupy, A.; Luche, J.L.; Petit, A. Microwave Activation in Phase Transfer Catalysis. Tetrahedron 1999, 55, 10851–10870. [Google Scholar] [CrossRef]
- Bogdał, D.; Pielichowski, J.; Boroń, A. Remarkable Fast Microwave-Assisted N-Alkylation of Phthalimide in Dry Media. Synlett 1996, 1996, 873–874. [Google Scholar] [CrossRef]
- Majdoub, M.; Loupy, A.; Petit, A.; Roudesli, S. Coupling Focused Microwaves and Solvent-Free Phase Transfer Catalysis: Application to the Synthesis of New Furanic Diethers. Tetrahedron 1996, 52, 617–628. [Google Scholar] [CrossRef]
- Limousin, C.; Cléophax, J.; Loupy, A.; Petit, A. Synthesis of Benzoyl and Dodecanoyl Derivatives from Protected Carbohydrates under Focused Microwave Irradiation. Tetrahedron 1998, 54, 13567–13578. [Google Scholar] [CrossRef]
- Hashimoto, T.; Maruoka, K. Recent Development and Application of Chiral Phase-Transfer Catalysts. Chem. Rev. 2007, 107, 5656–5682. [Google Scholar] [CrossRef] [PubMed]
- Jew, S.S.; Park, H.G. Cinchona-Based Phase-Transfer Catalysts for Asymmetric Synthesis. Chem. Commun. 2009, 46, 7090–7103. [Google Scholar] [CrossRef]
- He, R.; Shirakawa, S.; Maruoka, K. Enantioselective Base-Free Phase-Transfer Reaction in Water-Rich Solvent. J. Am. Chem. Soc. 2009, 131, 16620–16621. [Google Scholar] [CrossRef] [PubMed]
- Rauniyar, V.; Lackner, A.D.; Hamilton, G.L.; Toste, F.D. Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst. Science 2011, 334, 1681–1684. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P. Green Chemistry—A Novel Approach Towards Sustainability. J. Chil. Chem. Soc. 2021, 66, 5075–5080. [Google Scholar] [CrossRef]
- Anastas, P.; Williamson, T. (Eds.) Green Chemistry Designing Chemisty for the Environment; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1996; Volume 626, ISBN 9780841233997. [Google Scholar]
- Handy, S. (Ed.) Ionic Liquids-Classes and Properties; InTech: London, UK, 2011; ISBN 9789533076348. [Google Scholar]
- Devi, R. Ionic Liquids-Useful Reaction Green Solvents for the Future (A Review). Int. J. Recent Res. Asp. 2015, 2, 26–29. [Google Scholar]
- Freemantle, M. Designer Solvents. Chem. Eng. News. 1998, 76, 32–37. [Google Scholar] [CrossRef]
- Earle, M.J.; Seddon, K.R. Ionic Liquids. Green Solvents for the Future. Pure Appl. Chem. 2000, 72, 1391–1398. [Google Scholar] [CrossRef] [Green Version]
- Cull, S.G.; Holbrey, J.D.; Vargas-Mora, V.; Seddon, K.R.; Lye, G.J. Room-Temperature Ionic Liquids as Replacements for Organic Solvents in Multiphase Bioprocess Operations. Biotechnol. Bioeng. 2000, 69, 227–233. [Google Scholar] [CrossRef]
- Brennecke, J.F.; Maginn, E.J. Ionic Liquids: Innovative Fluids for Chemical Processing. AIChE J. 2001, 47, 2384–2389. [Google Scholar] [CrossRef]
- Greaves, T.L.; Drummond, C.J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. [Google Scholar] [CrossRef]
- Bravo, M.V.; Fernández, J.L.; Adam, C.G.; della Rosa, C.D. Understanding the Role of Protic Ionic Liquids (PILs) in Reactive Systems: Rational Selection of PILs for the Design of Green Synthesis Strategies for Allylic Amines and β-Amino Esters. Chempluschem 2019, 84, 919–926. [Google Scholar] [CrossRef]
- Pernak, J.; Chwała, P.; Syguda, A. Room Temperature Ionic Liquids—New Choline Derivatives. Pol. J. Chem. 2004, 78, 539–546. [Google Scholar] [CrossRef]
- Walden, P. Ueber Die Molekulargroesse Und Elektrische Leitfähigkeit Einiger Geschmolzenen Salze. Bull. Acad. Imp. Sci. 1914, 8, 405–422. [Google Scholar]
- Nardi, J.C.; Hussey, C.L.; King, L.A. AlCl3/1-Alkyl Pyridinium Chloride Room Temperature Electrolytes. U.S. Patent 4,122,245, 19 August 1977. [Google Scholar]
- Wilkes, J.S.; Levisky, J.A.; Wilson, R.A.; Hussey, C.L. Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy, and Synthesis. Inorg. Chem. 1982, 21, 1263–1264. [Google Scholar] [CrossRef]
- Fannin, A.A.; King, L.A.; Levisky, J.A.; Wilkes, J.S. Properties of 1,3-Dialkylimidazolium Chloride-Aluminum Chloride Ionic Liquids. 1. Ion Interactions by Nuclear Magnetic Resonance Spectroscopy. J. Phys. Chem. 1984, 88, 2609–2614. [Google Scholar] [CrossRef]
- Ngo, H.L.; LeCompte, K.; Hargens, L.; McEwen, A.B. Thermal Properties of Imidazolium Ionic Liquids. Thermochim. Acta 2000, 357, 97–102. [Google Scholar] [CrossRef]
- Fredlake, C.P.; Crosthwaite, J.M.; Hert, D.G.; Aki, S.N.V.K.; Brennecke, J.F. Thermophysical Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data 2004, 49, 954–964. [Google Scholar] [CrossRef]
- Holbrey, J.D. Stability and Thermal Decomposition of Quaternary and Protonated Imidazolium Nitrate and Picrate Salts. ECS Proc. Vol. 2004, 2004, 396–406. [Google Scholar] [CrossRef]
- Fuller, J.; Carlin, R.T. Structural and Electrochemical Characterization of 1,3-Bis-(4-Methylphenyl)Imidazolium Chloride. J. Chem. Crystallogr. 1994, 24, 489–493. [Google Scholar] [CrossRef]
- Wang, Y.; Voth, G.A. Unique Spatial Heterogeneity in Ionic Liquids. J. Am. Chem. Soc. 2005, 127, 12192–12193. [Google Scholar] [CrossRef] [PubMed]
- Weingärtner, H. Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angew. Chem. Int. Ed. 2008, 47, 654–670. [Google Scholar] [CrossRef]
- Hayes, R.; Warr, G.G.; Atkin, R. Structure and Nanostructure in Ionic Liquids. Chem. Rev. 2015, 115, 6357–6426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Seddon, K.R.; Stark, A.; Torres, M.-J. Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids. Pure Appl. Chem. 2000, 72, 2275–2287. [Google Scholar] [CrossRef]
- Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H.; Watanabe, M. Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species. J. Phys. Chem. B 2004, 108, 16593–16600. [Google Scholar] [CrossRef]
- Cammarata, L.; Kazarian, S.G.; Salter, P.A.; Welton, T. Molecular States of Water in Room Temperature Ionic Liquids. Phys. Chem. Chem. Phys. 2001, 3, 5192–5200. [Google Scholar] [CrossRef] [Green Version]
- Łuczak, J.; Hupka, J.; Thöming, J.; Jungnickel, C. Self-Organization of Imidazolium Ionic Liquids in Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2008, 329, 125–133. [Google Scholar] [CrossRef]
- Anderson, J.L.; Ding, J.; Welton, T.; Armstrong, D.W. Characterizing Ionic Liquids on the Basis of Multiple Solvation Interactions. J. Am. Chem. Soc. 2002, 124, 14247–14254. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.N.; Hashmi, I.A.; Muhammad, S.; Bari, A.; Musharraf, S.G.; Mahmood, S.J.; Javed, S.; Ali, F.I.; Rafique, F.; Ilyas, M.A.; et al. Ionic Liquids Containing Plant Derived Benzoate as Anions, Exhibiting Supramolecular Polymeric Aggregation: Impact of the Aggregation on Organic Catalysis in Aqueous Medium. J. Mol. Liq. 2021, 336, 116329–116340. [Google Scholar] [CrossRef]
- Bhuin, R.G.; Winter, L.; Lexow, M.; Maier, F.; Steinrück, H.P. On the Dynamic Interaction of N-Butane with Imidazolium-Based Ionic Liquids. Angew. Chem. Int. Ed. 2020, 59, 14429–14433. [Google Scholar] [CrossRef] [PubMed]
- Carlin, R.T.; Fuller, J.; Kuhn, W.K.; Lysaght, M.J.; Trulove, P.C. Electrochemistry of Room-Temperature Chloroaluminate Molten Salts at Graphitic and Nongraphitic Electrodes. J. Appl. Electrochem. 1996, 26, 1147–1160. [Google Scholar] [CrossRef]
- Macfarlane, D.R.; Tachikawa, N.; Forsyth, M.; Pringle, J.M.; Howlett, P.C.; Elliott, G.D.; Davis, J.H.; Watanabe, M.; Simon, P.; Angell, C.A. Energy Applications of Ionic Liquids. Energy Environ. Sci. 2014, 7, 232–250. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, T.; Nakamura, S.; Honda, Y.; Kinugawa, K.; Lee, S.-Y.; Watanabe, M. Effects of Polymer Structure on Properties of Sulfonated Polyimide/Protic Ionic Liquid Composite Membranes for Nonhumidified Fuel Cell Applications. ACS Appl. Mater. Interfaces 2012, 4, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Izgorodin, A.; Izgorodina, E.; MacFarlane, D.R. Low Overpotential Water Oxidation to Hydrogen Peroxide on a MnOx Catalyst. Energy Environ. Sci. 2012, 5, 9496–9502. [Google Scholar] [CrossRef]
- Li, A.; Song, H.; Meng, H.; Lu, Y.; Li, C. Ultrafast Desulfurization of Diesel Oil with Ionic Liquid Based PMoO Catalysts and Recyclable NaClO Oxidant. Chem. Eng. J. 2020, 380, 122453–122463. [Google Scholar] [CrossRef]
- Dhameliya, T.M.; Nagar, P.R.; Bhakhar, K.A.; Jivani, H.R.; Shah, B.J.; Patel, K.M.; Patel, V.S.; Soni, A.H.; Joshi, L.P.; Gajjar, N.D. Recent Advancements in Applications of Ionic Liquids in Synthetic Construction of Heterocyclic Scaffolds: A Spotlight. J. Mol. Liq. 2022, 348, 118329. [Google Scholar] [CrossRef]
- Earle, M.J.; McCormac, P.B.; Seddon, K.R. The First High Yield Green Route to a Pharmaceutical in a Room Temperature Ionic Liquid. Green Chem. 2000, 2, 261–262. [Google Scholar] [CrossRef]
- Wang, B.; Kang, Y.-R.; Yang, L.-M.; Suo, J.-S. Epoxidation of α,β-Unsaturated Carbonyl Compounds in Ionic Liquid/Water Biphasic System under Mild Conditions. J. Mol. Catal. A Chem. 2003, 203, 29–36. [Google Scholar] [CrossRef]
- Crosthwaite, J.M.; Farmer, V.A.; Hallett, J.P.; Welton, T. Epoxidation of Alkenes by OxoneTM Using 2-Alkyl-3,4-Dihydroisoquinolinium Salts as Catalysts in Ionic Liquids. J. Mol. Catal. A Chem. 2008, 279, 148–152. [Google Scholar] [CrossRef]
- Abbiati, G.; Arcadi, A.; Beccalli, E.; Rossi, E. Novel Intramolecular Cyclization of N-Alkynyl Heterocycles Containing Proximate Nucleophiles. Tetrahedron Lett. 2003, 44, 5331–5334. [Google Scholar] [CrossRef]
- Conti, D.; Rodriquez, M.; Sega, A.; Taddei, M. 1,3-Cycloaddition of Nitrile Oxides in Ionic Liquids. An Easier Route to 3-Carboxy Isoxazolines, Potential Constrained Glutamic Acid Analogues. Tetrahedron Lett. 2003, 44, 5327–5330. [Google Scholar] [CrossRef]
- Kryshtal, G.V.; Zhdankina, G.M.; Zlotin, S.G. Synthesis of Cyclopropane-1,1,2,2-Tetracarboxylic Acid Derivatives from Aldehydes and CH-Acids in the K2CO3/BuN4NPF6/Toluene Heterogeneous System. Russ. Chem. Bull. 2011, 60, 2286–2290. [Google Scholar] [CrossRef]
- Han, X.; Armstrong, D.W. Ionic Liquids in Separations. Acc. Chem. Res. 2007, 40, 1079–1086. [Google Scholar] [CrossRef]
- van Rantwijk, F.; Sheldon, R.A. Biocatalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2757–2785. [Google Scholar] [CrossRef]
- Wasserscheid, P.; Welton, T. (Eds.) Ionic Liquids in Synthesis; Wiley: Hoboken, NJ, USA, 2007; Volume 1, ISBN 9783527312399. [Google Scholar]
- Jiang, D.; Wang, Y.; Sun, H.; Dai, L.Y. Phase Transfer Reaction Catalysted by Ionic Liquids. J. Chil. Chem. Soc. 2007, 52, 1302–1304. [Google Scholar] [CrossRef]
- Gu, Y.; Li, G. Ionic Liquids-Based Catalysis with Solids: State of the Art. Adv. Synth. Catal. 2009, 351, 817–847. [Google Scholar] [CrossRef]
- Ratti, R. Ionic Liquids: Synthesis and Applications in Catalysis. Adv. Chem. 2014, 2014, 729842. [Google Scholar] [CrossRef]
- Xu, L.; Xiao, J. Asymmetric Catalysis in Ionic Liquids. In Recoverable and Recyclable Catalysts; John Wiley and Sons: Hoboken, NJ, USA, 2009; pp. 259–300. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.M.; Fan, Q.H. Ionic Liquids in Transition Metal-Catalyzed Enantioselective Reactions. Top. Organomet. Chem. 2015, 51, 323–347. [Google Scholar] [CrossRef]
- Hejazifar, M.; Pálvölgyi, Á.M.; Bitai, J.; Lanaridi, O.; Bica-Schröder, K. Asymmetric Transfer Hydrogenation in Thermomorphic Microemulsions Based on Ionic Liquids. Org. Process Res. Dev. 2019, 23, 1841–1851. [Google Scholar] [CrossRef]
- Arumugam, V.; Redhi, G.; Gengan, R.M. The Application of Ionic Liquids in Nanotechnology. In Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Zheng, W.; Wu, M.; Yang, C.; Chen, Y.; Tan, R.; Yin, D. Alcohols Selective Oxidation with H2O2 Catalyzed by Robust Heteropolyanions Intercalated in Ionic Liquid-Functionalized Graphene Oxide. Mater. Chem. Phys. 2020, 256, 123681–123689. [Google Scholar] [CrossRef]
- Ngulube, R.; Oderinde, O.; Kalulu, M.; Pan, R.; Ejeromedoghene, O.; Li, N.; Zhou, J. Designing a Robust Recyclable Tricopolymer Poly(Ionic Liquid) Macroligand for Copper-Mediated Atom Transfer Radical Polymerization in Non-Aqueous Biphasic Systems. New J. Chem. 2020, 44, 861–869. [Google Scholar] [CrossRef]
- Mikkola, J.P.; Virtanen, P.; Karhu, H.; Salmi, T.; Murzin, D.Y. Supported Ionic Liquids Catalysts for Fine Chemicals: Citral Hydrogenation. Green Chem. 2006, 8, 197–205. [Google Scholar] [CrossRef]
- Müller, T.E. Supported Ionic Liquids as Part of a Building-Block System for Tailored Catalysts. In Supported Ionic Liquids: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Campisciano, V.; la Parola, V.; Liotta, L.F.; Giacalone, F.; Gruttadauria, M. Fullerene-Ionic-Liquid Conjugates: A New Class of Hybrid Materials with Unprecedented Properties. Eur. J. Chem. 2015, 21, 3327–3334. [Google Scholar] [CrossRef]
- Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef] [Green Version]
- MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C.S.; Williams, C.K.; Shah, N.; Fennell, P. An Overview of CO2 Capture Technologies. Energy Environ. Sci. 2010, 3, 1645–1670. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, L.A.; Hancu, D.; Beckman, E.J.; Brennecke, J.F. Green Processing Using Ionic Liquids and CO2. Nature 1999, 399, 28–29. [Google Scholar] [CrossRef]
- Duan, Z.; Sun, R. An Improved Model Calculating CO2 Solubility in Pure Water and Aqueous NaCl Solutions from 273 to 533 K and from 0 to 2000 Bar. Chem. Geol. 2003, 193, 257–271. [Google Scholar] [CrossRef]
- Cadena, C.; Anthony, J.L.; Shah, J.K.; Morrow, T.I.; Brennecke, J.F.; Maginn, E.J. Why Is CO2 so Soluble in Imidazolium-Based Ionic Liquids? J. Am. Chem. Soc. 2004, 126, 5300–5308. [Google Scholar] [CrossRef]
- Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G.O.; Pérez-Ramírez, J. Status and Perspectives of CO2 Conversion into Fuels and Chemicals by Catalytic, Photocatalytic and Electrocatalytic Processes. Energy Environ. Sci. 2013, 6, 3112–3136. [Google Scholar] [CrossRef] [Green Version]
- Rosen, B.A.; Salehi-Khojin, A.; Thorson, M.R.; Zhu, W.; Whipple, D.T.; Kenis, P.J.A.; Masel, R.I. Ionic Liquid–Mediated Selective Conversion of CO 2 to CO at Low Overpotentials. Science 2011, 334, 643–644. [Google Scholar] [CrossRef] [PubMed]
- Jessop, P.G.; Eckert, C.A.; Liotta, C.L.; Bonilla, R.J.; Brown, J.S.; Brown, R.A.; Pollet, P.; Thomas, C.A.; Wheeler, C.; Wynne, D. Catalysis Using Supercritical or Subcritical Inert Gases under Split-Phase Conditions. ACS Symp. Ser. 2002, 819, 97–112. [Google Scholar] [CrossRef]
- Liu, F.; Abrams, M.B.; Baker, R.T.; Tumas, W. Phase-Separable Catalysis Using Room Temperature Ionic Liquids and Supercritical Carbon Dioxide. Chem. Commun. 2001, 5, 433–434. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-J.; Anastas, P.T. Green Chemistry: Present and Future. Chem. Soc. Rev. 2012, 41, 1413–1416. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1996; ISBN 9780198506980. [Google Scholar]
- Tzani, A.; Karadendrou, M.-A.; Kalafateli, S.; Kakokefalou, V.; Detsi, A. Current Trends in Green Solvents: Biocompatible Ionic Liquids. Crystals 2022, 12, 1776–1813. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Q.; Gao, S.; Wang, H.; Li, Z.; Qiu, J.; Zhao, Y.; Liu, Z.; Wang, J. Bi-Functional Ionic Liquids Facilitate Liquid-Phase Exfoliation of Porphyrin-Based Covalent Organic Frameworks in Water for Highly Efficient CO2 Photoreduction. Green Chem. 2022, 24, 9530–9541. [Google Scholar] [CrossRef]
- Takács, D.; Varga, G.; Csapó, E.; Jamnik, A.; Tomšič, M.; Szilágyi, I. Delamination of Layered Double Hydroxide in Ionic Liquids under Ambient Conditions. J. Phys. Chem. Lett. 2022, 13, 11850–11856. [Google Scholar] [CrossRef]
- Pei, Y.; Zhang, Y.; Ma, J.; Fan, M.; Zhang, S.; Wang, J. Ionic Liquids for Advanced Materials. Mater. Today Nano. 2022, 17, 100159. [Google Scholar] [CrossRef]
- Sheldon, R. Catalytic Reactions in Ionic Liquids. Chem. Commun. 2001, 1, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wu, M.; Kou, Y.; Min, E. Ionic Liquids: Applications in Catalysis. Catal. Today 2002, 74, 157–189. [Google Scholar] [CrossRef]
- Olivier-Bourbigou, H.; Magna, L. Ionic Liquids: Perspectives for Organic and Catalytic Reactions. J. Mol. Catal. A Chem. 2002, 182, 419–437. [Google Scholar] [CrossRef]
- Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic Liquids and Catalysis: Recent Progress from Knowledge to Applications. Appl. Catal. A Gen. 2010, 373, 1–56. [Google Scholar] [CrossRef]
- Gordon, C.M. New Developments in Catalysis Using Ionic Liquids. Appl. Catal. A Gen. 2001, 222, 101–117. [Google Scholar] [CrossRef]
- Dehmlow, E.V.; Fastabend, U. Trialkyl Acyl Ammonium and Acylimidazolium Salts—New Phase Transfer Catalysts? A Rebuke and the Explanation of Catalytic Action. Synth. Commun. 1993, 23, 79–82. [Google Scholar] [CrossRef]
- Lourenço, N.M.T.; Afonso, C.A.M. Ionic Liquid as an Efficient Promoting Medium for Two-Phase Nucleophilic Displacement Reactions. Tetrahedron 2003, 59, 789–794. [Google Scholar] [CrossRef]
- Kim, D.W.; Chi, D.Y. Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions Including Fluorinations. Angew. Chem. Int. Ed. 2004, 43, 483–485. [Google Scholar] [CrossRef]
- Kim, D.W.; Hong, D.J.; Jang, K.S.; Chi, D.Y. Structural Modification of Polymer-Supported Ionic Liquids as Catalysts for Nucleophilic Substitution Reactions Including Fluorination. Adv. Synth. Catal. 2006, 348, 1719–1727. [Google Scholar] [CrossRef]
- Kim, D.W.; Jeong, H.J.; Lim, S.T.; Sohn, M.H.; Chi, D.Y. Facile Nucleophilic Fluorination by Synergistic Effect between Polymer-Supported Ionic Liquid Catalyst and Tert-Alcohol Reaction Media System. Tetrahedron 2008, 64, 4209–4214. [Google Scholar] [CrossRef]
- Shinde, S.S.; Lee, B.S.; Chi, D.Y. Polymer-Supported Protic Functionalized Ionic Liquids for Nucleophilic Substitution Reactions: Superior Catalytic Activity Compared to Other Ionic Resins. Tetrahedron Lett. 2008, 49, 4245–4248. [Google Scholar] [CrossRef]
- Emnet, C.; Weber, K.M.; Vidal, J.A.; Consorti, C.S.; Stuart, A.M.; Gladysz, J.A. Syntheses and Properties of Fluorous Quaternary Phosphonium Salts That Bear Four Ponytails; New Candidates for Phase Transfer Catalysts and Ionic Liquids. Adv. Synth. Catal. 2006, 348, 1625–1634. [Google Scholar] [CrossRef]
- Łuczak, J.; Jungnickel, C.; Joskowska, M.; Thöming, J.; Hupka, J. Thermodynamics of Micellization of Imidazolium Ionic Liquids in Aqueous Solutions. J. Colloid Interface Sci. 2009, 336, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Bica, K.; Gärtner, P.; Gritsch, P.J.; Ressmann, A.K.; Schröder, C.; Zirbs, R. Micellar Catalysis in Aqueous–Ionic Liquid Systems. Chem. Commun. 2012, 48, 5013–5015. [Google Scholar] [CrossRef] [Green Version]
- Cognigni, A.; Gaertner, P.; Zirbs, R.; Peterlik, H.; Prochazka, K.; Schröder, C.; Bica, K. Surface-Active Ionic Liquids in Micellar Catalysis: Impact of Anion Selection on Reaction Rates in Nucleophilic Substitutions. Phys. Chem. Chem. Phys. 2016, 18, 13375–13384. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Guo, H.; Jiao, Z.; Li, C.; Ye, J. Calixarene Ionic Liquids: Excellent Phase Transfer Catalysts for Nucleophilic Substitution Reaction in Water. J. Iran. Chem. Soc. 2012, 9, 327–332. [Google Scholar] [CrossRef]
- Jadhav, V.H.; Kim, J.G.; Park, S.H.; Kim, D.W. Task-Specific Hexaethylene Glycol Bridged Di-Cationic Ionic Liquids as Catalysts for Nucleophilic Fluorination Using Potassium Fluoride. Chem. Eng. J. 2017, 308, 664–668. [Google Scholar] [CrossRef]
- Taher, A.; Kim, D.W. Pyrene-Tagged Alcoholic Ionic Liquids as Phase Transfer Catalysts for Nucleophilic Fluorination. Bull. Korean Chem. Soc. 2020, 41, 1140–1146. [Google Scholar] [CrossRef]
- Kumar, V.; Talisman, I.J.; Bukhari, O.; Razzaghy, J.; Malhotra, S.V. Dual Role of Ionic Liquids as Phase Transfer Catalyst and Solvent for Glycosidation Reactions. RSC Adv. 2011, 1, 1721–1727. [Google Scholar] [CrossRef]
- Muthusamy, S.; Gnanaprakasam, B. Imidazolium Salts as Phase Transfer Catalysts for the Dialkylation and Cycloalkylation of Active Methylene Compounds. Tetrahedron Lett. 2005, 46, 635–638. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Cai, X.C.; Jiang, D.; Dai, L.Y. Ionic Liquids as Efficient Phase-Transfer Catalysts for the Solid Base-Promoted Monoalkylation of Diethyl Malonate. Chin. Chem. Lett. 2007, 18, 279–282. [Google Scholar] [CrossRef]
- Mukherjee, D.K.; Ghosh, N. Enantioselective Phase Transfer Alkylation Using Orthopalladated Complex in Chiral Ionic Liquid. Catal. Commun. 2008, 9, 40–44. [Google Scholar] [CrossRef]
- Dogra, S.; Sharma, M.L.; Singh, J. Comparative Study of Chemically Immobilized and Conventional Homogeneous Ionic Liquids as Phase-Transfer Catalysts for the N-Alkylation of Heterocyclic Compounds. C. R. Chim. 2015, 18, 945–953. [Google Scholar] [CrossRef]
- Mizuta, S.; Kitamura, K.; Nishi, K.; Hashimoto, R.; Usui, T.; Chiba, K. Activity of: N, N ′-Dialkyl-2-Trifluoromethylthioimidazolium Salts as Phase-Transfer Catalyst for the Alkylation of Active Methylene Compounds. RSC Adv. 2016, 6, 43159–43162. [Google Scholar] [CrossRef]
- Suarez, P.A.Z.; Dullius, J.E.L.; Einloft, S.; de Souza, R.F.; Dupont, J. The Use of New Ionic Liquids in Two-Phase Catalytic Hydrogenation Reaction by Rhodium Complexes. Polyhedron 1996, 15, 1217–1219. [Google Scholar] [CrossRef]
- Chauvin, Y.; Mussmann, L.; Olivier, H. A Novel Class of Versatile Solvents for Two-Phase Catalysis: Hydrogenation, Isomerization, and Hydroformylation of Alkenes Catalyzed by Rhodium Complexes in Liquid 1,3-Dialkylimidazolium Salts. Angew Chem. Int. Ed. Engl. 1996, 34, 2698–2700. [Google Scholar] [CrossRef]
- Monteiro, A.L.; Zinn, F.K.; de Souza, R.F.; Dupont, J. Asymmetric Hydrogenation of 2-Arylacrylic Acids Catalyzed by Immobilized Rn-BINAP Complex in 1-n-Butyl-3-Methylimidazolium Tetrafluoroborate Molten Salt. Tetrahedron Asymmetry 1997, 8, 177–179. [Google Scholar] [CrossRef]
- Dyson, P.J.; Ellis, D.J.; Parker, D.G.; Welton, T. Arene Hydrogenation in a Room-Temperature Ionic Liquid Using a Ruthenium Cluster Catalyst. Chem. Commun. 1999, 1, 25–26. [Google Scholar] [CrossRef]
- Sepúlveda, F.; Carrión, M.C.; Phillips, A.D.; Jalón, F.A.; Dyson, P.J.; Manzano, B.R. Base-Free Transfer Hydrogenation with an Ionic-Liquid-Supported Ruthenium H6-Arene Bis(Pyrazolyl)Methane Catalyst. Eur. J. Inorg. Chem. 2017, 2017, 630–638. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y.; Wang, S.; Jia, X. Ru-Pd Thermoresponsive Nanocatalyst Based on a Poly(Ionic Liquid) for Highly Efficient and Selectively Catalyzed Suzuki Coupling and Asymmetric Transfer Hydrogenation in the Aqueous Phase. ACS Appl. Mater. Interfaces 2020, 12, 44094–44102. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Y. A Novel Thermoregulated Phase-Transfer Catalysis System for Chiral Nano-Pt-Catalyzed Asymmetric Hydrogenation. J. Chem. Res. 2021, 45, 977–982. [Google Scholar] [CrossRef]
- Bender, J.; Jepkens, D.; Hüsken, H. Ionic Liquids as Phase-Transfer Catalysts: Etherification Reaction of 1-Octanol with 1-Chlorobutane. Org. Process Res. Dev. 2010, 14, 716–721. [Google Scholar] [CrossRef]
- Lin, X.S.; Zou, Y.; Zhao, K.H.; Yang, T.X.; Halling, P.; Yang, Z. Tetraalkylammonium Ionic Liquids as Dual Solvents–Catalysts for Direct Synthesis of Sugar Fatty Acid Esters. J. Surfactants Deterg. 2016, 19, 511–517. [Google Scholar] [CrossRef]
- Lee, L.W.; Yang, H.M. Combination of a Dual-Site Phase-Transfer Catalyst and an Ionic Liquid for the Synthesis of Benzyl Salicylate. Ind. Eng. Chem. Res. 2014, 53, 12257–12263. [Google Scholar] [CrossRef]
- Yang, H.M.; Hung, Y.H.; Tu, C.Y. Combination of a Dual-Site Phase-Transfer Dual-Site Phase-Transfer Catalyst and Ionic Liquid in Tri-Liquid System. J. Taiwan Inst. Chem. Eng. 2014, 45, 1421–1427. [Google Scholar] [CrossRef]
- Hua, Q.; Dabin, L.; Chunxu, L. Ultrasonically-Promoted Synthesis of Mandelic Acid by Phase Transfer Catalysis in an Ionic Liquid. Ultrason. Sonochem. 2011, 18, 1035–1037. [Google Scholar] [CrossRef]
- Chauvin, Y.; Einloft, S.; Olivier, H. Catalytic Dimerization of Propene by Nickel-Phosphine Complexes in l-Butyl-3-Methylimidazolium Chloride/AlEtxCl3—x (x = 0, 1) Ionic Liquids. Ind. Eng. Chem. Res. 1995, 34, 1149–1155. [Google Scholar] [CrossRef]
- Einloft, S.; Dietrich, F.K.; de Souza, R.F.; Dupont, J. Selective Two-Phase Catalytic Ethylene Dimerization by Ni II Complexes/AlEtCl2 Dissolved in Organoaluminate Ionic Liquids. Polyhedron 1996, 15, 3257–3259. [Google Scholar] [CrossRef]
- Ellis, B.; Keim, W.; Wasserscheid, P. Linear Dimerization of But-1-Ene in Biphasic Mode Using Buffered Chloroaluminate Ionic Liquid Solvents. Chem. Commun. 1999, 4, 337–338. [Google Scholar] [CrossRef]
- Keim, W.; Hoffmann, B.; Lodewick, R.; Peuckert, M.; Schmitt, G.; Fleischhauer, J.; Meier, U. Linear Oligomerization of Olefins via Nickel Chelate Complexes and Mechanistic Considerations Based on Semi-Empirical Calculations. J. Mol. Catal. 1979, 6, 79–97. [Google Scholar] [CrossRef]
- Muzart, J. Ionic Liquids as Solvents for Catalyzed Oxidations of Organic Compounds. Adv. Synth. Catal. 2006, 348, 275–295. [Google Scholar] [CrossRef]
- Sun, H.; Harms, K.; Sundermeyer, J. Aerobic Oxidation of 2,3,6-Trimethylphenol to Trimethyl-1,4-Benzoquinone with Copper(II) Chloride as Catalyst in Ionic Liquid and Structure of the Active Species. J. Am. Chem. Soc. 2004, 126, 9550–9551. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, S.; Takano, K.; Ishikawa, T.; Ishigami, S.; Tsuhako, A. Activity and Behavior of Imidazolium Salts as a Phase Transfer Catalyst for a Liquid-Liquid Phase System. Tetrahedron Lett. 2006, 47, 8055–8058. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Cheng, F.; Jia, L.; Zhang, A.; Wu, J.; Tang, N. Asymmetric Epoxidation of Olefins Using Novel Chiral Dinuclear Mn(III)-Salen Complexes with Inherent Phase-Transfer Capability in Ionic Liquids. Chirality 2011, 23, 69–75. [Google Scholar] [CrossRef]
- Santiago, C.C.; Lafuente, L.; Bravo, R.; Díaz, G.; Ponzinibbio, A. Ionic Liquids as Phase Transfer Catalysts: Enhancing the Biphasic Extractive Epoxidation Reaction for the Selective Synthesis of β-O-Glycosides. Tetrahedron Lett. 2017, 58, 3739–3742. [Google Scholar] [CrossRef]
- Cheng, S.S.; Yen, T.F. Use of Ionic Liquids as Phase-Transfer Catalysis for Deep Oxygenative Desulfurization. Energy Fuels 2008, 22, 1400–1401. [Google Scholar] [CrossRef]
- Qiao, K.; Yokoyama, C. Nitration of Aromatic Compounds with Nitric Acid Catalyzed by Ionic Liquids. Chem. Lett. 2004, 33, 808–809. [Google Scholar] [CrossRef]
- Kryshtal, G.V.; Zhdankina, G.M.; Zlotin, S.G. Tetraalkylammonium and 1,3-Dialkylimidazolium Salts with Fluorinated Anions as Recoverable Phase-Transfer Catalysts in Solid Base-Promoted Cross-Aldol Condensations. Eur. J. Org. Chem. 2005, 2005, 2822–2827. [Google Scholar] [CrossRef]
- Kryshtal, G.V.; Zhdankina, G.M.; Zlotin, S.G. Recoverable Phase-Transfer Catalysts with Fluorinated Anions: Generation and Reactions of Dichlorocarbene and CCl3 Anion in the Heterogeneous System KOH(s)/CHCl3/NBu4NPF6. Eur. J. Org. Chem. 2008, 2008, 1777–1782. [Google Scholar] [CrossRef]
- Du, X.; Pan, J.; Chen, M.; Zhang, L.; Cheng, Z.; Zhu, X. Thermo-Regulated Phase Separable Catalysis (TPSC)-Based Atom Transfer Radical Polymerization in a Thermo-Regulated Ionic Liquid. Chem. Commun. 2014, 50, 9266–9269. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, B.; Jiang, H.; Zhang, L.; Zhu, X. Poly(Ionic Liquid): A New Phase in a Thermoregulated Phase Separated Catalysis and Catalyst Recycling System of Transition Metal-Mediated ATRP. Polymers 2018, 10, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathews, C.J.; Smith, P.J.; Welton, T. Palladium Catalysed Suzuki Cross-Coupling Reactions in Ambient Temperature Ionic Liquids. Chem. Commun. 2000, 14, 1249–1250. [Google Scholar] [CrossRef]
- Ooi, T.; Maruoka, K. Recent Advances in Asymmetric Phase-Transfer Catalysis. Angew. Chem. Int. Ed. 2007, 46, 4222–4266. [Google Scholar] [CrossRef]
- Dere, R.T.; Pal, R.R.; Patil, P.S.; Salunkhe, M.M. Influence of Ionic Liquids on the Phase Transfer-Catalysed Enantioselective Michael Reaction. Tetrahedron Lett. 2003, 44, 5351–5353. [Google Scholar] [CrossRef]
- Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J.-P. Asymmetric Michael Reaction Catalyzed by Chiral Ionic Liquids. Synfacts 2006, 2006, 0611. [Google Scholar] [CrossRef]
- Nobuoka, K.; Kitaoka, S.; Kojima, T.; Kawano, Y.; Hirano, K.; Tange, M.; Obata, S.; Yamamoto, Y.; Harran, T.; Ishikawa, Y. Proline Based Chiral Ionic Liquids for Enantioselective Michael Reaction. Org. Chem. Int. 2014, 2014, 836126. [Google Scholar] [CrossRef] [Green Version]
- Long, D.-L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building Blocks for Functional Nanoscale Systems. Angew. Chem. Int. Ed. 2010, 49, 1736–1758. [Google Scholar] [CrossRef]
- Li, C.; Gao, J.; Jiang, Z.; Wang, S.; Lu, H.; Yang, Y.; Jing, F. Selective Oxidations on Recoverable Catalysts Assembled in Emulsions. Top. Catal. 2005, 35, 169–175. [Google Scholar] [CrossRef]
- Liu, D.; Gui, J.; Lu, F.; Sun, Z.; Park, Y.-K. New Simple Synthesis Route for Decatungstate Hybrids: Novel Thermo-Regulated Phase Transfer Catalysts for Selective Oxidation of Alcohols. Catal. Lett. 2012, 142, 1330–1335. [Google Scholar] [CrossRef]
- Hao, P.; Zhang, M.; Zhang, W.; Tang, Z.; Luo, N.; Tan, R.; Yin, D. Polyoxometalate-Based Gemini Ionic Catalysts for Selective Oxidation of Benzyl Alcohol with Hydrogen Peroxide in Water. Catal. Sci. Technol. 2018, 8, 4463–4473. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Al-Azzawi, M. Aliphatic Amino Acids as Possible Hydrogen Bond Donors for Preparing Eutectic Solvents. J. Mol. Liq. 2021, 330, 115637. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neofotistos, S.P.; Tzani, A.; Detsi, A. Ionic Liquids: Advances and Applications in Phase Transfer Catalysis. Catalysts 2023, 13, 474. https://doi.org/10.3390/catal13030474
Neofotistos SP, Tzani A, Detsi A. Ionic Liquids: Advances and Applications in Phase Transfer Catalysis. Catalysts. 2023; 13(3):474. https://doi.org/10.3390/catal13030474
Chicago/Turabian StyleNeofotistos, Stavros P., Andromachi Tzani, and Anastasia Detsi. 2023. "Ionic Liquids: Advances and Applications in Phase Transfer Catalysis" Catalysts 13, no. 3: 474. https://doi.org/10.3390/catal13030474
APA StyleNeofotistos, S. P., Tzani, A., & Detsi, A. (2023). Ionic Liquids: Advances and Applications in Phase Transfer Catalysis. Catalysts, 13(3), 474. https://doi.org/10.3390/catal13030474