Application of Biochar from Woodchip as Catalyst Support for Biodiesel Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Acid Value and Free-Fatty Acid (FFA%) Content of UCO
2.2. Biodiesel Yield over Reaction Temperature
2.3. Catalyst Reusability Performance over UCO Biodiesel Yield
2.4. Characterization of Catalysts
2.4.1. Diffraction of X-rays (XRD)
2.4.2. Thermal Degradation Study of the Biochar Catalyst Using Thermogravimetric Analysis (TGA)
2.4.3. Field Emission Scanning Electron Microscope (FESEM)
2.5. Characterization of UCO Biodiesel
2.5.1. Fourier Transform Infrared (FTIR) Spectroscopy
2.5.2. Fatty Acid Compound Detection by Gas Chromatography-Mass Spectrometry
3. Materials and Methods
3.1. Biochar Supply and Process
3.1.1. Feedstock
3.1.2. Chemicals
3.1.3. Preparation of Catalyst
Biochar Activation under Reflux Acid Pre-Treatment
3.1.4. Catalytic Transesterification of Waste Cooking Oil
3.2. Acid Value Analysis
3.3. Catalyst Characterization
3.3.1. X-ray Diffraction (XRD)
3.3.2. Thermal Gravimetry
3.3.3. Field Emission Scanning Electron Microscopy (FESEM)
3.4. Biodiesel Characterization
3.4.1. Fourier Transform Infrared (FTIR) Spectroscopy
3.4.2. Gas Chromatography-Mass Spectrometer (GC-MS)
4. Conclusions and Future Recommendation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fadhil, A.B.; Saeed, I.K.; Saeed, L.I.; Altamer, M.H. Co-solvent ethanolysis of chicken waste: Optimization of parameters and characterization of biodiesel. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 2883–2890. [Google Scholar] [CrossRef]
- Boulal, A.; Atabani, A.E.; Mohammed, M.N.; Khelafi, M.; Uguz, G.; Shobana, S.; Bokhari, A.; Kumar, G. Integrated valorization of Moringa oleifera and waste Phoenix dactylifera L. dates as potential feedstocks for biofuels production from Algerian Sahara: An experimental perspective. Biocatal. Agric. Biotechnol. 2019, 20, 101234. [Google Scholar] [CrossRef]
- Gai, L.; Varbanov, P.S.; Van Fan, Y.; Klemeš, J.J.; Romanenko, S.V. Trade-offs between the recovery, exergy demand and economy in the recycling of multiple resources. Resour. Conserv. Recycl. 2021, 167, 105428. [Google Scholar] [CrossRef]
- Moayedi, H.; Aghel, B.; Abdullahi, M.M.; Nguyen, H.; Safuan ARashid, A. Applications of rice husk ash as green and sustainable biomass. J. Clean. Prod. 2019, 237, 117851. [Google Scholar] [CrossRef]
- Hamza, M.; Ayoub, M.; Shamsuddin, R.B.; Mukhtar, A.; Saqib, S.; Zahid, I.; Ameen, M.; Ullah, S.; Al-Sehemi, A.G.; Ibrahim, M. A review on the waste biomass derived catalysts for biodiesel production. Environ. Technol. Innov. 2021, 21, 101200. [Google Scholar] [CrossRef]
- Liew, J.X.; Loy, A.C.M.; Chin, B.L.F.; AlNouss, A.; Shahbaz, M.; Al-Ansari, T.; Govindan, R.; Chai, Y.H. Synergistic effects of catalytic co-pyrolysis of corn cob and HDPE waste mixtures using weight average global process model. Renew. Energy 2021, 170, 948–963. [Google Scholar] [CrossRef]
- Hajinezhad, A.; Abedi, S.; Ghobadian, B.; Noorollahi, Y. Biodiesel pro-duction from Norouzak (Salvia lerifolia) seeds as an indigenous source of bio fuel in Iran using ultrasound. Energy Convers. Manag. 2015, 99, 132–140. [Google Scholar] [CrossRef]
- Abdullah; Rahmawati Sianipar, R.N.; Ariyani, D.; Nata, I.F. Conversion of palm oil sludge to biodiesel using alum and KOH as catalysts. Sustain. Environ. Res. 2017, 27, 291–295. [Google Scholar] [CrossRef]
- Semwal, S.; Arora, A.K.; Badoni, R.P.; Tuli, D.K. Biodiesel production using heterogeneous catalysts. Bioresour. Technol. 2011, 102, 2151–2161. [Google Scholar] [CrossRef]
- Balajii, M.; Niju, S. Biochar-derived heterogeneous catalysts for biodiesel production. Environ. Chem. Lett. 2019, 17, 1447–1469. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Nguyen, M.L.; Su, C.H.; Ong, H.C.; Juan, H.Y.; Wu, S.J. Bio-derived catalysts: A current trend of catalysts used in biodiesel production. Catalysts 2021, 11, 812. [Google Scholar] [CrossRef]
- Salomon-Negrete, M.A.; Reynel-Avila, H.E.; Mendoza-Castillo, D.I.; Bonilla-Petriciolet, A.; Duran-Valle, C.J. Water defluoridation with avocado-based ad- sorbents: Synthesis, physicochemical characterization and thermodynamic studies. J. Mol. Liq. 2018, 254, 188–197. [Google Scholar] [CrossRef]
- Merodio-Morales, E.E.; Reynel-Avila, H.E.; Mendoza-Castillo, D.I.; Duran-Valle, C.J.; Bonilla-Petriciolet, A. Lanthanum- and cerium-based functionalization of chars and activated carbons for the adsorption of fluoride and arsenic ions. Int. J. Environ. Sci. Technol. 2020, 17, 115–128. [Google Scholar] [CrossRef]
- Arun, N.; Sharma, R.V.; Dalai, A.K. Green diesel synthesis by hydrode-oxygenation of bio-based feedstocks: Strategies for catalyst design and develop-ment. Renew. Sustain. Energy Rev. 2015, 48, 240–255. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, G.; Lee, H.; Lim, J.; Kim, K.; Kim, C.W.; Park, M.S.; Yang, J.W. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol. Adv. 2013, 31, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Festel, G.; Würmseher, M.; Rammer, C.; Boles, E.; Bellof, M. Modelling production cost scenarios for biofuels and fossil fuels in Europe. J. Clean. Prod. 2014, 66, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Rezania, S.; Kamboh, M.A.; Arian, S.S.; Al-Dhabi, N.A.; Arasu, M.V.; Esmail, G.A.; Kumar Yadav, K. Conversion of waste frying oil into biodiesel using recoverable nanocatalyst based on magnetic graphene oxide supported ternary mixed metal oxide nanoparticles. Bioresour. Technol. 2021, 323, 124561. [Google Scholar] [CrossRef]
- Azman, N.S.; Marliza, T.S.; Asikin-Mijan, N.; Hin TY, Y.; Khairuddin, N. Production of biodiesel from waste cooking oil via deoxygenation using ni-mo/ac catalyst. Processes 2021, 9, 750. [Google Scholar] [CrossRef]
- Fadhil, A.B.; Aziz, A.M.; Altamer, M.H. Potassium acetate supported on activated carbon for transesterification of new non-edible oil, bitter almond oil. Fuel 2016, 170, 130–140. [Google Scholar] [CrossRef]
- Alaei, S.; Haghighi, M.; Toghiani, J.; Rahmani Vahid, B. Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance. Ind. Crops Prod. 2018, 117, 322–332. [Google Scholar] [CrossRef]
- Hanif, M.A.; Nisar, S.; Akhtar, M.N.; Nisar, N.; Rashid, N. Optimized production and advanced assessment of biodiesel: A review. Int. J. Energy Res. 2018, 42, 2070–2083. [Google Scholar] [CrossRef]
- Kostić, M.D.; Djalović, I.G.; Stamenković, O.S.; Mitrović, P.M.; Adamović, D.S.; Kulina, M.K.; Veljković, V. Kinetic modeling and optimization of biodiesel production from white mustard (Sinapis alba L.) seed oil by quicklime-catalyzed transesterification. Fuel 2018, 223, 125–139. [Google Scholar] [CrossRef]
- Mercy Nisha Pauline, J.; Sivaramakrishnan, R.; Pugazhendhi, A.; Anbarasan, T.; Achary, A. Transesterification kinetics of waste cooking oil and its diesel engine performance. Fuel 2021, 285, 119108. [Google Scholar] [CrossRef]
- Odetoye, T.E.; Agu, J.O.; Ajala, E.O. Biodiesel production from poultry wastes: Waste chicken fat and eggshell. J. Environ. Chem. Eng. 2021, 9, 105654. [Google Scholar] [CrossRef]
- Mazaheri, H.; Ong, H.C.; Masjuki, H.H.; Amini, Z.; Harrison, M.D.; Wang, C.T.; Kusumo, F.; Alwi, A. Rice bran oil based biodiesel production using cal-cium oxide catalyst derived from Chicoreus brunneus shell. Energy 2018, 144, 10–19. [Google Scholar] [CrossRef]
- Syazwani, O.N.; Teo, S.H.; Islam, A.; Taufiq-Yap, Y.H. Transesterifica-tion activity and characterization of natural CaO derived from waste venus clam (Tapes belcheri S.) material for enhancement of biodiesel production. Process Saf. Environ. Prot. 2017, 105, 303–315. [Google Scholar] [CrossRef]
- Li, M.; Zheng, Y.; Chen, Y.; Zhu, X. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour. Technol. 2014, 154, 345–348. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.H.; Kwon, E.E. Biochar as a Catalyst. Renew. Sustain. Energy Rev. 2017, 77, 70–79. [Google Scholar] [CrossRef]
- Yu, J.T.; Dehkhoda, A.M.; Ellis, N. Development of biochar-based cata-lyst for transesterification of canola oil. Energy Fuels 2011, 25, 337–344. [Google Scholar] [CrossRef]
- Niju, S.; Kirthikaa, M.; Arrthi, S.; Dharani, P.; Ramya, S.; Balajii, M. Fish-Bone-Doped Sea Shell for Biodiesel Production from Waste Cooking Oil. J. Inst. Eng. Ser. E 2020, 101, 53–60. [Google Scholar] [CrossRef]
- Abdulkareem-Alsultan, G.; Asikin-Mijan, N.; Lee, H.V.; Taufiq-Yap, Y.H. A new route for the synthesis of La-Ca oxide supported on nano activated carbon via vacuum impregnation method for one pot esterification-transesterification re-action. Chem. Eng. J. 2016, 304, 61–71. [Google Scholar] [CrossRef]
- Goswami, L.; Kushwaha, A.; Singh, A.; Saha, P.; Choi, Y.; Maharana, M.; Patil, S.V.; Kim, B.S. Nano-Biochar as a Sustainable Catalyst for Anaerobic Diges-tion: A Synergetic Closed-Loop Approach. Catalysts 2022, 12, 186. [Google Scholar] [CrossRef]
- Hanafi, S.A.; Elmelawy, M.S.; Shalaby, N.H.; El-Syed, H.A.; Eshaq, G.; Mostafa, M.S. Hydrocracking of waste chicken fat as a cost effective feedstock for re-newable fuel production: A kinetic study. Egypt. J. Pet. 2016, 25, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, R.; Manigandan, S.; Shanmugam, S.; Chandramohan, V.P.; Sindhu, R.; Kim, S.H.; Brindhadevi, K.; Pugazhendhi, A. A detailed scrutinize on panorama of catalysts in biodiesel synthesis. Sci. Total Environ. 2021, 777, 145683. [Google Scholar] [CrossRef]
- Altun, Ş. Effect of the degree of unsaturation of biodiesel fuels on the exhaust emissions of a diesel power generator. Fuel 2014, 117 Pt A, 450–457. [Google Scholar] [CrossRef]
- Murugesan, A.; Subramaniam, D.; Avinash, A.; Nedunchezhian, N. Quantitative and qualitative analysis of biodiesel—An in-depth study. Int. J. Ambient. Energy 2015, 36, 19–30. [Google Scholar] [CrossRef]
- Anastopoulos, G.; Zannikou, Y.; Stournas, S.; Kalligeros, S. Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters. Energies 2009, 2, 362–376. [Google Scholar] [CrossRef]
- Muhammad, N.; Man, Z.; Bustam, M.A.; Mutalib MI, A.; Rafiq, S. Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J. Ind. Eng. Chem. 2013, 19, 207–214. [Google Scholar] [CrossRef]
- Asomaning, J.; Mussone, P.; Bressler, D.C. Thermal deoxygenation and pyrolysis of oleic acid. J. Anal. Appl. Pyrolysis 2014, 105, 1–7. [Google Scholar] [CrossRef]
No. of Replicates | Acid Value | FFA | Biodiesel |
---|---|---|---|
1 | ±5.230 | ±2.615 | ±1.0727 |
2 | ±4.265 | ±2.133 | ±0.6926 |
3 | ±5.905 | ±2.953 | ±1.0595 |
Average | ±5.133 | ±2.567 | ±0.9416 |
Type of Catalyst | Description |
---|---|
SBWC8 | Spent biochar woodchip doped with nickel and molybdenum metal calcined in temperature 400 °C |
SBWC4 | Spent biochar woodchip doped with nickel and molybdenum metal calcined in temperature 800 °C |
IBWC8 | Biochar woodchip doped with nickel and molybdenum metal calcined in temperature 800 °C |
IBWC4 | Biochar woodchip doped with nickel and molybdenum metal calcined in temperature 400 °C |
TBWC | Treated biochar undergone acid pre-treatment |
BWC | Fresh biochar woodchip |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azman, N.S.; Khairuddin, N.; Tengku Azmi, T.S.M.; Seenivasagam, S.; Hassan, M.A. Application of Biochar from Woodchip as Catalyst Support for Biodiesel Production. Catalysts 2023, 13, 489. https://doi.org/10.3390/catal13030489
Azman NS, Khairuddin N, Tengku Azmi TSM, Seenivasagam S, Hassan MA. Application of Biochar from Woodchip as Catalyst Support for Biodiesel Production. Catalysts. 2023; 13(3):489. https://doi.org/10.3390/catal13030489
Chicago/Turabian StyleAzman, Nor Shafinaz, Nozieana Khairuddin, Tengku Sharifah Marliza Tengku Azmi, Sivasangar Seenivasagam, and Mohd Ali Hassan. 2023. "Application of Biochar from Woodchip as Catalyst Support for Biodiesel Production" Catalysts 13, no. 3: 489. https://doi.org/10.3390/catal13030489
APA StyleAzman, N. S., Khairuddin, N., Tengku Azmi, T. S. M., Seenivasagam, S., & Hassan, M. A. (2023). Application of Biochar from Woodchip as Catalyst Support for Biodiesel Production. Catalysts, 13(3), 489. https://doi.org/10.3390/catal13030489