Catalysts Based on Ni(Mg)Al-Layered Hydroxides Prepared by Mechanical Activation for Furfural Hydrogenation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Study of Phase Composition and Morphology of as-Synthesized Ni(Mg)Al-Layered Hydroxides
2.2. Study of the Properties of Actives Sites of the Catalysts
3. Materials and Methods
3.1. Catalysts Preparation
3.2. Catalysts Characterization
3.3. Catalysts Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peleteiro, S.; Rivas, S.; Alonso, J.L.; Santos, V.; Parajó, J.C. Furfural production using ionic liquids: A review. Bioresour. Technol. 2016, 202, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.M.; Zhang, T.; Kumar, R.; Wyman, C.E. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J. Chem. Technol. Biotechnol. 2013, 89, 2–10. [Google Scholar] [CrossRef]
- O’Driscoll, Á.; Leahy, J.J.; Curtin, T. The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol. Catal. Today 2017, 279, 194–201. [Google Scholar] [CrossRef]
- Meng, X.; Yang, Y.; Chen, L.; Xu, M.; Zhang, X.; Wei, M. A Control over Hydrogenation Selectivity of Furfural via Tuning Exposed Facet of Ni Catalysts. ACS Catal. 2019, 9, 4226–4235. [Google Scholar] [CrossRef]
- Seo, G.; Chon, H. Hydrogenation of furfural over copper-containing catalysts. J. Catal. 1981, 67, 424–429. [Google Scholar] [CrossRef]
- Prakruthi, H.R.; Chandrashekara, B.M.; Prakash, J.; Bhat, Y.S. Hydrogenation efficiency of highly porous Cu-Al oxides derived from dealuminated LDH in the conversion of furfural to furfuryl alcohol. Ind. Eng. Chem. Res. 2018, 62, 96–105. [Google Scholar] [CrossRef]
- Jiménez-Gómez, C.P.; Cecilia, J.A.; Franco-Duro, F.I.; Pozo, M.; Moreno-Tost, R.; Maireles-Torres, P. Promotion effect of Ce or Zn oxides for improving furfuryl alcohol yield in the furfural hydrogenation using inexpensive Cu-based catalysts. J. Mol. Catal. 2018, 455, 121–131. [Google Scholar] [CrossRef]
- Liu, L.; Lou, H.; Chen, M. Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Appl. Catal. A Gen. 2018, 550, 1–10. [Google Scholar] [CrossRef]
- Gong, W.; Chen, C.; Wang, H.; Fan, R.; Zhang, H.; Wang, G.; Zhao, H. Sulfonate group modified Ni catalyst for highly efficient liquid-phase selective hydrogenation of bio-derived furfural. Chin. Chem. Lett. 2018, 29, 1617–1620. [Google Scholar] [CrossRef]
- Nguyen-Huy, C.; Kim, J.S.; Yoon, S.; Yang, E.; Kwak, J.H.; Lee, M.S.; An, K. Supported Pd nanoparticle catalysts with high activities and selectivities in liquid-phase furfural hydrogenation. Fuel 2018, 226, 607–617. [Google Scholar] [CrossRef]
- Bhogeswararao, S.; Srinivas, D. Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J. Catal. 2015, 327, 65–77. [Google Scholar] [CrossRef]
- Rao, R.; Dandekar, A.; Baker, R.T.K.; Vannice, M.A. Properties of copper chromite catalysts in hydrogenation reactions. J. Catal. 1997, 171, 406–419. [Google Scholar] [CrossRef]
- Gupta, K.; Rai, R.K.; Singh, S.K. Metal catalysts for Efficient transformation of biomass-derived HMF and furfural to value added chemicals: Recent progress. ChemCatChem. 2018, 10, 2326–2349. [Google Scholar] [CrossRef]
- Yang, X.; Meng, Q.; Ding, G.; Wang, Y.; Chena, H.; Zhu, Y.; Li, Y.W. Construction of novel Cu/ZnO-Al2O3 composites for furfural hydrogenation: The role of Al components. Appl. Catal. A Gen. 2018, 561, 78–86. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, D.; Rodríguez-Padrón, D.; Len, C. Recent advances in catalytic hydrogenation of furfural. Catalysts 2019, 9, 796. [Google Scholar] [CrossRef] [Green Version]
- Musci, J.J.; Merlo, A.B.; Casella, M.L. Aqueous phase hydrogenation of furfural using carbon-supported Ru and RuSn catalysts. Catal. Today 2017, 296, 43–50. [Google Scholar] [CrossRef]
- Mika, L.T.; Cséfalvay, E.; Horváth, I.T. The role of water in catalytic biomass-based technologies to produce chemicals and fuels. Catal. Today 2015, 247, 33–46. [Google Scholar] [CrossRef]
- Wu, K.; Wu, Y.; Chen, Y.; Chen, H.; Wang, J.; Yang, M. Heterogeneous catalytic conversion of biobased chemicals into liquid Fuels in the aqueous phase. ChemSucChem 2016, 9, 1355–1385. [Google Scholar] [CrossRef]
- Sunyol, C.; English Owen, R.; González, M.D.; Salagre, P.; Cesteros, Y. Catalytic hydrogenation of furfural to tetrahydrofurfuryl alcohol using competitive nickel catalysts supported on mesoporous clays. Appl. Catal. A Gen. 2021, 611, 117903. [Google Scholar] [CrossRef]
- Gao, G.; Shao, Y.; Gao, Y.; Wei, T.; Gao, G.; Zhang, S.; Wang, Y.; Chen, Q.; Hu, X. Synergetic effects of hydrogenation and acidic sites in phosphorus-modified nickel catalysts for the selective conversion of furfural to cyclopentanone. Catal. Sci. Technol. 2021, 11, 575–593. [Google Scholar] [CrossRef]
- Gong, W.; Chen, C.; Zhang, H.; Zhang, Y.; Zhang, Y.; Wang, G.; Zhao, H. Highly selective liquid-phase hydrogenation of furfural over N-doped carbon supported metallic nickel catalyst under mild conditions. J. Mol. Catal. A Chem. 2017, 429, 51–59. [Google Scholar] [CrossRef]
- Guo, P.; Liao, S.; Tong, X. Heterogeneous Nickel Catalysts Derived from 2D Metal–Organic Frameworks for Regulating the Selectivity of Furfural Hydrogenation. ACS Omega 2019, 4, 21724–21731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. Mg–Al mixed oxides as highly active acid—Base catalysts for cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 1999, 121, 4526–4527. [Google Scholar] [CrossRef]
- Sulmonetti, T.P.; Pang, S.H.; Claure, M.T.; Lee, S.; Cullen, D.A.; Agrawal, P.K.; Jones, C.W. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides. Appl. Catal. A Gen. 2016, 517, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Zhong, F.; Ge, X.; Sun, W.; Du, W.; Sang, K.; Yao, C.; Cao, Y.; Chen, W.; Qian, G.; Duan, X.; et al. Total hydrogenation of hydroxymethylfurfural via hydrothermally stable Ni catalysts and the mechanistic study. Chem. Eng. J. 2023, 455, 140536. [Google Scholar] [CrossRef]
- Song, Y.; Beaumont, S.; Zhang, X.; Wilson, K.; Lee, A.F. Catalytic applications of layered double hydroxides in biomass valorisation. Curr. Opin. Green Sustain. Chem. 2019, 22, 29–38. [Google Scholar] [CrossRef]
- Barranca, A.; Gandarias, I.; Arias, P.L.; Agirrezabal-Telleria, I. One-Pot Production of 1, 5-Pentanediol from Furfural Through Tailored Hydrotalcite-Based Catalysts. Catal. Lett. 2022, 1–8. [Google Scholar] [CrossRef]
- Liu, M.; Yuan, L.; Fan, G.; Zheng, L.; Yang, L.; Li, F. NiCu Nanoparticles for Catalytic Hydrogenation of Biomass-Derived Carbonyl Compounds. ACS Appl. Nano Mater. 2020, 3, 9226–9237. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Y.; Chen, L.; Xu, E.; Xu, J.; Hong, S.; Zhang, X.; Wei, M. Atomically-Ordered Active Sites in NiMo Intermetallic Compound toward Low-Pressure Hydrodeoxygenation of Furfural. Appl. Catal. B Environ. 2020, 282, 119569. [Google Scholar] [CrossRef]
- Wu, J.; Gao, G.; Li, J.; Sun, P.; Long, X.; Li, F. Efficient and versatile CuNi alloy nanocatalysts for the highly selective hydrogenation of furfural. Appl. Catal. B Environ. 2017, 203, 227–236. [Google Scholar] [CrossRef]
- Ren, F.; Wang, Z.; Luo, L.; Lu, H.; Zhou, G.; Huang, W.; Hong, X.; Wu, Y.; Li, Y. Utilization of Active Ni to Fabricate Pt-Ni Nanoframe/NiAl Layered Double Hydroxide Multifunctional Catalyst through In Situ Precipitation. Chem. Eur. J. 2015, 21, 13181–13185. [Google Scholar] [CrossRef] [PubMed]
- Rao, T.U.; Suchada, S.; Choi, C.; Machida, H.; Huo, Z.; Norinaga, K. Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol in 2-butanol over an equimolar Ni-Cu-Al catalyst prepared by the co-precipitation method. Energy Convers. Manag. 2022, 265, 115736. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Wang, R.; Li, Q.; Huang, B.; Guo, X.; Zhu, Z.; Su, T.; Lü, H. Synthesis of Dual-Active-Sites Ni-Ni2In catalysts for selective hydrogenation of furfural to furfuryl alcohol. Fuel 2022, 325, 124898. [Google Scholar] [CrossRef]
- Huang, L.; Tang, F.; Liu, P.; Xiong, W.; Jia, S.; Hao, F.; Lv, Y.; Luo, H. Highly efficient and selective conversion of guaiacol to cyclohexanol over Ni-Fe/MgAlOx: Understanding the synergistic effect between Ni-Fe alloy and basic sites. Fuel 2022, 327, 125115. [Google Scholar] [CrossRef]
- Chen, X.; Liu, W.; Luo, J.; Niu, H.; Li, R.; Liang, C. Structure Evolution of Ni–Cu Bimetallic Catalysts Derived from Layered Double Hydroxides for Selective Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol. Ind. Eng. Chem. Res. 2022, 61, 12953–12965. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Sun, K.; Gao, G.; Li, C.; Zhang, L.; Zhang, S.; Xu, L.; Hu, G.; Hu, X. Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: Understanding the synergy between Ni sites and Ni–Fe alloy. Renew. Energ. 2021, 170, 1114–1128. [Google Scholar] [CrossRef]
- Pomeroy, B.; Grilc, M.; Likozar, B. Process condition-based tuneable selective catalysis of hydroxymethylfurfural (HMF) hydrogenation reactions to aromatic, saturated cyclic and linear poly-functional alcohols over Ni–Ce/Al2O3. Green Chem. 2021, 23, 7996–8002. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Synthesis of layered double hydroxides containing Mg 2+, Zn 2+, Ca 2+ and Al 3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016, 383, 200–213. [Google Scholar] [CrossRef]
- Teodorescu, F.; Slabu, A.I.; Pavel, O.D.; Zăvoianu, R. A comparative study on the catalytic activity of ZnAl, NiAl, and CoAl mixed oxides derived from LDH obtained by mechanochemical method in the synthesis of 2-methylpyrazine. Catal. Commun. 2019, 133, 105829. [Google Scholar] [CrossRef]
- Stepanova, L.N.; Belskaya, O.B.; Vasilevich, A.V.; Leont’eva, N.N.; Salanov, A.N.; Likholobov, V.A. Synthesis and study of Mg(Ni, Co, Li)Al-LDH prepared by mechanochemical method. AIP Conf. Proc. 2019, 2141, 020013. [Google Scholar] [CrossRef]
- Stepanova, L.N.; Belskaya, O.B.; Leont’eva, N.N.; Kobzar, E.O.; Salanov, A.N.; Gulyaeva, T.I.; Trenikhin, M.V.; Likholobov, V.A. Study of the Properties of the Catalysts Based on Ni(Mg)Al-Layered Hydroxides for the Reaction of Furfural Hydrogenation. Mater. Chem. Phys. 2020, 263, 124091. [Google Scholar] [CrossRef]
- Stepanova, L.N.; Kobzar, E.O.; Leont’eva, N.N.; Gulyaeva, T.I.; Vasilevich, A.V.; Babenko, A.V.; Serkova, A.N.; Salanov, A.N.; Belskaya, O.B. Study of the chemical and phase transformations in the mechanochemical synthesis of the MgAl-layered double hydroxide. J. Alloys Compd. 2022, 890, 161902. [Google Scholar] [CrossRef]
- Belskaya, O.B.; Mironenko, R.M.; Gulyaeva, T.I.; Trenikhin, M.V.; Muromtsev, I.V.; Trubina, S.V.; Zvereva, V.V.; Likholobov, V.A. Catalysts Derived from Nickel-Containing Layered Double Hydroxides for Aqueous-Phase Furfural Hydrogenation. Catalysts 2022, 12, 598. [Google Scholar] [CrossRef]
- Mironenko, R.M.; Likholobov, V.A.; Belskaya, O.B. Nanoglobular carbon and palladium–nanoglobular carbon catalysts for liquid-phase hydrogenation of organic compounds. Russ. Chem. Rev. 2022, 91, RCR5017. [Google Scholar] [CrossRef]
- Fan, Q.; Li, X.; Yang, Z.; Han, J.; Xu, S.; Zhang, F. Double-Confined Nickel Nanocatalyst Derived from Layered Double Hydroxide Precursor: Atomic Scale Insight into Microstructure Evolution. Chem. Mater. 2016, 28, 6296–6304. [Google Scholar] [CrossRef]
- Han, J.; Jia, H.; Yang, Z.; Fan, Q.; Zhang, F. Confined hexahedral nickel nanoparticle catalyst for catalytic hydrogenation reaction. J. Mater. Sci. 2017, 53, 4884–4896. [Google Scholar] [CrossRef]
- Abello, S.; Verboekend, D.; Bridier, B.; Perezramirez, J. Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene. J. Catal. 2008, 259, 85–95. [Google Scholar] [CrossRef]
- Cherepanova, S.V.; Leont’eva, N.N.; Arbuzov, A.B.; Drozdov, V.A.; Belskaya, O.B.; Antonicheva, N.V. Structure of Oxides Prepared by Decomposition of Layered Double Mg–Al and Ni–Al Hydroxides. J. Solid State Chem. 2015, 225, 417–426. [Google Scholar] [CrossRef]
- Qu, J.; Sha, L.; Wu, C.; Zhang, Q. Applications of Mechanochemically Prepared Layered Double Hydroxides as Adsorbents and Catalysts: A Mini-Review. Nanomaterials 2019, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.-Z.; Gao, F.-Y.; Gao, M.-R. Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ. Sci. 2021, 14, 1121–1139. [Google Scholar] [CrossRef]
- Zhou, X.; Shan, J.; Chen, L.; Xia, B.Y.; Ling, T.; Duan, J.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z. Stabilizing Cu2+ ions by solid solutions to promote CO2 electroreduction to methane. J. Am. Chem. Soc. 2022, 144, 2079–2084. [Google Scholar] [CrossRef] [PubMed]
Sample | (Ni + Mg)/Al | Ni/(Ni + Mg) | S, % | |||
---|---|---|---|---|---|---|
FOL | THFOL | THFAL * | Other Products | |||
0.1NiMgAl-2-R | 2 | 0.1 | 78 | 8 | 12.6 | 1.4 |
0.3NiMgAl-2-R | 0.3 | 40 | 59 | 0.5 | 0.5 | |
0.5NiMgAl-2-R | 0.5 | 66 | 32 | 0.2 | 1.8 | |
0.7NiMgAl-2-R | 0.7 | 89 | 7 | 4.0 | 0.0 | |
NiAl-2-R | 1 | 87 | 9 | 4.0 | 0.0 | |
0.3NiMgAl-3-R | 3 | 0.3 | 50 | 32 | 17 | 1.0 |
0.5NiMgAl-3-R | 0.5 | 39 | 61 | 0.0 | 0.0 | |
NiAl-3-R | 1 | 88 | 9 | 3.0 | 0.0 | |
0.3NiMgAl-4-R | 4 | 0.3 | 43 | 57 | 0.0 | 0.0 |
0.5NiMgAl-4-R | 0.5 | 30 | 70 | 0.0 | 0.0 | |
NiAl-4-R | 1 | 87 | 7 | 4.7 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanova, L.N.; Kobzar, E.O.; Trenikhin, M.V.; Leont’eva, N.N.; Serkova, A.N.; Salanov, A.N.; Lavrenov, A.V. Catalysts Based on Ni(Mg)Al-Layered Hydroxides Prepared by Mechanical Activation for Furfural Hydrogenation. Catalysts 2023, 13, 497. https://doi.org/10.3390/catal13030497
Stepanova LN, Kobzar EO, Trenikhin MV, Leont’eva NN, Serkova AN, Salanov AN, Lavrenov AV. Catalysts Based on Ni(Mg)Al-Layered Hydroxides Prepared by Mechanical Activation for Furfural Hydrogenation. Catalysts. 2023; 13(3):497. https://doi.org/10.3390/catal13030497
Chicago/Turabian StyleStepanova, Liudmila N., Elena O. Kobzar, Mikhail V. Trenikhin, Natalia N. Leont’eva, Aleksandra N. Serkova, Aleksei N. Salanov, and Aleksandr V. Lavrenov. 2023. "Catalysts Based on Ni(Mg)Al-Layered Hydroxides Prepared by Mechanical Activation for Furfural Hydrogenation" Catalysts 13, no. 3: 497. https://doi.org/10.3390/catal13030497
APA StyleStepanova, L. N., Kobzar, E. O., Trenikhin, M. V., Leont’eva, N. N., Serkova, A. N., Salanov, A. N., & Lavrenov, A. V. (2023). Catalysts Based on Ni(Mg)Al-Layered Hydroxides Prepared by Mechanical Activation for Furfural Hydrogenation. Catalysts, 13(3), 497. https://doi.org/10.3390/catal13030497