Photocatalytic Properties and Chemical Durability of CaO-B2O3-V2O5 Borovanadate Glasses
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Sample Preparation
2.2. Durability Testing
2.3. Photocatalyic Activity
3. Results and Discussion
3.1. Chemical Durability
3.1.1. Variation in Weight Loss and Dissolution Rate (DR)
- The weight loss of sample A4 rapidly increased to reach 11% in 120 h.
- The sample A1 showed a very low weight loss of nearly 1% in 120 h.
- A similar weight loss of 5% was recorded for A2 and A3 samples.
3.1.2. Variation of the pH
3.2. Photocatalytic Activity
3.2.1. Effect of V2O5 and Modeling of Photodegradation Kinetics
3.2.2. Effect of Catalyst Loading and of Initial MB Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barebita, H.; Ferraa, S.; Moutataouia, M.; Baach, B.; Elbadaoui, A.; Nimour, A.; Guedira, T. Structural investigation of Bi2O3-P2O5-B2O3-V2O5 quaternary glass system by Raman, FTIR and thermal analysis. Chem. Phys. Lett. 2020, 760, 138031. [Google Scholar] [CrossRef]
- Margha, F.H.; Marzouk, M.A. Influence of vanadium addition on the optical and photoluminescence properties of borate glasses and their glass–ceramic derivatives. Appl. Phys. A 2019, 125, 623. [Google Scholar] [CrossRef]
- Hussein, E.M.A. Characterization of Some Chemical and Physical Properties of Lithium Borate Glasses Doped with CuO and/or TeO2. J. Chem. Soc. Pak. 2019, 41, 52. [Google Scholar] [CrossRef]
- Abdelghany, A.; Hammad, A.H. Impact of vanadium ions in barium borate glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.B.; Veeraiah, N. Study on some physical properties of Li2O–MO–B2O3: V2O5 glasses. Phys. B Condens. Matter 2004, 348, 256–271. [Google Scholar] [CrossRef]
- Singh, K.; Ratnam, J. Electrical conductivity of the Li2O_B2O3 system with V2O5. Solid State Ionics 1988, 31, 221–226. [Google Scholar] [CrossRef]
- Issever, U.; Kilic, G.; Ilik, E. The Impact of CuO on physical, structural, optical and thermal properties of dark VPB semiconducting glasses. Opt. Mater. 2021, 116, 111084. [Google Scholar] [CrossRef]
- Aly, K.; Hassaan, M.; Saddeek, Y. Thermal features and physical properties of sulfur modified barium vanadate glasses. Phase Transit. 2013, 86, 477–489. [Google Scholar] [CrossRef]
- Singh, G.P.; Kaur, P.; Kaur, S.; Singh, D.P. Role of V2O5 in Structural Properties of V2O5-MnO2-PbO-B2O3 Glasses. Mater. Phys. Mech. 2011, 12, 58–63. [Google Scholar]
- Reddy, N.S. Role of zinc sulfate on thermal and mechanical properties of borovanadate glasses. Mater. Today Proc. 2022, 49, 771–776. [Google Scholar] [CrossRef]
- Reddy, M.S.; Gowda, V.C.V.; Reddy, C.N.; Tripathi, S.K.; Dharamvir, K.; Kumar, R.; Saini, G.S.S. Elastic Properties and Structural Studies on Boro-Vanadate Glasses Containing Sulphate (SO42−) AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2011; pp. 209–210. [Google Scholar] [CrossRef]
- Kaaouass, A.; Ali, A.B.; Alloun, F.; Zarrouk, A.; Saadi Structural, M. Thermal and Physical Properties of the Calcium Borovanadate Glasses Belonging to the 40CaO-(60-x)B2O3-xV2O5 System. Biointerface Res. Appl. Chem. 2022, 13, 48. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.; Jung, J.; Park, H.; Ryu, B. Effect of Substituting B2O3 for P2O5 in Conductive Vanadate Glass. J. Korean Ceram. Soc. 2015, 52, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Sajid, M.M.; Shad, N.A.; Javed, Y.; Khan, S.B.; Zhang, Z.; Amin, N.; Zhai, H. Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf. Interfaces 2020, 19, 100502. [Google Scholar] [CrossRef]
- Ma, G.-Q.; Liu, F.-S.; Wang, S.; Dang, Z.-C.; Zhang, J.-W.; Fu, X.-J.; Hou, M.-S. Preparation and characterization of Bi2S3/3DOM-TiO2 for efficient photocatalytic degradation of rhodamine B. Mater. Sci. Semicond. Process. 2019, 100, 61–72. [Google Scholar] [CrossRef]
- Chang, Y.; Yu, K.; Zhang, C.; Yang, Z.; Feng, Y.; Hao, H.; Jiang, Y.; Lou, L.-L.; Zhou, W.; Liu, S. Ternary CdS/Au/3DOM-SrTiO3 composites with synergistic enhancement for hydrogen production from visible-light photocatalytic water splitting. Appl. Catal. B Environ. 2017, 215, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Liu, Y. Photocatalytic degradation of methyl orange and gas-sensing performance of nanosized ZnO. Mater. Sci. Semicond. Process. 2013, 16, 792–796. [Google Scholar] [CrossRef]
- Kalnaowakul, P.; Phairatana, T.; Ubolchollakhet, K.; Sangchay, W.; Rodchanarowan, A. Synthesis of Bi2O3-doped and TiO2-doped porous Lava for photocatalytic studies. Mater. Today: Proc. 2018, 5, 9312–9318. [Google Scholar] [CrossRef]
- Kubacka, A.; Fernández-García, M.; Colón, G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2011, 112, 1555–1614. [Google Scholar] [CrossRef]
- Lopes, E.D.O.; Dallabona, I.D.; Weinschutz, R.; Jorge, R.M.M. Fe/polymer-based photocatalyst synthesized by sono-sorption method applied to wastewater treatment. J. Photochem. Photobiol. A Chem. 2020, 396, 112545. [Google Scholar] [CrossRef]
- Wijetunga, S.; Li, X.-F.; Jian, C. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. J. Hazard. Mater. 2010, 177, 792–798. [Google Scholar] [CrossRef]
- Ouasfi, N.; Bouzekri, S.; Zbair, M.; Ahsaine, H.A.; Bakkas, S.; Bensitel, M.; Khamliche, L. Carbonaceous material prepared by ultrasonic assisted pyrolysis from algae (Bifurcaria bifurcata): Response surface modeling of aspirin removal. Surf. Interfaces 2019, 14, 61–71. [Google Scholar] [CrossRef]
- Nachit, W.; Ahsaine, H.A.; Ramzi, Z.; Touhtouh, S.; Goncharova, I.; Benkhouja, K. Photocatalytic activity of anatase-brookite TiO2 nanoparticles synthesized by sol gel method at low temperature. Opt. Mater. 2022, 129, 112256. [Google Scholar] [CrossRef]
- Adán, C.; Marugán, J.; Obregón, S.; Colón, G. Photocatalytic activity of bismuth vanadates under UV-A and visible light irradiation: Inactivation of Escherichia coli vs oxidation of methanol. Catal. Today 2015, 240, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Belver, C.; Adán, C.; García-Rodríguez, S.; Fernández-García, M. Photocatalytic behavior of silver vanadates: Microemulsion synthesis and post-reaction characterization. Chem. Eng. J. 2013, 224, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Belver, C.; Adán, C.; Fernández-García, M. Photocatalytic behaviour of Bi2MO6 polymetalates for rhodamine B degradation. Catal. Today 2009, 143, 274–281. [Google Scholar] [CrossRef]
- Avansi, W.; de Mendonça, V.R.; Lopes, O.F.; Ribeiro, C. Vanadium pentoxide 1-D nanostructures applied to dye removal from aqueous systems by coupling adsorption and visible-light photodegradation. RSC Adv. 2015, 5, 12000–12006. [Google Scholar] [CrossRef]
- Lotfi, S.; El Ouardi, M.; Ahsaine, H.A.; Assani, A. Recent progress on the synthesis, morphology and photocatalytic dye degradation of BiVO4 photocatalysts: A review, Catalysis Reviews. Catal. Rev. 2022. [Google Scholar] [CrossRef]
- Iqbal, M.; Fatima, M.; Javed, T.; Anam, A.; Nazir, A.; Kanwal, Q.; Shehzadi, Z.; I Khan, M.; Nisar, J.; Abbas, M.; et al. Microwave assisted synthesis of zinc vanadate nanoparticles and photocatalytic application. Mater. Res. Express 2020, 7, 015070. [Google Scholar] [CrossRef]
- Ferraa, S.; Naciri, Y.; Hsini, A.; Barebita, H.; Bouziani, A.; Albourine, A.; Nimour, A.; Guedira, T. Evolution of the physicochemical and photocatalytic properties of BaO embedded in bismuth phosphovanadates glasses. Chem. Phys. Lett. 2021, 763, 138173. [Google Scholar] [CrossRef]
- Thakur, V.; Kushwaha, H.; Singh, A.; Vaish, R.; Punia, R.; Singh, L. A study on the structural and photocatalytic degradation of ciprofloxacine using (70B2O3–29Bi2O3–1Dy2O3)–x(BaO–TiO2) glass ceramics. J. Non-Cryst. Solids 2015, 428, 197–203. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, V.P.; Chauhan, V.S.; Kushwaha, H.S.; Vaish, R. Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass–Ceramics. J. Electron. Mater. 2018, 47, 3490–3496. [Google Scholar] [CrossRef]
- Ali, A.S.; Khan, I.; Zhang, B.; Razum, M.; Pavić, L.; Šantić, A.; Bingham, P.A.; Nomura, K.; Kubuki, S. Structural, electrical and photocatalytic properties of iron-containing soda-lime aluminosilicate glass and glass-ceramics. J. Non-Cryst. Solids 2021, 553, 120510. [Google Scholar] [CrossRef]
- Janbandhu, S.; Munishwar, S.; Gedam, R. Synthesis, characterization and photocatalytic degradation efficiency of CdS quantum dots embedded in sodium borosilicate glasses. Appl. Surf. Sci. 2018, 449, 221–227. [Google Scholar] [CrossRef]
- Tupberg, C.; Chandet, N.; Wattanavichan, K.; Randorn, C. Catalytic and antibacterial activities of novel colored zinc borophosphate glasses. RSC Adv. 2016, 6, 79602–79611. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, V.P.; Bhargava, A.; Park, S.-H.; Chauhan, V.S.; Vaish, R. Surface crystallization of BiOCl on 2Bi2O3–B2O3 glasses for photocatalytic applications. J. Mater. Sci. Mater. Electron. 2021, 32, 10520–10531. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Yuharia, S.F.; Awanga, A.; Rajak, M.A.A.; Dayouc, J. Alteration on the chemical durability of tellurite glass: Effect of heat treatment. Chalcogenide Lett. 2021, 18, 171–181. [Google Scholar] [CrossRef]
- Mahraz, Z.A.S.; Sahar, M.R.; Ghoshal, S.K. IMPROVED CHEMICAL DURABILITY AND THERMAL STABILITY OF ZINC BORO-TELLURITE GLASS. Chalcogenide Lett. 2014, 11, 453–460. [Google Scholar]
- Li, X.; Xiao, Z.; Luo, M.; Dong, X.; Du, T.; Wang, Y. Low melting glasses in ZnO-Fe2O3-P2O5 system with high chemical durability and thermal stability for sealing or waste immobilization. J. Non-Cryst. Solids 2017, 469, 62–69. [Google Scholar] [CrossRef]
- Saudi, H.A.; El-Kameesy, S.U. Investigation of modified zinc borate glasses doped with BaO as a nuclear radiation-shielding material. Radiat. Detect. Technol. Methods 2018, 2, 44. [Google Scholar] [CrossRef]
- Reddy, C.N.; Gowda, V.V.; Chakradhar, R.S. Elastic properties and structural studies on lead–boro–vanadate glasses. J. Non-Cryst. Solids 2008, 354, 32–40. [Google Scholar] [CrossRef]
- Viswanatha, R.; Reddy, M.V.S.; Reddy, C.N.; Chakradhar, R.S. Infrared and MAS NMR studies of potassium borovanadate glasses. J. Mol. Struct. 2008, 889, 197–203. [Google Scholar] [CrossRef]
- Li, H.; Lin, H.; Chen, W.; Luo, L. IR and Raman investigation on the structure of (100-x)[0.33B2O3–0.67ZnO]–xV2O5 glasses. J. Non-Cryst. Solids 2006, 352, 3069–3073. [Google Scholar] [CrossRef]
- Kenanakis, G.; Katsarakis, N. Chemically grown TiO2 on glass with superior photocatalytic properties. J. Environ. Chem. Eng. 2014, 2, 1748–1755. [Google Scholar] [CrossRef]
- de Oliveira Guidolin, T.; Possolli, N.M.; Polla, M.B.; Wermuth, T.B.; de Oliveira, T.F.; Eller, S.; Montedo, O.R.K.; Arcaro, S.; Cechinel, M.A.P. Photocatalytic pathway on the degradation of methylene blue from aqueous solutions using magnetite nanoparticles. J. Clean. Prod. 2021, 318, 128556. [Google Scholar] [CrossRef]
- Mahanta, U.; Khandelwal, M.; Deshpande, A.S. TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light. Appl. Surf. Sci. 2022, 576, 151745. [Google Scholar] [CrossRef]
- Que, V.N.X.; Khoi, T.T.; Thuy, N.T.; Dung, T.T.M.; Binh, D.T.T.; Huy, N.N. Factors Determining the Removal Efficiency of Procion MX in Waters Using Titanate Nanotubes Catalyzed by UV Irradiation. J. Nanotechnol. 2021, 2021, 8870453. [Google Scholar] [CrossRef]
- Ahmina, W.; El Moudane, M.; Shaim, A.; Zriouil, M.; Taibi, M. Chemical durability, electrical and dielectric properties of the ternary system (50-x)K2O–xMnO–50P2O5 phosphate glasses. Mater. Today: Proc. 2019, 13, 466–473. [Google Scholar] [CrossRef]
- Laourayed, M.; El Moudane, M.; Khachani, M.; Boudalia, M.; Guenbour, A.; Bellaouchou, A.; Tabyaoui, M. Effect of the Bi2O3 on the thermal, structural and chemical durability of some bismuth niobium phosphate glasses. Mater. Today: Proc. 2019, 13, 974–981. [Google Scholar] [CrossRef]
- Ahmina, W.; El Moudane, M.; Zriouil, M.; Cherraj, M.; Taibi, M. Study of the mechanical and chemical properties of potassium manganese phosphate glasses. MATEC Web Conf. 2018, 149, 01081. [Google Scholar] [CrossRef]
- Kim, N.-J.; Im, S.-H.; Kim, N.-H.; Yoon, D.-K.; Ryu, B.-K. Structure and Properties of Borophosphate Glasses. Electron. Mater. Lett. 2010, 6, 103–106. [Google Scholar] [CrossRef]
- Han, K.; Hwang, C.; Kim, D.; Gwoo, D.; Kim, T.; Choi, W.; Kee, K.; Kim, J.; Ryu, B. Effects of substituting B2O3 for P2O5 on the structures and properties of V2O5-P2O5 glass systems. Electron. Mater. Lett. 2012, 8, 655–658. [Google Scholar] [CrossRef]
- Ba, K.; Chahine, A.; Touhami, M.E.; Jermoumi, T.; Shaim, A. Elaboration and characterization of new glasses with high chemical durability in the system (70-x)TiO2-xNiO-30P2O5. Mater. Res. Innov. 2022, 26, 100–106. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Song, X.; Wu, Y. Glass forming region, structure and properties of zinc iron phosphate glasses. J. Non-Cryst. Solids 2013, 379, 208–213. [Google Scholar] [CrossRef]
- Es-Soufi, H.; Bih, L. Effect of TiO2 on the chemical durability and optical properties of Mo-based phosphate glasses. J. Non-Cryst. Solids 2021, 558, 120655. [Google Scholar] [CrossRef]
- Yuvasree, P.; Nithya, K.; Neelakandeswari, N.; Rajasekaran, N.; Uthayarani, K.; Chitra, M.; Kumar, S.S. Phytochemical Preparation, Characterization and Photocatalytic Applications of Ag-TiO2 Nanocatalyst. Adv. Mater. Res. 2015, 1086, 1–6. [Google Scholar] [CrossRef]
- Shaim, A.; Amaterz, E.; Naciri, Y.; Taoufyq, A.; Bakiz, B.; Ezahri, M.; Benlhachemi, A.; Ouammou, A.; Chahine, A. Synthesis, characterization and photocatalytic activity of titano-phosphate glasses. Mediterr. J. Chem. 2019, 8, 66–73. [Google Scholar] [CrossRef]
- Fu, J. Photocatalytic properties of glass ceramics containing anatase-type TiO2. Mater. Lett. 2012, 68, 419–422. [Google Scholar] [CrossRef]
- Dong, H.; Zuo, Y.; Song, N.; Hong, S.; Xiao, M.; Zhu, D.; Sun, J.; Chen, G.; Li, C. Bimetallic synergetic regulating effect on electronic structure in cobalt/vanadium co-doped carbon nitride for boosting photocatalytic performance. Appl. Catal. B Environ. 2021, 287, 119954. [Google Scholar] [CrossRef]
- Lin, W.-C.; Lin, Y.-J. Effect of Vanadium(IV)-Doping on the Visible Light-Induced Catalytic Activity of Titanium Dioxide Catalysts for Methylene Blue Degradation. Environ. Eng. Sci. 2012, 29, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Nešić, J.; Manojlović, D.D.; Anđelković, I.; Dojčinović, B.P.; Vulić, P.J.; Krstić, J.; Roglić, G.M. Preparation, characterization and photocatalytic activity of lanthanum and vanadium co-doped mesoporous TiO2 for azo-dye degradation. J. Mol. Catal. A Chem. 2013, 378, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Unal, F.A.; Ok, S.; Unal, M.; Topal, S.; Cellat, K.; Şen, F. Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells. J. Mol. Liq. 2020, 299, 112177. [Google Scholar] [CrossRef]
- Naciri, Y.; Hsini, A.; Ajmal, Z.; Bouddouch, A.; Bakiz, B.; Navío, J.; Albourine, A.; Valmalette, J.-C.; Ezahri, M.; Benlhachemi, A. Influence of Sr-doping on structural, optical and photocatalytic properties of synthesized Ca3(PO4)2. J. Colloid Interface Sci. 2020, 572, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Naciri, Y.; Bouddouch, A.; Bakiz, B.; Taoufyq, A.; Ezahri, M.; Benlhachemi, A. Photocatalytic degradation of sulfadiazine by Zn3(PO4)2/BiPO4 composites upon UV light irradiation. Mater. Today: Proc. 2019, 22, 48–51. [Google Scholar] [CrossRef]
- Barebita, H.; Naciri, Y.; Ferraa, S.; Nimour, A.; Guedira, T. Investigation of structural and photocatalytic behavior of Bi13B1-2xVxPxO20.95+2x (0 ≤ x ≤ 0.5). Solid State Sci. 2020, 108, 106389. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, F.-S.; Wang, S.; Li, Z.; Qian, Q.-Q.; Wang, X.-Q.; Si, G.-L. Preparation and properties of CuO/Zn Cd1−S photocatalysts. Mater. Sci. Semicond. Process. 2015, 40, 602–612. [Google Scholar] [CrossRef]
- Ahsaine, H.A. UV-light photocatalytic properties of the bismuth lutetium tungstate system Bi2-xLuxWO6 (0 ≤ x ≤ 1). Mater. Lett. 2020, 276, 128221. [Google Scholar] [CrossRef]
- Ahsaine, H.A.; Slassi, A.; Naciri, Y.; Chennah, A.; Jaramillo-Páez, C.; Anfar, Z.; Zbair, M.; Benlhachemi, A.; Navío, J.A. Photo/Electrocatalytic Properties of Nanocrystalline ZnO and La–Doped ZnO: Combined DFT Fundamental Semiconducting Properties and Experimental Study. Chemistryselect 2018, 3, 7778–7791. [Google Scholar] [CrossRef]
- Naciri, Y.; Ahsaine, H.A.; Chennah, A.; Amedlous, A.; Taoufyq, A.; Bakiz, B.; Ezahri, M.; Villain, S.; Benlhachemi, A. Facile synthesis, characterization and photocatalytic performance of Zn3(PO4)2 platelets toward photodegradation of Rhodamine B dye. J. Environ. Chem. Eng. 2018, 6, 1840–1847. [Google Scholar] [CrossRef]
- Ahsaine, H.A.; El Jaouhari, A.; Slassi, A.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Guinneton, F.; Gavarri, J.-R. Electronic band structure and visible-light photocatalytic activity of Bi2WO6: Elucidating the effect of lutetium doping. RSC Adv. 2016, 6, 101105–101114. [Google Scholar] [CrossRef]
- Sajid, M.M.; Khan, S.B.; Shad, N.A.; Amin, N. Synthesis of Zn3(VO4)2/BiVO4 heterojunction composite for the photocatalytic degradation of methylene blue organic dye and electrochemical detection of H2O2. RSC Adv. 2018, 8, 35403–35412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, A.H. Degradation of Methylene Blue Dye by CuO-BiVO4 Photocatalysts under Visible Light Irradiation. Malays. J. Anal. Sci. 2016, 20, 1338–1345. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, J.; Huang, Y.; Chen, C.; Kim, S.I.; Seo, H.J. Visible-Light-Induced Degradation of Methylene Blue by SrBi3VO8 Nanoparticles. J. Am. Ceram. Soc. 2015, 98, 2528–2533. [Google Scholar] [CrossRef]
- Salhi, A.; Aarfane, A.; Tahiri, S.; Khamliche, L.; Bensitel, M.; Bentiss, F.; El Krati, M. Study of the photocatalytic degradation of methylene blue dye using titanium-doped hydroxyapatite. Mediterr. J. Chem. 2015, 4, 59–67. [Google Scholar] [CrossRef]
- Nisa, M.U.; Abid, A.G.; Gouadria, S.; Munawar, T.; Alrowaili, Z.; Abdullah, M.; Al-Buriahi, M.; Iqbal, F.; Ehsan, M.F.; Ashiq, M.N. Boosted electron-transfer/separation of SnO2/CdSe/Bi2S3 heterostructure for excellent photocatalytic degradation of organic dye pollutants under visible light. Surf. Interfaces 2022, 31, 102012. [Google Scholar] [CrossRef]
- Mukhtar, F.; Munawar, T.; Nadeem, M.S.; Rehman, M.N.U.; Khan, S.A.; Koc, M.; Batool, S.; Hasan, M.; Iqbal, F. Dual Z-scheme core-shell PANI-CeO2-Fe2O3-NiO heterostructured nanocomposite for dyes remediation under sunlight and bacterial disinfection. Environ. Res. 2022, 215, 114140. [Google Scholar] [CrossRef]
- Mukhtar, F.; Munawar, T.; Nadeem, M.S.; Khan, S.A.; Koc, M.; Batool, S.; Hasan, M.; Iqbal, F. Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation. Adv. Powder Technol. 2022, 33, 103708. [Google Scholar] [CrossRef]
- Narayana Reddy, C.; Damle, R.; Anavekar, R.V. Spectroscopic and structural studies on calcium borate glasses containing V2O5. Phys. Chem. Glasses-Eur. J. Glass Sci. Technol. Part B 2006, 47, 34–40. [Google Scholar]
- Hübert, T.; Mosel, G.; Witke, K. Structural Elements in Borovanadate Glasses. Glass Phys. Chem. 2001, 27, 114–120. [Google Scholar] [CrossRef]
Glass No. | CaO | B2O3 | V2O5 | ρ [12] | Tg ± 6° [12] | DR (pH = 7) | DR (pH = 4) |
---|---|---|---|---|---|---|---|
A1 | 40 | 60 | 0 | 2.603 | 650 | (3.76 ± 0.20) × 10−7 | (4.74 ± 0.20) × 10−7 |
A2 | 40 | 50 | 10 | 2.669 | 570 | (1.58 ± 0.20) × 10−6 | (4.18 ± 0.20) × 10−6 |
A3 | 40 | 40 | 20 | 2.749 | 480 | (2.05 ± 0.20) × 10−6 | (6.74 ± 0.20) × 10−6 |
A4 | 40 | 30 | 30 | 2.853 | 430 | (5.48 ± 0.20) × 10−6 | (8.95 ± 0.20) × 10−6 |
Catalyst | Concentration of Catalyst | Concentration of Dye | Light Source | Photocatalytique Degradation | Ref |
---|---|---|---|---|---|
Zn3(VO4)2/BiVO4 | 0.7 g/L | - | Visible light | 98% at 90 min | [73] |
CuO-BiVO4 | 0.6 g/L | 10 mg/L | Visible light | 92% at 240 min | [74] |
SrBi3VO8 | 0.17 g/L | 10 mg/L | Visible light | 80% at 180 min | [75] |
2Bi2O3–B2O3 (BBO) glass | 50 mg/L | UV light | 25% at 180 min | [36] | |
Fe doped TiO2 | 1 g/L | 10 mg/L | UV light | 38% at 120min | [64] |
CdS-Borosilicate glass (SiO2-B2O3-Na2O-ZnO) | 1 g/L | 10 mg/L | sunlight | 68% at 270 min | [34] |
titanium-doped hydroxyapatite | 0.5 g/L | 10 mg/L | UV light | 99% at 240 min | [76] |
SnO2/CdSe/Bi2S3 composite | 0.5 g/L | 30 mg/L | Visible light | 99% at 60 min | [77] |
Tin Oxide (SnO2) | 0.5 g/L | 30 mg/L | Visible light | 53% at 60 min | [77] |
CeO2–Fe2O3–NiO nanocomposite | 0.6 g/L | 5 mg/L | sunlight | 73% at 50 min | [78] |
Fe2O3 nanoparticles | 0.4 g/L | 10 mg/L | sunlight | 53% at 50 min | [79] |
40CaO–30 B2O3-30 V2O5 | 0.5 g/L | 10 mg/L | UV light | 99% at 180 min | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaaouass, A.; Ben Ali, A.; Ait Ahsaine, H.; Kaichouh, G.; Zarrouk, A.; Saadi, M. Photocatalytic Properties and Chemical Durability of CaO-B2O3-V2O5 Borovanadate Glasses. Catalysts 2023, 13, 512. https://doi.org/10.3390/catal13030512
Kaaouass A, Ben Ali A, Ait Ahsaine H, Kaichouh G, Zarrouk A, Saadi M. Photocatalytic Properties and Chemical Durability of CaO-B2O3-V2O5 Borovanadate Glasses. Catalysts. 2023; 13(3):512. https://doi.org/10.3390/catal13030512
Chicago/Turabian StyleKaaouass, Ayoub, Abdelkader Ben Ali, Hassan Ait Ahsaine, Ghizlaine Kaichouh, Abdelkader Zarrouk, and Mohamed Saadi. 2023. "Photocatalytic Properties and Chemical Durability of CaO-B2O3-V2O5 Borovanadate Glasses" Catalysts 13, no. 3: 512. https://doi.org/10.3390/catal13030512
APA StyleKaaouass, A., Ben Ali, A., Ait Ahsaine, H., Kaichouh, G., Zarrouk, A., & Saadi, M. (2023). Photocatalytic Properties and Chemical Durability of CaO-B2O3-V2O5 Borovanadate Glasses. Catalysts, 13(3), 512. https://doi.org/10.3390/catal13030512