BiPO4/Ov-BiOBr High-Low Junctions for Efficient Visible Light Photocatalytic Performance for Tetracycline Degradation and H2O2 Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure Analysis
2.2. TEM Analysis
2.3. XPS Analysis
2.4. Raman Analysis
2.5. UV–Vis Diffuse Reflectance Spectra
2.6. Photoelectrochemical Properties
2.7. Photocatalytic Activity
2.8. Free Radical Capture
2.9. Photocatalytic Mechanism
3. Experimental Section
3.1. Chemicals
3.2. The Preparation of Ov-BiOBr
3.3. The Preparation of BiPO4 and BiPO4/Ov-BiOBr
3.4. Chracterization
3.5. Assessment of Photocatalytic Activity
3.6. Active Species Trapping Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Abazari, R.; Adegoke, K.A.; Maxakato, N.W.; Bello, O.S.; Tahir, M.; Tasleem, S.; Sanati, S.; Kirillov, A.M.; Zhou, Y. Metal–Organic Frameworks and Derived Materials as Photocatalysts for Water Splitting and Carbon Dioxide Reduction. Coord. Chem. Rev. 2022, 469, 214664. [Google Scholar] [CrossRef]
- Sun, L.; Han, L.; Huang, J.; Luo, X.; Li, X. Single-Atom Catalysts for Photocatalytic Hydrogen Evolution: A Review. Int. J. Hydrog. Energy 2022, 47, 17583–17599. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Jiang, H.; Chen, J.; Liu, Y.; Liang, Q.; Zhou, M.; Li, Z.; Zhou, Y. Combined Effects of Octahedron NH2 -UiO-66 and Flowerlike ZnIn2S4Microspheres for Photocatalytic Dye Degradation and Hydrogen Evolution under Visible Light. J. Phys. Chem. C 2019, 123, 18037–18049. [Google Scholar] [CrossRef]
- Sun, L.-J.; Su, H.-W.; Xu, D.-F.; Wang, L.-L.; Tang, H.; Liu, Q.-Q. Carbon Hollow Spheres as Cocatalyst of Cu-Doped TiO2 Nanoparticles for Improved Photocatalytic H2 Generation. Rare Met. 2022, 41, 2063–2073. [Google Scholar] [CrossRef]
- Lu, X.; Chen, F.; Qian, J.; Fu, M.; Jiang, Q.; Zhang, Q. Facile Fabrication of CeF3/g-C3N4 Heterojunction Photocatalysts with Upconversion Properties for Enhanced Photocatalytic Desulfurization Performance. J. Rare Earths 2021, 39, 1204–1210. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance. Acta Phys.-Chim. Sin. 2021, 37, 2010030. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Meng, T.; Zang, S.; Yang, C.; Luo, X.; Wang, H.; Chen, J.; Jing, F.; Wang, C.; et al. Monolithic All-Weather Solar-Thermal Interfacial Membrane Evaporator. Chem. Eng. J. 2022, 450, 137893. [Google Scholar] [CrossRef]
- Dong, S.; Zhao, Y.; Yang, J.; Liu, X.; Li, W.; Zhang, L.; Wu, Y.; Sun, J.; Feng, J.; Zhu, Y. Visible-Light Responsive PDI/RGO Composite Film for the Photothermal Catalytic Degradation of Antibiotic Wastewater and Interfacial Water Evaporation. Appl. Catal. B Environ. 2021, 291, 120127. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Liu, Y.; Wang, C.; Yan, R.; Chen, X. Constructing Cd0.5Zn0.5S/Bi2WO6 S-Scheme Heterojunction for Boosted Photocatalytic Antibiotic Oxidation and Cr(VI) Reduction. Adv. Powder Mater. 2023, 2, 100073. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, B.; Deng, F.; Shao, P.; Zou, J.; Luo, X.; Zhang, S.; Li, X. Lattice Expansion Boosting Photocatalytic Degradation Performance of CuCo2S4 with an Inherent Dipole Moment. Chin. Chem. Lett. 2023, 34, 107468. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight. J. Mater. Sci. Technol. 2022, 123, 177–190. [Google Scholar] [CrossRef]
- Binas, V.D.; Sambani, K.; Maggos, T.; Katsanaki, A.; Kiriakidis, G. Synthesis and Photocatalytic Activity of Mn-Doped TiO2 Nanostructured Powders under UV and Visible Light. Appl. Catal. B-Environ. 2012, 113, 79–86. [Google Scholar] [CrossRef]
- Li, X.; Kang, B.; Dong, F.; Deng, F.; Han, L.; Gao, X.; Xu, J.; Hou, X.; Feng, Z.; Chen, Z.; et al. BiOBr with Oxygen Vacancies Capture 0D Black Phosphorus Quantum Dots for High Efficient Photocatalytic Ofloxacin Degradation. Appl. Surf. Sci. 2022, 593, 153422. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, D.; Pu, X.; Ma, H.; Su, C.; Gao, X.; Dou, J. Surface Decoration of BiOBr with BiPO4 Nanoparticles to Build Heterostructure Photocatalysts with Enhanced Visible-Light Photocatalytic Activity. Sep. Purif. Technol. 2016, 170, 183–189. [Google Scholar] [CrossRef]
- Wu, H.; Chen, R.; Wang, H.; Cui, W.; Li, J.; Wang, J.; Yuan, C.; Zhuo, L.; Zhang, Y.; Dong, F. An Atomic Insight into BiOBr/La2Ti2O7 p-n Heterojunctions: Interfacial Charge Transfer Pathway and Photocatalysis Mechanism. Catal. Sci. Technol. 2020, 10, 826–834. [Google Scholar] [CrossRef]
- Ye, X.; Li, Y.; Luo, P.; He, B.; Cao, X.; Lu, T. Iron Sites on Defective BiOBr Nanosheets: Tailoring the Molecular Oxygen Activation for Enhanced Photocatalytic Organic Synthesis. Nano Res. 2022, 15, 1509–1516. [Google Scholar] [CrossRef]
- Liu, Z.S.; Wu, B.T.; Niu, J.N.; Feng, P.Z.; Zhu, Y.B. BiPO4/BiOBr p–n Junction Photocatalysts: One-Pot Synthesis and Dramatic Visible Light Photocatalytic Activity. Mater. Res. Bull. 2015, 63, 187–193. [Google Scholar] [CrossRef]
- Shi, J.; Meng, X.; Hao, M.; Cao, Z.; He, W.; Gao, Y.; Liu, J. Enhanced Photoactivity of BiPO4/(001) Facet-Dominated Square BiOBr Flakes by Combining Heterojunctions with Facet Engineering Effects. J. Phys. Chem. Solids 2018, 113, 142–150. [Google Scholar] [CrossRef]
- An, W.; Cui, W.; Liang, Y.; Hu, J.; Liu, L. Surface Decoration of BiPO4 with BiOBr Nanoflakes to Build Heterostructure Photocatalysts with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2015, 351, 1131–1139. [Google Scholar] [CrossRef]
- Pan, C.; Li, D.; Ma, X.; Chen, Y.; Zhu, Y. Effects of Distortion of PO4 Tetrahedron on the Photocatalytic Performances of BiPO4. Catal. Sci. Technol. 2011, 1, 1399–1405. [Google Scholar] [CrossRef]
- Xu, H.; Xu, Y.; Li, H.; Xia, J.; Xiong, J.; Yin, S.; Huang, C.; Wan, H. Synthesis, Characterization and Photocatalytic Property of AgBr/BiPO4 Heterojunction Photocatalyst. Dalton Trans. 2012, 41, 3387–3394. [Google Scholar] [CrossRef]
- Lu, M.; Yuan, G.; Wang, Z.; Wang, Y.; Guo, J. Synthesis of BiPO4/Bi2S3 Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation. Nanoscale Res. Lett. 2015, 10, 385. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fan, H.; Li, M.; Tian, H. Ag/BiPO4 Heterostructures: Synthesis, Characterization and Their Enhanced Photocatalytic Properties. Dalton Trans. 2013, 42, 13172–13178. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, M.; Sun, Y.; Zhou, Y.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. Carbon-Supported Oxygen Vacancy-Rich Co3O4 for Robust Photocatalytic H2O2 Production via Coupled Water Oxidation and Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2019, 2, 8737–8746. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Cheng, Z.; Peng, Y.; Yang, S.; Zhang, Y. Facile Synthesis of High Crystallinity and Oxygen Vacancies Rich Bismuth Oxybromide Upconversion Nanosheets by Air-Annealing for UV-Vis-NIR Broad Spectrum Driven Bisphenol A Degradation. Chem. Eng. J. 2021, 421, 127868. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, X.; Yu, X.-F.; Xia, L.; Peng, Y.; Li, Z.; Zhang, Y.; Cheng, J.; Zhang, K.; Yu, J. Surface Oxygen Vacancies of Pd/Bi2MoO6-x Acts as “Electron Bridge” to Promote Photocatalytic Selective Oxidation of Alcohol. Appl. Catal. B Environ. 2021, 285, 119790. [Google Scholar] [CrossRef]
- Ren, X.; Gao, M.; Zhang, Y.; Zhang, Z.; Cao, X.; Wang, B.; Wang, X. Photocatalytic Reduction of CO2 on BiOX: Effect of Halogen Element Type and Surface Oxygen Vacancy Mediated Mechanism. Appl. Catal. B Environ. 2020, 274, 119063. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Li, Y.-H.; Qi, M.-Y.; Li, J.-Y.; Tang, Z.-R.; Zhou, Z.; Xu, Y.-J. Transition Metal Doping BiOBr Nanosheets with Oxygen Vacancy and Exposed {102} Facets for Visible Light Nitrogen Fixation. Appl. Catal. B Environ. 2021, 281, 119516. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen, Z.; Huang, J.; Zeng, F.; et al. Bi and S Co-doping g-C3N4 to Enhance Internal Electric Field for Robust Photocatalytic Degradation and H2 Production. Chin. J. Struct. Chem. 2022, 41, 2206069–2206078. [Google Scholar] [CrossRef]
- Xiong, J.; Li, X.; Huang, J.; Gao, X.; Chen, Z.; Liu, J.; Li, H.; Kang, B.; Yao, W.; Zhu, Y. CN/RGO@BPQDs High-Low Junctions with Stretching Spatial Charge Separation Ability for Photocatalytic Degradation and H2O2 Production. Appl. Catal. B Environ. 2020, 266, 118602. [Google Scholar] [CrossRef]
- Yan, B.; Peng, J.; Deng, F.; Liu, L.; Li, X.; Shao, P.; Zou, J.; Zhang, S.; Wang, J.; Luo, X. Novel ZnFe2O4/Bi2S3 High-Low Junctions for Boosting Tetracycline Degradation and Cr(VI) Reduction. Chem. Eng. J. 2023, 452, 139353. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Xu, J.; Zeng, H. CuTCPP/BiPO4 Composite with Enhanced Visible Light Absorption and Charge Separation. J. Photochem. Photobiol. A Chem. 2017, 336, 25–31. [Google Scholar] [CrossRef]
- Pan, C.; Xu, J.; Wang, Y.; Li, D.; Zhu, Y. Dramatic Activity of C3N4/BiPO4 Photocatalyst with Core/Shell Structure Formed by Self-Assembly. Adv. Funct. Mater. 2012, 22, 1518–1524. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Deng, F.; Huang, J.; Han, L.; He, C.; Chen, Z.; Luo, Y.; Zhu, Y. Double-Defect-Induced Polarization Enhanced OV-BiOBr/Cu2-XS High-Low Junction for Boosted Photoelectrochemical Hydrogen Evolution. Appl. Catal. B-Environ. 2022, 314, 121502. [Google Scholar] [CrossRef]
- Zhu, K.; Yao, W.; Zhu, Y. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method. Acta Phys. -Chim. Sin. 2016, 32, 1519–1526. [Google Scholar] [CrossRef]
- Jin, M.; Lu, S.; Ma, L.; Gan, M. One-Step Synthesis of in Situ Reduced Metal Bi Decorated Bismuth Molybdate Hollow Microspheres with Enhancing Photocatalytic Activity. Appl. Surf. Sci. 2017, 396, 438–443. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, M.; Xing, H.; Fu, Y.; Zhang, X.; Dong, X. Synthesis and Enhanced Photoreactivity of Metallic Bi-Decorated BiOBr Composites with Abundant Oxygen Vacancies. J. Mater. Sci.-Mater. Electron. 2015, 26, 10002–10011. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Nie, Q.; Hu, L.; Cui, Y.; Tan, Z.; Yu, H. One-Step Synthesis of Metallic Bi Deposited Bi2WO6 Nanoclusters for Enhanced Photocatalytic Performance: An Experimental and DFT Study. Appl. Surf. Sci. 2021, 559, 149970. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Y.; Wang, X.; Zhao, J.; Wu, Y.; Li, F. Simultaneous Phosphorylation and Bi Modification of BiOBr for Promoting Photocatalytic CO2 Reduction. ACS Sustain. Chem. Eng. 2019, 7, 14953–14961. [Google Scholar] [CrossRef]
- Tougaard, S. Practical Guide to the Use of Backgrounds in Quantitative XPS. J. Vac. Sci. Technol. A 2021, 39, 011201. [Google Scholar] [CrossRef]
- Catalin, N.; Cernea, M. Characterization of BaTi4O9 Ceramics by Raman Spectroscopy and XPS after Ion Etching. J. Optoelectron. Adv. Mater. 2006, 8, 1879–1883. [Google Scholar]
- Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Designing a 0D/2D S-Scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria. Angew. Chem. Int. Ed. 2020, 59, 5218–5225. [Google Scholar] [CrossRef]
- Zou, X.; Dong, Y.; Zhang, X.; Cui, Y.; Ou, X.; Qi, X. The Highly Enhanced Visible Light Photocatalytic Degradation of Gaseous o-Dichlorobenzene through Fabricating like-Flowers BiPO4/BiOBr p-n Heterojunction Composites. Appl. Surf. Sci. 2017, 391, 525–534. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, D.; Zhao, Y.; Yan, P.; Dong, J.; Qian, J.; Ao, H.; Li, J.; Yan, C.; Li, H. Integrated BiPO4 Nanocrystal/BiOBr Heterojunction for Sensitive Photoelectrochemical Sensing of 4-Chlorophenol. Dalton Trans. 2018, 47, 13353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhao, L.; Wang, L.; Hao, J.; Meng, X. Fabrication of Oxygen-Vacancy-Rich Black-BiOBr/BiOBr Heterojunction with Enhanced Photocatalytic Activity. J. Mater. Sci. 2020, 55, 10785–10795. [Google Scholar] [CrossRef]
- Hu, X.; Li, C.; Song, J.; Zheng, S.; Sun, Z. Multidimensional Assembly of Oxygen Vacancy-Rich Amorphous TiO2-BiOBr-Sepiolite Composite for Rapid Elimination of Formaldehyde and Oxytetracycline under Visible Light. J. Colloid Interface Sci. 2020, 574, 61–73. [Google Scholar] [CrossRef]
- Sultana, R.; Gurjar, G.; Gahtori, B.; Patnaik, S.; Awana, V.P.S. Flux Free Single Crystal Growth and Detailed Physical Property Characterization of Bi1−XSbX (X = 0.05, 0.1 and 0.15) Topological Insulator. Mater. Res. Express 2019, 6, 106102. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Zhang, Q.; Yang, L.; Luo, X.; Wang, A.; Luo, S.; Dionysiou, D.D. Visible-Light-Responsive Graphene-Functionalized Bi-Bridge Z-Scheme Black BiOCl/Bi2O3 Heterojunction with Oxygen Vacancy and Multiple Charge Transfer Channels for Efficient Photocatalytic Degradation of 2-Nitrophenol and Industrial Wastewater Treatment. Appl. Catal. B Environ. 2018, 238, 61–69. [Google Scholar] [CrossRef]
- Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure. Acta Phys. -Chim. Sin. 2022, 38, 2111008. [Google Scholar] [CrossRef]
- Dong, S.; Cui, L.; Tian, Y.; Xia, L.; Wu, Y.; Yu, J.; Bagley, D.M.; Sun, J.; Fan, M. A Novel and High-Performance Double Z-Scheme Photocatalyst ZnO-SnO2-Zn2SnO4 for Effective Removal of the Biological Toxicity of Antibiotics. J. Hazard. Mater. 2020, 399, 123017. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.K.; Sharma, G.; Al-Muhtaseb, A.H.; Naushad, M.; Ghfar, A.A.; Stadler, F.J. Wide Spectral Degradation of Norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 Nano-Assembly: Elucidating the Photocatalytic Mechanism under Different Light Sources. J. Hazard. Mater. 2019, 364, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Han, X.; Zhang, J.; Jiang, S.; Xue, R.; Dong, S.; Sun, J. BiPO4 Coupled Bi3+ Doping SnO2 QDs with Improved Performance towards Various Organic Pollutants Clearance. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 125915. [Google Scholar] [CrossRef]
- Li, X.; Xiong, J.; Gao, X.; Ma, J.; Chen, Z.; Kang, B.; Liu, J.; Li, H.; Feng, Z.; Huang, J. Novel BP/BiOBr S-Scheme Nano-Heterojunction for Enhanced Visible-Light Photocatalytic Tetracycline Removal and Oxygen Evolution Activity. J. Hazard. Mater. 2020, 387, 121690. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Dong, J.; Ji, M.; Zou, W.; Yin, S.; Chen, Z.; Xia, J. Rapid Dual-Channel Electrons Transfer via Synergistic Effect of LSPR Effect and Build-in Electric Field in Z-Scheme W18O49/BiOBr Heterojunction for Organic Pollutants Degradation. Inorg. Chem. Commun. 2022, 138, 109283. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, W.; Chen, C.; Jiang, C.; Wang, Y. Photocatalytic Activity and Degradation Mechanism of In-Situ Reduction Bi-Doped Self-Assembled 3D Flower-Sphere UiO-66-NH2/BiOBr. Opt. Mater. X 2021, 12, 100090. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Li, P.; Li, Y.; Wang, C.; Shu, S.; Song, Y. CQDs Modulating Z-Scheme g-C3N4/BiOBr Heterostructure for Photocatalytic Removing RhB, BPA and TC and E. Coli by LED Light. J. Alloys Compd. 2022, 895, 162637. [Google Scholar] [CrossRef]
- Liu, Y.; He, J.; Qi, Y.; Wang, Y.; Long, F.; Wang, M. Preparation of Flower-like BiOBr/Bi2WO6 Z-Scheme Heterojunction through an Ion Exchange Process with Enhanced Photocatalytic Activity. Mater. Sci. Semicond. Process. 2022, 137, 106195. [Google Scholar] [CrossRef]
- Zhang, F.; Xiao, X.; Xiao, Y. In Situ Fabrication of Type II 3D Hierarchical Flower-like BiOBr/Bi3O4Br Heterojunction with Improved Photocatalytic Activity. J. Alloys Compd. 2022, 923, 166417. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Deng, F.; Liu, J.; Gao, X.; Huang, J.; Xu, J.; Feng, Z.; Chen, Z.; Han, L. Novel Organic/Inorganic PDI-Urea/BiOBr S-Scheme Heterojunction for Improved Photocatalytic Antibiotic Degradation and H2O2 Production. Chin. Chem. Lett. 2022, 33, 5200–5207. [Google Scholar] [CrossRef]
- Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production. Acta Phys.-Chim. Sin. 2023, 39, 2209016. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, X.; Tang, Y.; Zeng, Y.; Wang, L.; Zhang, S.; Cai, T.; Liu, Y.; Luo, S.; Pei, Y.; et al. Positioning Cyanamide Defects in G-C3N4: Engineering Energy Levels and Active Sites for Superior Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2018, 237, 24–31. [Google Scholar] [CrossRef]
- Dong, S.; Xia, L.; Chen, X.; Cui, L.; Zhu, W.; Lu, Z.; Sun, J.; Fan, M. Interfacial and Electronic Band Structure Optimization for the Adsorption and Visible-Light Photocatalytic Activity of Macroscopic ZnSnO3/Graphene Aerogel. Compos. Part B Eng. 2021, 215, 108765. [Google Scholar] [CrossRef]
- Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Enhanced Photocatalytic Degradation and H2/H2O2 Production Performance of S-PCN/WO2.72 S-Scheme Heterojunction with Appropriate Surface Oxygen Vacancies. Nano Energy 2021, 81, 105671. [Google Scholar] [CrossRef]
- Chung, D.Y.; Uher, C.; Kanatzidis, M.G. Sb and Se Substitution in CsBi4Te6: The Semiconductors CsM4Q6 (M = Bi, Sb; Q = Te, Se), Cs2Bi10Q15, and CsBi5Q8. Chem. Mater. 2012, 24, 1854–1863. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, F.; Wu, D.; Tian, L.; Zheng, L.; Chen, L.; Chen, P.; Zhang, L.; Zeng, H.; Chen, Y.; et al. Isotypic heterojunction based on Fe-doped and terephthalaldehyde-modified carbon nitride for improving photocatalytic degradation with simultaneous hydrogen production. Chin. Chem. Lett. 2021, 32, 2782–2786. [Google Scholar] [CrossRef]
- Bai, S.; Qiu, H.; Song, M.; He, G.; Wang, F.; Liu, Y.; Guo, L. Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction. eScience 2022, 2, 428–437. [Google Scholar] [CrossRef]
- Hao, W.; Teng, F.; Liu, Z.; Yang, Z.; Liu, Z.; Gu, W. Synergistic Effect of Mott-Schottky Junction with Oxygen Defect and Dramatically Improved Charge Transfer and Separation of Bi@Bi-Doped TiO2. Sol. Energy Mater. Sol. Cells 2019, 203, 110198. [Google Scholar] [CrossRef]
Catalysts | Light Source (λ > 420 nm) | Concentration (g·L−1) | Pollutant (mg·L−1) | k (min−1) | References |
---|---|---|---|---|---|
BiPO4/Ov-BiOBr | 300 W Xe lamp | 1 | 50(TC) | 0.02534 | This work |
W18O49/BiOBr | 300 W Xe lamp | 1 | 20(TC) | 0.014 | [54] |
UiO-66-NH2/Bi/BiOBr | 350 W Xe lamp | 1 | 30(TC) | 0.00838 | [55] |
CN@BOB-CQDs | LED light irradiation | 1 | 20(TC) | 0.221 | [56] |
BiOBr/Bi2WO6 | 500 W Xe lamp | 1 | 10(TC) | 0.0229 | [57] |
BiOBr/Bi3O4Br | 500 W Xe lamp | 1 | 10(TC) | 0.02013 | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Li, X.; Deng, F.; Han, L.; Xie, Y.; Huang, J.; Chen, Z.; Feng, Z.; Zhou, Y. BiPO4/Ov-BiOBr High-Low Junctions for Efficient Visible Light Photocatalytic Performance for Tetracycline Degradation and H2O2 Production. Catalysts 2023, 13, 634. https://doi.org/10.3390/catal13030634
Tang M, Li X, Deng F, Han L, Xie Y, Huang J, Chen Z, Feng Z, Zhou Y. BiPO4/Ov-BiOBr High-Low Junctions for Efficient Visible Light Photocatalytic Performance for Tetracycline Degradation and H2O2 Production. Catalysts. 2023; 13(3):634. https://doi.org/10.3390/catal13030634
Chicago/Turabian StyleTang, Minghui, Xibao Li, Fang Deng, Lu Han, Yu Xie, Juntong Huang, Zhi Chen, Zhijun Feng, and Yingtang Zhou. 2023. "BiPO4/Ov-BiOBr High-Low Junctions for Efficient Visible Light Photocatalytic Performance for Tetracycline Degradation and H2O2 Production" Catalysts 13, no. 3: 634. https://doi.org/10.3390/catal13030634
APA StyleTang, M., Li, X., Deng, F., Han, L., Xie, Y., Huang, J., Chen, Z., Feng, Z., & Zhou, Y. (2023). BiPO4/Ov-BiOBr High-Low Junctions for Efficient Visible Light Photocatalytic Performance for Tetracycline Degradation and H2O2 Production. Catalysts, 13(3), 634. https://doi.org/10.3390/catal13030634