Design of Cu/MoOx for CO2 Reduction via Reverse Water Gas Shift Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Catalytic Performance
3. Experimental Section
3.1. Catalyst Preparation
3.2. Product Characterization
3.3. Catalytic Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.H.; Himeda, Y.; Muckerman, J.T.; Manbeck, G.F.; Fujita, E. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. Chem. Rev. 2015, 115, 12936–12973. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243. [Google Scholar] [CrossRef]
- Wang, X.X.; Duan, Y.H.; Zhang, J.F.; Tan, Y.S. Catalytic Conversion of CO2 into High Value-Added Hydrocarbons over Tandem Catalyst. J. Fuel Chem. Technol. 2022, 50, 538–563. [Google Scholar] [CrossRef]
- Chen, J.; Duan, L.; Sun, Z. Review on the development of sorbents for calcium looping. Energy Fuels 2020, 34, 7806–7836. [Google Scholar] [CrossRef]
- Leeson, D.; Mac Dowell, N.; Shah, N.; Petit, C.; Fennell, P. A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. Int. J. Greenh. Gas Control 2017, 61, 71–84. [Google Scholar] [CrossRef]
- Oshima, K.; Shinagawa, T.; Nogami, Y. Low temperature catalytic reverse water gas shift reaction assisted by an electric field. Catal. Today 2014, 232, 27–32. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M. Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction. Science 2007, 318, 1757–1760. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Su, X.; Su, H.; Liu, X.; Miao, S.; Zhao, Y.; Sun, K.; Huang, Y.; Zhang, T. Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO2-to-CO conversion. ACS Catal. 2017, 7, 4613–4620. [Google Scholar] [CrossRef]
- Park, S.W.; Joo, O.S.; Jung, K.D.; Kim, H.; Han, S.H. Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process. Appl. Catal. A 2001, 211, 81–90. [Google Scholar] [CrossRef]
- Zonetti, P.C.; Letichevsky, S.; Gaspar, A.B.; Sousa-Aguiar, E.F.; Appel, L.G. The NixCe0.75Zr0.25-xO2 solid solution and the RWGS. Appl. Catal. A 2014, 475, 48–54. [Google Scholar] [CrossRef]
- Silva-Calpa, L.D.R.; Zonetti, P.C.; Rodrigues, C.P.; Alves, O.C.; Appel, L.G.; Avillez, R.R.de. The ZnxZr1-xO2-y solid solution on m-ZrO2: Creating O vacancies and improving the m-ZrO2 redox properties. J. Mol. Catal. A Chem. 2016, 425, 166–173. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Liu, P.; Stacchiola, D.J.; Senanayake, S.D.; White, M.G.; Chen, J.G. Hydrogenation of CO2 to Methanol: Importance of Metal-Oxide and Metal-Carbide Interfaces in the Activation of CO2. ACS Catal. 2015, 5, 6696–6706. [Google Scholar] [CrossRef]
- Andrés, A.G.B.; Octavio, J.F.; Dario, J.S.; Karim, S.; Marcelo, S.N. Porous MoxCy/SiO2 Material for CO2 Hydrogenation. Top. Catal. 2019, 62, 1026–1034. [Google Scholar]
- Zhang, X.; Zhu, X.; Lin, L.; Yao, S.; Zhang, M.; Liu, X.; Wang, X.; Li, Y.; Shi, C.; Ma, D. Highly Dispersed Copper over β-Mo2C as an Efficient and Stable Catalyst for the Reverse Water Gas Shift (RWGS) Reaction. ACS Catal. 2017, 7, 912–918. [Google Scholar] [CrossRef]
- Su, H.; Ye, Y.; Lee, K.J.; Zeng, J.; Mun, B.S.; Crumlin, E.J. Probing the surface chemistry for reverse water gas shift reaction on Pt (1 1 1) using ambient pressure X-ray photoelectron spectroscopy. J. Catal. 2020, 391, 123–131. [Google Scholar] [CrossRef]
- Xu, J.J.; Gong, X.X.; Hu, R.R.; Liu, Z.W.; Liu, Z.T. Highly active K-promoted Cu/β-Mo2C catalysts for reverse water gas shift reaction: Effect of potassium. Mol. Catal. 2021, 516, 111954. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Wei, A.L.; Zhu, M.; Wu, X.X.; Wang, H.; Zhu, X.L.; Ge, Q.F. Tuning reverse water gas shift and methanation reactions during CO2 reduction on Ni catalysts via surface modification by MoOx. J. CO2 Util. 2021, 52, 101678. [Google Scholar] [CrossRef]
- Noelia, L.G.; Jannier, C.; Jose, M.P. Graphene-TLL-Cu2ONPs Hybrid as Highly Effificient Catalyst for Degradation of Organic Compounds. Nanomaterials 2023, 13, 449. [Google Scholar]
- Ramyakrishna, P.; Prathap, C.; Rajendiran, R.; Rajender, B.; Ravi, B.; Putrakumar, B.; Vijayanand, P.; Ahmed, B.R.; Aboubakr, M.A.; Noora, A.Q. Vapour-Phase Selective Hydrogenation of γ-Valerolactone to 2-Methyltetrahydrofuran Biofuel over Silica-Supported Copper Catalysts. Nanomaterials 2022, 12, 3414. [Google Scholar]
- Gonzalez-Castano, M.; Navarro de Miguel, J.C.; Sinha, F.; Ghomsi, W.S.; Klepel, H. Cu supported Fe-SiO2 nanocomposites for reverse water gas shift reaction. J. CO2 Util. 2021, 46, 101493. [Google Scholar] [CrossRef]
- Chen, L.; Wu, D.; Wang, C.; Ji, M.; Wu, Z. Study on Cu-Fe/CeO2 bimetallic catalyst for reverse water gas shift reaction. J. Environ. Chem. Eng. 2021, 9, 105183. [Google Scholar] [CrossRef]
- Yang, L.; Pastor-Perez, L.; Villora-Pico, J.J.; Sepúlveda-Escribano, A.; Tian, F.; Zhu, M. Highly Active and Selective Multicomponent Fe-Cu/CeO2-Al2O3Catalysts for CO2 Upgrading via RWGS: Impact of Fe/Cu Ratio. ACS Sustain. Chem. Eng. 2021, 9, 101493. [Google Scholar] [CrossRef]
- Zhang, B.W.; Cao, L.C.; Tang, C.; Tan, C.H.; Cheng, N.Y.; Lai, W.H.; Wang, Y.X.; Cheng, Z.X.; Dong, J.C.; Kong, Y.; et al. Atomically Dispersed Dual-Site Cathode with a Record High Sulfur Mass Loading for High-Performance Room-Temperature Sodium–Sulfur Batteries. Adv. Mater. 2023, 35, 2206828. [Google Scholar] [CrossRef] [PubMed]
- Song, J.M.; Ni, X.M.; Zhang, D.E. Fabrication and photoluminescence properties of hexagonal MoO3 rods. Solid State Sci. 2006, 8, 1164–1167. [Google Scholar] [CrossRef]
- Qi, T.Q.J.; Li, W.Z.; Li, H.; Jia, K.; Chen, S.Y.; Zhang, Y.C. Yttria-doped Cu/ZnO catalyst with excellent performance for CO2 hydrogenation to methanol. Mol. Catal. 2021, 509, 111641. [Google Scholar] [CrossRef]
- Jiang, L.; Zhu, H.W.; Razzaq, R.; Zhu, M.L.; Li, C.S.; Li, Z.X. Effect of zirconium addition on the structure and properties of CuO/ CeO2 catalysts for high-temperature wateregas shift in an IGCC system. Int. J. Hydrog. Energy 2012, 37, 15914–15924. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, Z.F.; Xu, H.B.; Han, Y.Y. Reverse wateregas shift reaction over ceria nanocube synthesized by hydrothermal method. Catal. Commun. 2016, 76, 1–6. [Google Scholar] [CrossRef]
- Gao, D.; Yang, G.; Li, J.; Zhang, J.; Xue, D. Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures. J. Phys. Chem. C 2010, 114, 18347–18351. [Google Scholar] [CrossRef]
- Hoch, L.B.; Wood, T.E.; O’Brien, P.G.; Liao, K.; Reyes, C.A.M.; Ozin, G.A. Photomethanation of Gaseous CO2 over Ru/Silicon Nanowire Catalysts with Visible and Near-Infrared Photons. Adv. Sci. 2014, 1, 1400001. [Google Scholar]
- Xiong, K.; Zhou, G.L.; Zhang, H.D.; Shen, Y.; Zhang, X.M.; Zhang, Y.H.; Li, J.L. Bridging Mo2C-C and highly dispersed copper by incorporating N-functional groups to greatly enhance catalytic activity and durability for the carbon dioxide hydrogenation. J. Mater. Chem. A 2018, 6, 15510–15516. [Google Scholar] [CrossRef]
- Wang, L.C.; TahvildarKhazaneh, M.; Widmann, D.; Behm, R.J. TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst-A first step toward identifying a redox mechanism in the Reverse Water-Gas Shift reaction. J. Catal. 2013, 302, 20–30. [Google Scholar] [CrossRef]
- Midya, A.; Ghorai, A.; Mukherjee, S.; Maiti, R.; Ray, S.K. Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications. J. Mater. Chem. A 2016, 4, 4534–4543. [Google Scholar] [CrossRef]
- Pan, X.N.; Xi, B.J.; Lu, H.B.; Zhang, Z.C.; An, X.G.; Liu, J.; Feng, J.K. Molybdenum Oxynitride Atomic Nanoclusters Bonded in Nanosheets of N-Doped Carbon Hierarchical Microspheres for Effcient Sodium Storage. Nano-Micro Lett. 2022, 10, 154–169. [Google Scholar]
- Zhang, S.; Zeng, Y.W.; Wang, Z.T.; Zhao, J.; Dong, G.D. Glycerol-controlled synthesis of MoS2 hierarchical architectures with well-tailored subunits and enhanced electrochemical performance for lithium ion batteries. Chem. Eng. J 2018, 334, 487–496. [Google Scholar] [CrossRef]
- Gao, P.; Li, F.; Zhan, H.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Wang, H.; Sun, Y. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. J. Catal. 2013, 298, 51–60. [Google Scholar] [CrossRef]
- Wang, L.; Fang, W.; Xiao, F.S. NbOPO4 supported Rh nanoparticles with strong metal-support interactions for selective CO2 hydrogenation. ChemSusChem 2020, 13, 6300–6306. [Google Scholar]
- Zhou, Z.; Kong, Y.; Tan, H.; Huang, Q.W.; Wang, C.; Pei, Z.X.; Wang, H.Z.; Liu, Y.Y.; Wang, Y.H.; Li, S.; et al. Cation-Vacancy-Enriched Nickel Phosphide for Efficient Electrosynthesis of Hydrogen Peroxides. Adv. Mater. 2022, 34, 2106541. [Google Scholar] [CrossRef]
- Bobadilla, L.F.; Santos, J.L.; Ivanova, S.; Odriozola, J.A.; Urakawa, A. Unravelling the Role of Oxygen Vacancies in the Mechanism of the Reverse Water–Gas Shift Reaction by Operando DRIFTS and Ultraviolet–Visible Spectroscopy. ACS Catal. 2018, 8, 7455–7467. [Google Scholar] [CrossRef]
- Liu, Y.X.; Li, L.W.; Zhang, R.Y.; Guo, Y.H.; Wang, H.; Qingfeng Ge, Q.F.; Zhu, X.L. Synergetic enhancement of activity and selectivity for reverse water gas shift reaction on Pt-Re/SiO2 catalysts. J. CO2 Util. 2022, 63, 02128. [Google Scholar] [CrossRef]
- Da, B.; Zhou, G.; Ge, S.; Xie, H.; Jiao, Z.; Zhang, G. CO2 reverse water-gas shift reaction on mesoporous M-CeO2 catalysts. Can. J. Chem. Eng. 2017, 95, 634–642. [Google Scholar] [CrossRef]
- Tarifa, P.; Gonzalez-Castano, M.; Cazana, F.; Arellano-García, A.M.H. Development of one-pot Cu/cellulose derived carbon catalysts for RWGS reaction. Fuel 2022, 319, 123707. [Google Scholar] [CrossRef]
- Yang, L.; Pastor-Pérez, L.; Villora-Pico, J.J.; Gu, S.; Sepúlveda-Escribano, A.; Reina, T.R. CO2 valorisation via reverse water-gas shift reaction using promoted Fe/CeO2-Al2O3 catalysts: Showcasing the potential of advanced catalysts to explore new processes design. Appl. Catal. A-Gen. 2020, 593, 117442. [Google Scholar] [CrossRef]
Catalysts | Surface Composition by XPS (at%) | Physicochemical Properties | ||||
---|---|---|---|---|---|---|
Cu | Mo | O | C | SBET (m2 g−1) | XPd (nm) | |
Cu/MoOx (1:2) | 7.17 | 12.06 | 48.99 | 31.77 | 146.0 | 11.30 |
Cu/MoOx (1:1) | 6.28 | 5.83 | 36.4 | 51.48 | 156.7 | 9.32 |
Cu/MoOx (2:1) | 4.28 | 2.99 | 31.91 | 60.81 | 117.5 | 17.02 |
Catalysts | H2:CO2 | Temperature (°C) | CO2 Conversion | CO Selectivity | Ref. |
---|---|---|---|---|---|
Cu/MoOx (1:2) | 4 | 400 | 35.9% | 99.0% | This work |
1K-Cu/β-Mo2C | 4 | 400 | 24.8% | 99.5% | [16] |
Mo/β-Mo2C | 4 | 400 | 3.8% | 96.5% | [16] |
Au/Al2O3 | 4 | 400 | 11.0% | 100% | [38] |
Pt/SiO2 | 4 | 400 | 12.1% | 100% | [39] |
Pt-O.5Re/SiO2 | 4 | 400 | 24.3 % | 97.3% | [39] |
Cu/CeO2 | 4 | 400 | 31% | 100% | [40] |
Cu-Ce/CDC | 4 | 400 | 24.2% | 98.4% | [3] |
Ni-1Mo | 4 | 400 | 23.6% | 93.8% | [41] |
FeCu/CeAl | 4 | 400 | 23.6% | 96.7% | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Xiong, K.; Zhu, B. Design of Cu/MoOx for CO2 Reduction via Reverse Water Gas Shift Reaction. Catalysts 2023, 13, 684. https://doi.org/10.3390/catal13040684
Gao Y, Xiong K, Zhu B. Design of Cu/MoOx for CO2 Reduction via Reverse Water Gas Shift Reaction. Catalysts. 2023; 13(4):684. https://doi.org/10.3390/catal13040684
Chicago/Turabian StyleGao, Yuan, Kun Xiong, and Bingfeng Zhu. 2023. "Design of Cu/MoOx for CO2 Reduction via Reverse Water Gas Shift Reaction" Catalysts 13, no. 4: 684. https://doi.org/10.3390/catal13040684
APA StyleGao, Y., Xiong, K., & Zhu, B. (2023). Design of Cu/MoOx for CO2 Reduction via Reverse Water Gas Shift Reaction. Catalysts, 13(4), 684. https://doi.org/10.3390/catal13040684