Application of Bio-Inspired Gold Nanoparticles as Advanced Nanomaterial in Halt Nociceptive Pathway and Hepatotoxicity via Triggering Antioxidation System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of REEW-GNs
2.2. GC-MS Analysis of REEW
2.3. Biological Efficacy of REEW-GNs
2.3.1. OH Scavenging Assay (Fenton Assay)
2.3.2. H2O2 Scavenging Assay
2.3.3. DPPH Scavenging Assay
2.3.4. Evaluation of Antidiabetic Activity
2.3.5. Antinociceptive Efficacy
2.3.6. Hepato-Protective Assay
3. Materials and Methods
3.1. Synthesis of GNs
3.2. Antioxidant Potential of REEW-Stabilized GNs
3.2.1. DPPH Scavenging Assay
3.2.2. H2O2 Scavenging Assay
3.2.3. •OH Scavenging Assay (Fenton Assay)
3.3. Antinociceptive Efficacy
3.4. Gastrointestinal Propulsion Bioassay
3.5. Blood Serum Assay (ALT, AST, ALT, T.P, and Bilirubin Level)
3.6. Antidiabetic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fakruddin, M.; Hossain, Z.; Afroz, H. Prospects and applications of nanobiotechnology: A medical perspective. J. Nanobiotechnol. 2012, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Ul Haq, T.; Ullah, R.; Khan, M.N.; Nazish, M.; Almutairi, S.M.; Rasheed, R.A. Seed Priming with Glutamic-Acid-Functionalized Iron Nanoparticles Modulating Response of Vigna radiata (L.) R. Wilczek (Mung Bean) to Induce Osmotic Stress. Micromachines. 2023, 14, 736. [Google Scholar] [CrossRef]
- Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B. Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-Sorbitol: Study of Antibacterial Activity. J. Nanotechnol. 2011, 2011, 152970. [Google Scholar] [CrossRef]
- Bronstein, L.M.; Chernyshov, D.M.; Volkov, I.O.; Ezernitskaya, M.G.; Valetsky, P.M.; Matveeva, V.G.; Sulman, E.M. Structure and properties of bimetallic colloids form in polystyrene-block-poly-4-venylpyridine micelles: Catalytic behavior in selective hydrogenation of dehydrolinabol. J. Catal. 2000, 196, 302–314. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Sakthivel, N. Biosynthesis of gold nanoparticles by using coriander leaf extract. Mater. Lett. 2008, 62, 4588–4590. [Google Scholar] [CrossRef]
- Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M.J. Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using Neem. J. Colloid Interface Sci. 2004, 275, 496–502. [Google Scholar] [CrossRef]
- Song, J.Y.; Jang, H.K.; Kim, B.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem. 2009, 44, 1133–1138. [Google Scholar] [CrossRef]
- Alkilany, A.M.; Shatanawi, A.; Kurtz, T.; Caldwell, R.B.; Caldwell, R.W. Toxicity and cellular uptake of gold nanorads in vascular endothelium and smooth muscles of isolated rat blood vessel: Importance of surface modification. Small 2012, 8, 1270–1278. [Google Scholar] [CrossRef]
- Hosny, M.; Fawzy, M.; El-Badry, Y.A.; Hussein, E.E.; Eltaweil, A.S. Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. J. Saudi Chem. Soc. 2022, 26, 101419. [Google Scholar] [CrossRef]
- Faryal, S.; Ullah, R.; Khan, M.N.; Ali, B.; Hafeez, A.; Jaremko, M.; Qureshi, K.A. Thiourea-capped nanoapatites amplify osmotic stress tolerance in Zea mays L. by conserving photosynthetic pigments, osmolytes biosynthesis and antioxidant biosystems. Molecules 2022, 27, 5744. [Google Scholar] [CrossRef]
- Jakhmola, A.; Krishnan, S.; Onesto, V.; Gentile, F.; Profeta, M.; Manikas, A.; Battista, E.; Vecchione, R.; Netti, P.A. Sustainable synthesis and theoretical studies of polyhedral gold nanoparticles displaying high SERS activity, NIR absorption, and cellular uptake. Mater. Today Chem. 2022, 26, 101016. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, K.; Li Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2011, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Batra, A. Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach L. Int. J. Curr. Pharm. Res. 2012, 4, 67–73. [Google Scholar]
- Rao, C.N.R.; Cheetham, A.K. Science and technology of nanomaterials: Current status and future prospects. J. Mater. Chem. 2011, 11, 2887–2894. [Google Scholar] [CrossRef]
- Jakhmola, A.; Vecchione, R.; Onesto, V.; Gentile, F.; Profeta, M.; Battista, E.; Manikas, A.C.; Netti, P.A. A theoretical and experimental study on l-tyrosine and citrate mediated sustainable production of near infrared absorbing twisted gold nanorods. Mater. Sci. Eng. C 2021, 118, 111515. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Kalimuthu, K.; Venkataraman, D.; Babu, R.K.P.; Muniasamy, K.; Selvaraj, B.M.K.; Bose, K.; Sangiliyandi, G. Biosynthesis of Gold and Silver nanoparticles using Bravibacteriumcasei. Colloids Surf. B Biointerfaces 2010, 77, 257–262. [Google Scholar]
- Geddes, C.D.; Parfenov, A.; Gryczynski, I.; Lakowicz, J.R. Luminescent blinking of gold nanoparticles. Chem. Phys. Lett. 2003, 380, 269–272. [Google Scholar] [CrossRef]
- Gupta, N.; Vishnoi, G.; Wal, A.; Wal, P. Medicinal value of Euphorbia tirucalli. Sys. Rev. Pharm. 2013, 4, 40–46. [Google Scholar] [CrossRef]
- Ali, I.; Naz, R.; Khan, W.N.; Gul, R.; Choudhary, M.I. Biological screening of different root extracts of Euphorbia wallichii. Pak. J. Bot. 2009, 41, 1737–1741. [Google Scholar]
- Ul-Haq, I.; Ullah, N.; Bibi, G.; Kanwal, S.; Ahmad, M.S.; Mirza, B. Antioxidant and cytotoxic activities and phytochemical analysis of Euphorbia wallichii root extract and its fractions. Iran. J. Pharm. Res. IJPR 2012, 11, 241. [Google Scholar] [PubMed]
- Hassan, A.; Yaqoob, U.; Nawchoo, I.A.; Gulzar, S.; Mohi-Ud-Din, G.; Nazir, S.; Ashraf, A. Conspectus of phytochemical constituents of Euphorbia wallichii Hook. f.: A review. Res. Rev. J. Bot. 2016, 5, 24–31. [Google Scholar]
- Phull, A.R.; Ali, A.; Ali, A.; Abbasi, S.; Zia, M.; Khaskheli, M.H.; Kamal, M.A. Synthesis of Silver Nanoparticles using Euphorbia wallichii Extract and Assessment of their Bio-functionalities. Med. Chem. 2020, 16, 495–506. [Google Scholar] [CrossRef]
- Ullah, R.; Ud Din, S.; Muhammad, Z.; Shah, S.; Jan, S.A. Biological efficacy of phyto-synthetic silver nanoparticles using ethanol extract of Euphorbia wallichii Hook Rhizome as bio-reductant and surfactant. Trop. J. Pharm. Res. 2018, 17, 1903–1909. [Google Scholar] [CrossRef]
- Kelesidis, G.A.; Gao, D.; Fabian, H.L.; Pratsinis, S.E. Light Excitation by Agglomerates of Gold nanoparticles: A plasmon ruler for sub-10 nm interparticle distance. Anal. Chem. 2022, 94, 5310–5316. [Google Scholar] [CrossRef]
- Karthick, V.; Kumar, V.G.; Dhas, T.S.; Singaravelu, G.; Sadiq, A.M.; Govindaraju, K. Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats-an in vivo approach. Colloids Surf. B Biointerfaces 2014, 122, 505–511. [Google Scholar] [CrossRef]
- Zhang, Q.; Dan, H.; Xueying, W.; Mengyu, X.; Ziling, L.; Lihong, W.; Janak, L. Pathak. Gold nanomaterials for oral cancer diagnosis and therapy: Advances, challenges, and prospects. Mater. Today Bio. 2022, 15, 100333. [Google Scholar] [CrossRef]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed; The National Academies Press: Washington, DC, USA, 2011; pp. 1–246. [Google Scholar]
- Okokon, J.E.; Bawo, M.B.; Mbagwu, H.O. Hepatoprotective activity of Mammea africana ethanol stem bark extract. Avicenna J. Phytomed. 2016, 6, 248–259. [Google Scholar]
- Gupta, A.K.; Chitme, H.; Dass, S.K.; Misra, N. Hepatoprotective activity of Rauwolfia serpentine rhizome in paracetamol intoxicated rats. J. Pharmacol. Toxicol. 2006, 1, 82–88. [Google Scholar] [CrossRef]
- Marotta, F.; Yadav, H.; Gumaste, U.; Helmy, A.; Jain, S.; Minelli, E. Protective effect of a phytocompound on oxidative stress and DNA fragmentation against paracetamol-induced liver damage. Ann. Hepatol. 2009, 8, 50–56. [Google Scholar] [CrossRef]
- Nithianantham, K.; Shyamala, M.; Chen, Y.; Latha, Y.; Jothy, S.L.; Sasidharan, S. Hepatoprotective potential of Clitoria ternatea leaf extract against paracetamol induced damage in mice. Molecules 2011, 16, 10134–10145. [Google Scholar] [CrossRef]
- Dash, D.K.; Yeligar, V.C.; Nayak, S.S.; Ghosh, T.; Rajalingam, D.; Sengupta, P. Evaluation of hepatoprotective and antioxidant activity of Ichnocarpus frutescens (Linn.) R.Br. on paracetamol-induced hepatotoxicity in rats. J. Pharmaceut. Res. 2007, 6, 755–765. [Google Scholar]
- Cedeño-Pinos, C.; Jiménez-Monreal, A.M.; Quílez, M.; Bañón, S. Polyphenol Extracts from Sage (Salvia lavandulifolia Vahl) By-Products as Natural Antioxidants for Pasteurised Chilled Yoghurt Sauce. Antioxidants 2023, 12, 364. [Google Scholar] [CrossRef]
- Santa-Cecília, F.V.; Vilela, F.C.; da Rocha, C.Q.; Dias, D.F.; Cavalcante, G.P.; Freitas, L.A.S.; Giusti-Paiva, A. Anti- inflammatory and antinociceptive effects of Garcinia brasiliensis. J. Ethnopharmacol. 2011, 133, 467. [Google Scholar] [CrossRef]
- Das, S.C.; Bhadra, S.; Roy, S.; Saha, S.K.; Islam, M.S.; Bachar, S.C. Analgesic and Anti-inflammatory Activities of Ethanolic Root Extract of Swertia chirata (Gentianaceae). Jordan J. Biol. Sci. 2012, 5, 31–36. [Google Scholar]
- Wang, S.Y.; Lan, X.; Xiao, J.; Yang, J.; Kao, Y.; Chang, S. Anti Inflammatory Activity of Lindera erythrocarpa Fruits. Phytother. Res. 2008, 22, 213–216. [Google Scholar] [CrossRef]
- Fürst, S.; Zádori, Z.S.; Zádor, F.; Király, K.; Balogh, M.; László, S.B.; Hutka, B.; Mohammadzadeh, A.; Calabrese, C.; Galambos, A.R.; et al. On the Role of Peripheral Sensory and Gut Mu Opioid Receptors: Peripheral Analgesia and Tolerance. Molecules 2020, 25, 2473. [Google Scholar] [CrossRef]
- Kidd, B.; Urban, L. Mechanisms of inflammatory pain. B. J. Anaesth. 2001, 87, 3–11. [Google Scholar]
- Somasundaram, S.; Sigthorsson, G.; Simpson, R.J.; Watts, J.; Jacob, M.; Tavares, I.A.; Rafi, S.; Roseth, A.; Foster, R.; Price, A.B.; et al. Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID—Enteropathy in the rat. Aliment. Pharmacol. Ther. 2000, 14, 639. [Google Scholar] [CrossRef]
- Shaheen, T.I.; El-Naggar, M.E.; Hussein, J.S.; El-Bana, M.; Emara, E.; El-Khayat, Z. Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2016, 83, 865–875. [Google Scholar]
- Lin, L.; Guan, H.; Li, R.; Liao, X.; Zhao, F.; Wang, M.; Li, J.; Xu, G.; He, X.; Zhang, J.; et al. Auriculatone Sulfate Effectively Protects Mice Against Acetaminophen-Induced Liver Injury. Molecules 2019, 24, 3642. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Clement, M.V.; Long, L.H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 1990, 280, 18. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Özyürek, M.; Güclu, K.; Çapanoglu, E. Antioxidant Activity/Capacity Measurement. Reactive Oxygen and Nitrogen Species (ROS/RNS) Scavenging Assays, Oxidative Stress Biomarkers, and Chromatographic/Chemometric Assays. J. Agric. Food Chem. 2016, 64, 1046–1070. [Google Scholar] [CrossRef]
- Saritha, K.; Saraswathi, U. Antioxidant activity of gold nanoparticles synthesized using Lemna minor. World J. Pharm. Sci. 2014, 2, 1545–1551. [Google Scholar]
- Shamkuwar, P.B.; Pawar, D.P. Antidiarrhoeal and Antispasmodic Effect of Berberis Aristata. Int. J. Pharm. Phytochem. Res. 2013, 5, 24–26. [Google Scholar]
- Nagajothi, P.C.; Lee, K.D. Synthesis of plant mediated silver nanoparticles using Dioscorea batatas rhizome extract and evaluation of their antimicrobial activities. J. Nanomater. 2011, 2011, 49. [Google Scholar] [CrossRef]
- Sallie, R.; Tredger, J.M.; Williams, R. Drugs and the liver. Part 1: Testing liver function. Biopharm. Drug Dispos. 1991, 12, 251–259. [Google Scholar] [CrossRef]
- Ezike, A.C.; Akah, P.A.; Okoli, C.O.; Ufere, I.K.; Ezeudu, E.; Okoye, C.F.; Ashara, C.; Igbokwe, I.N. Studies on Gastrointestinal Effects Of Desmodium Velutinum: A Traditional Remedy For Diarrhea. Am. J. Pharmacol. Toxicol. 2014, 9, 114–124. [Google Scholar]
- Franzotti, E.M.; Santos, C.V.F.; Rodrigues, H.M.L.S.; Mourao, R.H.V.; Andrade, M.R.; Antoniolli, A.R. Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva-branca). J. Ethnopharmacol. 2000, 72, 273–278. [Google Scholar] [CrossRef]
P.N | RT | Peak Area | Peak Height | Name of Compound | Structure | Mass Spectrogram | Chemical Formula (M.WT) |
---|---|---|---|---|---|---|---|
1. | 3.1 | 1786.93 | 217.94 | Chloromethyl 2-chloroundecanoate | C12H22Cl2O2 (268) | ||
2. | 3.84 | 15,548.58 | 491.52 | 1-Formyl-2,2-dimethyl-3-cis-(2-methyl-but-2-enyl)-6-methylidene-cyclohexane | C15H24O (220) | ||
3. | 4.92 | 4067.5 | 212.68 | 3,6,7-Trimethoxyphenanthroindolizidine | C23H25NO3 (363) | ||
4. | 5.26 | 1610.1 | 176.27 | Proadifen | C23H31NO2 (353) | ||
5. | 5.53 | 473.92 | 72.76 | -(2-Acetoxyphenyl)-1-ethyl-3-methyl-5-(4-nitrophenyl)pyrazole | C20H19N3O4 (365) | ||
6. | 5.79 | 1664.36 | 151.29 | Piperidine, 4-methyl- | C6H13N (99) | ||
7. | 6.08 | 736.93 | 84.66 | Dihexyl phthalate | C20H30O4 (334) | ||
8. | 6.69 | 6814.49 | 254.4 | 2-[2-Quinolylmethyleneamino]ethanol | C12H12N2O (200) | ||
9. | 7.42 | 2406.57 | 138.73 | Ethyl 3-[1-(2,6-dichlorobenzoyl)-5-formylpyrrol-2-yl]prop-2-enoate | C17H13Cl2NO4 (365) | ||
10. | 7.75 | 1185.45 | 145.04 | (2S,4S)-2,4-Dimethylundecanedioic acid dimethyl ester | C15H28O4 (272) | ||
11. | 8.4 | 5948.04 | 249.16 | Dichlorofluorescein | C20H10Cl2O5 (400) | ||
12. | 9.13 | 6484.75 | 357.23 | Cortisone | C21H28O5 (360) | ||
13. | 9.85 | 4942.7 | 293.1 | Curan-17-ol, 19,20-didehydro-, (19E)- | C19H24N2O (296) | ||
14. | 10.15 | 3154.45 | 237.43 | Difenoconazol | C19H17Cl2N3O3 (405) | ||
15. | 10.66 | 2591.58 | 159.94 | cyanazine [M+H]+15 | C9H13ClN6 (240) | ||
16. | 11.17 | 6316.54 | 471.62 | Chlorbromuron | C9H10BrClN2O2 (292) | ||
17. | 11.8 | 8776.81 | 293.21 | 3-(Dimethylamino)-7-(methylamino)phenothiazin-5-ium | C15H16N3S (270) | ||
18. | 12.62 | 6330.37 | 241.84 | 2-Methyl-9-nitro-7-oxo-4,5,6,7-tetrahydroimidazo(4,5,1-jk)benzodiazepine-1,4 | C11H10N4O3 (246) | ||
19. | 13.51 | 2165.13 | 108.41 | Acetic acid, trifluoro-, (9,10-dihydro-1,8-dimethoxy-9,10-dioxo-2-anthracenyl)methyl ester | C19H13F3O6 (394) | ||
20. | 14.1 | 6260.98 | 202.11 | Methyl 4-hydroxybutyl phthalate | C13H16O5 (252) | ||
21. | 15.04 | 2948.07 | 163.44 | 3-Bromo-thiophene-2-carboxamide | C5H4BrNOS (205) | ||
22. | 15.65 | 3239.99 | 224.82 | Difenoxin | C28H28N2O2 (424) | ||
23. | 16.42 | 2058.57 | 147.06 | [1,1′-Biphenyl]-4-carbonitrile, 4′-ethyl- | C15H13N (207) | ||
24. | 16.97 | 3934.14 | 267.28 | 2-(4-Bromobutyl)-furan | C8H11BrO (202) | ||
25. | 18.14 | 8657.45 | 261.62 | 2,5-Dimethyl-1-pyrroline | C6H11N (97) | ||
26. | 18.89 | 2297.94 | 178.23 | 7,12a-Dimethyl-1,2,3,4,4a,11,12,12a-octahydrochrysene | C20H24 (264) | ||
27. | 19.24 | 3725.55 | 262.34 | Lupan-3-one, cyclic 1,2-ethanediyl acetal | C32H54O2 (470) | ||
28. | 19.68 | 6469.64 | 311.58 | Pyrrolidine, 3,3-dimethyl-1,2,2-triphenyl- | C24H25N (327) | ||
29. | 20.21 | 2098.38 | 214.64 | Androstane-3,7,12,17-tetrol, 7,12-diacetate, (3à,5á,7à,12à,17á)- | C23H36O6 (408) | ||
30. | 20.89 | 9622.97 | 622.2 | 2,5-Methanofuro [3,2-b]pyridine-4(2H)-c arboxylic acid, hexahydro-8-[[(4-methylphenyl)sulfony l]oxy]-, ethyl ester, (2à,3aá,5à,7aá,8R*)- | C18H23NO6S (381) | ||
31. | 21.29 | 15,590.39 | 673.31 | 4H-Pyran-3-carboxylic acid, 6-amino-5-cyano-4-(2-fluorophenyl)-2-methyl-, ethyl ester | C16H15FN2O3 (302) | ||
32. | 22.62 | 7233.17 | 565.72 | 2,4(1H,3H)-Pyrimidinedione, 5-bromo-6-methyl-3-(1-methylpropyl)- | C9H13BrN2O2 (260) | ||
33. | 23.25 | 20,022.39 | 607.85 | Trimethyl [4-(1,1,3,3,-tetramethylbutyl)phenoxy]silane | C17H30OSi (278) | ||
34. | 23.72 | 2039.02 | 259.57 | 2-Propen-1-one, 1,3-diphenyl- | C15H12O (208) | ||
35. | 24.06 | 7347.26 | 616.22 | Quinomethionate | C10H6N2OS2 (234) | ||
36. | 24.45 | 4952.8 | 376.19 | 2-[3-(4-tert-Butyl-phenoxy)-2-hydroxy-propylsulfanyl]-4,6-dimethyl-nicotinonitrile | C21H26N2O2S (370) | ||
37. | 24.82 | 8712.46 | 691.84 | Cyclotetrasiloxane, octamethyl- | C8H24O4Si4 (296) | ||
38. | 25.71 | 40,412.02 | 1326 | -Hydroxy-7,8,9,10-tetramethyl-7,8-dihydrocyclohepta[d,e]naphthalene | C18H20O (252) | ||
39. | 26.2 | 41,587.04 | 1445.5 | Silicic acid, diethyl bis(trimethylsilyl) ester | C10H28O4Si3 (296) | ||
40. | 26.79 | 9879.32 | 832.02 | 2,4,6- Cycloheptatrien-1-one, 3,5-bis-trimethylsilyl- | C13H22OSi2 (250) | ||
41. | 27.22 | 16,576.25 | 923.56 | Benzo[h]quinoline, 2,4-dimethyl- | C15H13N (207) |
Treatments | Reaction Time (Min) | EC50 (µG/mL) | (EC50) 95% CL | EC70 (µG/mL) | EC90 (µG/mL) | Probit |
---|---|---|---|---|---|---|
REEW-GNS | 30 | 19.47 | 9.63–28.36 | 118.21 | 1607.24 | Y = 4.14 + 0.68X |
60 | 13.53 | 4.96–21/35 | 88.69 | 1343.91 | Y = 4.27 + 0.64X | |
90 | 10.57 | 2.73–18.14 | 79.37 | 1464.05 | Y = 4.39 + 0.60X | |
ASCORBATE | 30 | 3.46 | 1.03–6.43 | 11.399 | 63.861 | Y = 4.45 + 1.01X |
60 | 2.86 | 0.75–5.60 | 9.32 | 51.36 | Y = 4.53 + 1.02X | |
90 | 1.64 | 0.20–4.03 | 6.07 | 40.49 | Y = 4.80 + 0.92X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, R.; Bibi, S.; Khan, M.N.; Al Mohaimeed, A.M.; Naz, Q.; Kamal, A. Application of Bio-Inspired Gold Nanoparticles as Advanced Nanomaterial in Halt Nociceptive Pathway and Hepatotoxicity via Triggering Antioxidation System. Catalysts 2023, 13, 786. https://doi.org/10.3390/catal13040786
Ullah R, Bibi S, Khan MN, Al Mohaimeed AM, Naz Q, Kamal A. Application of Bio-Inspired Gold Nanoparticles as Advanced Nanomaterial in Halt Nociceptive Pathway and Hepatotoxicity via Triggering Antioxidation System. Catalysts. 2023; 13(4):786. https://doi.org/10.3390/catal13040786
Chicago/Turabian StyleUllah, Rehman, Sakina Bibi, Muhammad Nauman Khan, Amal M. Al Mohaimeed, Qirat Naz, and Asif Kamal. 2023. "Application of Bio-Inspired Gold Nanoparticles as Advanced Nanomaterial in Halt Nociceptive Pathway and Hepatotoxicity via Triggering Antioxidation System" Catalysts 13, no. 4: 786. https://doi.org/10.3390/catal13040786
APA StyleUllah, R., Bibi, S., Khan, M. N., Al Mohaimeed, A. M., Naz, Q., & Kamal, A. (2023). Application of Bio-Inspired Gold Nanoparticles as Advanced Nanomaterial in Halt Nociceptive Pathway and Hepatotoxicity via Triggering Antioxidation System. Catalysts, 13(4), 786. https://doi.org/10.3390/catal13040786