A DFT Study on Single Brønsted Acid Sites in Zeolite Beta and Their Interaction with Probe Molecules
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Möller, K.; Bein, T. Mesoporosity—A New Dimension for Zeolites. Chem. Soc. Rev. 2013, 42, 3689. [Google Scholar] [CrossRef]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of Zeolites in Biotechnology and Medicine—A Review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Misaelides, P. Application of Natural Zeolites in Environmental Remediation: A Short Review. Microporous Mesoporous Mater. 2011, 144, 15–18. [Google Scholar] [CrossRef]
- Koohsaryan, E.; Anbia, M. Nanosized and Hierarchical Zeolites: A Short Review. Chin. J. Catal. 2016, 37, 447–467. [Google Scholar] [CrossRef]
- Holm, M.S.; Taarning, E.; Egeblad, K.; Christensen, C.H. Catalysis with Hierarchical Zeolites. Catal. Today 2011, 168, 3–16. [Google Scholar] [CrossRef]
- Kubička, D.; Kikhtyanin, O. Opportunities for Zeolites in Biomass Upgrading—Lessons from the Refining and Petrochemical Industry. Catal. Today 2015, 243, 10–22. [Google Scholar] [CrossRef]
- Bugosh, G.S.; Harold, M.P. Impact of Zeolite Beta on Hydrocarbon Trapping and Light-Off Behavior on Pt/Pd/BEA/Al2O3 Monolith Catalysts. Emiss. Control Sci. Technol. 2017, 3, 123–134. [Google Scholar] [CrossRef]
- Smirniotis, P.G.; Ruckenstein, E. Maximum and Time Stable Aromatic Yield in the Reforming of Alkylcyclopentanes over Pt/β Zeolites. Catal. Lett. 1994, 25, 351–359. [Google Scholar] [CrossRef]
- Smirniotis, P.G.; Ruckenstein, E. Comparison of the Performance of ZSM-5, β Zeolite, Y, USY, and Their Composites in the Catalytic Cracking of n-Octane, 2,2,4-Trimethylpentane, and 1-Octene. Ind. Eng. Chem. Res. 1994, 33, 800–813. [Google Scholar] [CrossRef]
- Das, J.; Bhat, Y.S.; Halgeri, A.B. Transalkylation and Disproportionation of Toluene and C9 Aromatics over Zeolite Beta. Catal. Lett. 1994, 23, 161–168. [Google Scholar] [CrossRef]
- Yoo, K.; Smirniotis, P.G. Isobutane/2-Butene Alkylation Using Large-Pore Zeolites: Influence of Pore Structure on Activity and Selectivity. J. Catal. 2002, 211, 6–18. [Google Scholar] [CrossRef]
- Zhang, W.; Smirniotis, P.G. Effect of Zeolite Structure and Acidity on the Product Selectivity and Reaction Mechanism For n-Octane Hydroisomerization and Hydrocracking. J. Catal. 1999, 182, 400–416. [Google Scholar] [CrossRef]
- Gopal, S.; Smirniotis, P.G. Deactivation Behavior of Bifunctional Pt/H-Zeolite Catalysts during Cyclopentane Hydroconversion. J. Catal. 2002, 205, 231–243. [Google Scholar] [CrossRef]
- Gopal, S.; Smirniotis, P.G. Factors Affecting Isomer Yield for n-Heptane Hydroisomerization over as-Synthesized and Dealuminated Zeolite Catalysts Loaded with Platinum. J. Catal. 2004, 225, 278–287. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, W.; Zhao, X.S.; Lian, J.; Dou, J.; Kooli, F. Zeolite Beta Catalysts for n-C7 Hydroisomerization. J. Porous. Mater. 2006, 13, 359–364. [Google Scholar] [CrossRef]
- Modhera, B.; Chakraborty, M.; Bajaj, H.C.; Parikh, P.A. Simultaneous n-Hexane Isomerization and Benzene Saturation over Pt/Nano-Crystalline Zeolite Beta. Reac. Kinet. Mech. Cat 2010, 99, 421–429. [Google Scholar] [CrossRef]
- Sazama, P.; Kaucky, D.; Moravkova, J.; Pilar, R.; Klein, P.; Pastvova, J.; Tabor, E.; Sklenak, S.; Jakubec, I.; Mokrzycki, L. Superior Activity of Non-Interacting Close Acidic Protons in Al-Rich Pt/H-*BEA Zeolite in Isomerization of n-Hexane. Appl. Catal. A Gen. 2017, 533, 28–37. [Google Scholar] [CrossRef]
- Andy, P.; Garcia-Martinez, J.; Lee, G.; Gonzalez, H.; Jones, C.W.; Davis, M.E. Acylation of 2-Methoxynaphthalene and Isobutylbenzene over Zeolite Beta. J. Catal. 2000, 192, 215–223. [Google Scholar] [CrossRef]
- Ji, X.; Qin, Z.; Dong, M.; Wang, G.; Dou, T.; Wang, J. Friedel–Crafts Acylation of Anisole and Toluene with Acetic Anhydride over Nano-Sized Beta Zeolites. Catal. Lett. 2007, 117, 171–176. [Google Scholar] [CrossRef]
- Bejblová, M.; Procházková, D.; Vlk, J. Acylations with Long-Chain Acid Anhydrides and Acyl Chlorides over Zeolite Beta. Top. Catal. 2009, 52, 178–184. [Google Scholar] [CrossRef]
- Gao, E.; Pan, H.; Wang, L.; Shi, Y.; Chen, J. Identification of Main Active Sites and the Role of NO2 on NOx Reduction with CH4 over In/BEA Catalyst: A Computational Study. Catalysts 2020, 10, 572. [Google Scholar] [CrossRef]
- Dimitrova, R. Acidic Sites in Beta Zeolites in Dependence of the Preparation Methods. J. Mol. Catal. A Chem. 2004, 214, 265–268. [Google Scholar] [CrossRef]
- Lanzafame, P.; Papanikolaou, G.; Barbera, K.; Centi, G.; Perathoner, S. Etherification of HMF to Biodiesel Additives: The Role of NH4+ Confinement in Beta Zeolites. J. Energy Chem. 2019, 36, 114–121. [Google Scholar] [CrossRef]
- Gomes, G.J.; Zalazar, M.F.; Arroyo, P.A.; Scremin, F.R.; Costa, M.B.; Bittencourt, P.R.S.; Lindino, C.A.; Peruchena, N.M. Molecular-level Understanding of the Rate-determining Step in Esterification Reactions Catalyzed by H-ZSM-5 Zeolite. An Experimental and Theoretical Study. ChemistrySelect 2019, 4, 3031–3041. [Google Scholar] [CrossRef]
- Benesi, H.A. Acidity of Catalyst Surfaces. I. Acid Strength from Colors of Adsorbed Indicators. J. Am. Chem. Soc. 1956, 78, 5490–5494. [Google Scholar] [CrossRef]
- Barthomeuf, D. Zeolite Acidity Titration with Colored Indicators. J. Phys. Chem. 1979, 83, 766–767. [Google Scholar] [CrossRef]
- Topaloǧlu Yazıcı, D.; Bilgiç, C. Determining the Surface Acidic Properties of Solid Catalysts by Amine Titration Using Hammett Indicators and FTIR-Pyridine Adsorption Methods: Determining the Surface Acidic Properties of Solid Catalysts. Surf. Interface Anal. 2010, 42, 959–962. [Google Scholar] [CrossRef]
- Derouane, E.G.; Védrine, J.C.; Pinto, R.R.; Borges, P.M.; Costa, L.; Lemos, M.A.N.D.A.; Lemos, F.; Ribeiro, F.R. The Acidity of Zeolites: Concepts, Measurements and Relation to Catalysis: A Review on Experimental and Theoretical Methods for the Study of Zeolite Acidity. Catal. Rev. 2013, 55, 454–515. [Google Scholar] [CrossRef]
- Shcherban, N.D.; Filonenko, S.M.; Barakov, R.Y.; Sergiienko, S.A.; Yu, K.; Heinmaa, I.; Ivaska, A.; Murzin, D.Y. New Insights in Evaluation of Acid Sites in Micro-Mesoporous Zeolite-like Materials Using Potentiometric Titration Method. Appl. Catal. A Gen. 2017, 543, 34–42. [Google Scholar] [CrossRef]
- Parker, L.M.; Bibby, D.M.; Meinhold, R.H. An Evaluation by t.d./m.s. of the Use of Weak Bases (Ammonia, Primary Amines and Pyridine) as Probes for the Study of Zeolite Acid Sites. Zeolites 1985, 5, 384–388. [Google Scholar] [CrossRef]
- Lee, C.; Parrillo, D.J.; Gorte, R.J.; Farneth, W.E. Relationship between Differential Heats of Adsorption and Brønsted Acid Strengths of Acidic Zeolites: H-ZSM-5 and H-Mordenite. J. Am. Chem. Soc. 1996, 118, 3262–3268. [Google Scholar] [CrossRef]
- Huang, M.; Kaliaguine, S. Zeolite Basicity Characterized by Pyrrole Chemisorption: An Infrared Study. Faraday Trans. 1992, 88, 751. [Google Scholar] [CrossRef]
- Lavalley, J.C. Infrared Spectrometric Studies of the Surface Basicity of Metal Oxides and Zeolites Using Adsorbed Probe Molecules. Catal. Today 1996, 27, 377–401. [Google Scholar] [CrossRef]
- Lercher, J.A.; Gründling, C.; Eder-Mirth, G. Infrared Studies of the Surface Acidity of Oxides and Zeolites Using Adsorbed Probe Molecules. Catal. Today 1996, 27, 353–376. [Google Scholar] [CrossRef]
- Pazé, C.; Bordiga, S.; Lamberti, C.; Salvalaggio, M.; Zecchina, A.; Bellussi, G. Acidic Properties of H−β Zeolite As Probed by Bases with Proton Affinity in the 118−204 Kcal Mol-1 Range: A FTIR Investigation. J. Phys. Chem. B 1997, 101, 4740–4751. [Google Scholar] [CrossRef]
- Montanari, T.; Bevilacqua, M.; Busca, G. Use of Nitriles as Probe Molecules for the Accessibility of the Active Sites and the Detection of Complex Interactions in Zeolites through IR Spectroscopy. Appl. Catal. A Gen. 2006, 307, 21–29. [Google Scholar] [CrossRef]
- Sarria, F.R.; Blasin-Aubé, V.; Saussey, J.; Marie, O.; Daturi, M. Trimethylamine as a Probe Molecule To Differentiate Acid Sites in Y−FAU Zeolite: FTIR Study. J. Phys. Chem. B 2006, 110, 13130–13137. [Google Scholar] [CrossRef] [PubMed]
- Arean, C.O.; Delgado, M.R.; Nachtigall, P.; Thang, H.V.; Rubeš, M.; Bulánek, R.; Chlubná-Eliášová, P. Measuring the Brønsted Acid Strength of Zeolites—Does It Correlate with the O–H Frequency Shift Probed by a Weak Base? Phys. Chem. Chem. Phys. 2014, 16, 10129–10141. [Google Scholar] [CrossRef]
- Sushkevich, V.L.; Ivanova, I.I.; Yakimov, A.V. Revisiting Acidity of SnBEA Catalysts by Combined Application of FTIR Spectroscopy of Different Probe Molecules. J. Phys. Chem. C 2017, 121, 11437–11447. [Google Scholar] [CrossRef]
- Kiricsi, I.; Flego, C.; Pazzuconi, G.; Parker, W.O., Jr.; Millini, R.; Perego, C.; Bellussi, G. Progress toward Understanding Zeolite. Beta. Acidity: An IR and 27Al NMR Spectroscopic Study. J. Phys. Chem. 1994, 98, 4627–4634. [Google Scholar] [CrossRef]
- Farneth, W.E.; Gorte, R.J. Methods for Characterizing Zeolite Acidity. Chem. Rev. 1995, 95, 615–635. [Google Scholar] [CrossRef]
- Rakiewicz, E.F.; Peters, A.W.; Wormsbecher, R.F.; Sutovich, K.J.; Mueller, K.T. Characterization of Acid Sites in Zeolitic and Other Inorganic Systems Using Solid-State 31P NMR of the Probe Molecule Trimethylphosphine Oxide. J. Phys. Chem. B 1998, 102, 2890–2896. [Google Scholar] [CrossRef]
- Kao, H.-M.; Yu, C.-Y.; Yeh, M.-C. Detection of the Inhomogeneity of Brønsted Acidity in H-Mordenite and H-β Zeolites: A Comparative NMR Study Using Trimethylphosphine and Trimethylphosphine Oxide as 31P NMR Probes. Microporous Mesoporous Mater. 2002, 53, 1–12. [Google Scholar] [CrossRef]
- Nicholas, J.B.; Haw, J.F.; Beck, L.W.; Krawietz, T.R.; Ferguson, D.B. Density Functional Theoretical and NMR Study of Hammett Bases in Acidic Zeolites. J. Am. Chem. Soc. 1995, 117, 12350–12351. [Google Scholar] [CrossRef]
- Simperler, A.; Bell, R.G.; Foster, M.D.; Gray, A.E.; Lewis, D.W.; Anderson, M.W. Probing the Acid Strength of Brønsted Acidic Zeolites with Acetonitrile: An Atomistic and Quantum Chemical Study. J. Phys. Chem. B 2004, 108, 7152–7161. [Google Scholar] [CrossRef]
- Costa, D.G.; Capaz, R.B. Structural Analysis of Zeolite Beta through Periodic Ab Initio Simulations of XRD and 29Si and 17O NMR Spectra. J. Mol. Struct. 2015, 1097, 112–116. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Zhao, R.; Zhou, D.; Zhang, W. Aluminum Location and Acid Strength in an Aluminum-Rich Beta Zeolite Catalyst: A Combined Density Functional Theory and Solid-State NMR Study. ChemCatChem 2017, 9, 1494–1502. [Google Scholar] [CrossRef]
- Vorontsov, A.V.; Smirniotis, P.G. DFT Study on the Stability and the Acid Strength of Brønsted Acid Sites in Zeolite β. J. Phys. Chem. A 2022, 126, 7840–7851. [Google Scholar] [CrossRef]
- Schroeder, C.; Zones, S.I.; Hansen, M.R.; Koller, H. Hydrogen Bonds Dominate Brønsted Acid Sites in Zeolite SSZ-42: A Classification of Their Diversity. Angew. Chem. Int. Ed. 2022, 61, e202109313. [Google Scholar] [CrossRef]
- Boronat, M.; Corma, A. What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catal. 2019, 9, 1539–1548. [Google Scholar] [CrossRef]
- Liu, C.; Tranca, I.; van Santen, R.A.; Hensen, E.J.M.; Pidko, E.A. Scaling Relations for Acidity and Reactivity of Zeolites. J. Phys. Chem. C 2017, 121, 23520–23530. [Google Scholar] [CrossRef] [PubMed]
- Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. cp2k: Atomistic Simulations of Condensed Matter Systems: Cp2k Simulation Software. WIREs Comput. Mol. Sci. 2014, 4, 15–25. [Google Scholar] [CrossRef]
- VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach. Comput. Phys. Commun. 2005, 167, 103–128. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Chen, B.W.J.; Xu, L.; Mavrikakis, M. Computational Methods in Heterogeneous Catalysis. Chem. Rev. 2021, 121, 1007–1048. [Google Scholar] [CrossRef] [PubMed]
Entry # | Probe Molecule | ΔEads(method1), kJ/mol | ΔEads(method2), kJ/mol |
---|---|---|---|
1 | Acetonitrile | −115…−102 | −120…−98 |
2 | Dimethyl sulfide | −125…−108 | −133…−113 |
3 | Dimethyl sulfoxide | −176…−150 | −190…−153 |
4 | Isothiazole | –170.85…−150.29 | –183.86…–154.74 |
5 | Pyridine | −224…−201 | −241…−214 |
6 | Tetrahydrofuran | −149…−131 | −168…−143 |
7 | Ammonia | N/A | −169…−146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorontsov, A.V.; Smirniotis, P.G.; Kumar, U. A DFT Study on Single Brønsted Acid Sites in Zeolite Beta and Their Interaction with Probe Molecules. Catalysts 2023, 13, 833. https://doi.org/10.3390/catal13050833
Vorontsov AV, Smirniotis PG, Kumar U. A DFT Study on Single Brønsted Acid Sites in Zeolite Beta and Their Interaction with Probe Molecules. Catalysts. 2023; 13(5):833. https://doi.org/10.3390/catal13050833
Chicago/Turabian StyleVorontsov, Alexander V., Panagiotis G. Smirniotis, and Umesh Kumar. 2023. "A DFT Study on Single Brønsted Acid Sites in Zeolite Beta and Their Interaction with Probe Molecules" Catalysts 13, no. 5: 833. https://doi.org/10.3390/catal13050833
APA StyleVorontsov, A. V., Smirniotis, P. G., & Kumar, U. (2023). A DFT Study on Single Brønsted Acid Sites in Zeolite Beta and Their Interaction with Probe Molecules. Catalysts, 13(5), 833. https://doi.org/10.3390/catal13050833