Effect of the Microstructure of Composite CoMoS/Carbon Catalysts on Hydrotreatment Performances
Abstract
:1. Introduction
2. Results and Discussion
2.1. Elemental Analysis
2.2. Textural Characterization and SEM Observations
2.3. HR-TEM Characterisation
2.4. XPS Characterisation
2.5. Catalytic Tests
3. Materials and Methods
3.1. Synthesis of MoS2/Carbon Composites
3.1.1. Synthesis of MoS2/PANI
3.1.2. Synthesis of MoS2/CNF-ox
3.1.3. Synthesis of MoS2/g-C3N4
3.1.4. Synthesis of MoS2/r-GO
3.1.5. Promotion of MoS2/Carbon by Co
3.2. Characterization Methods
3.3. Catalytic Tests
3.3.1. HDS of 3-Methylthiophene (3-MT) in Presence of 2,3-Dimethylbut-2-ene (2,3-DM2BN)
3.3.2. Hydrodesulfurization (HDS) of 4-Methyldibenzothiophene (4-MDBT)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daage, M.; Chianelli, R.R. Structure-Function Relations in Molybdenum Sulfide Catalysts: The “Rim-Edge” Model. J. Catal. 1994, 149, 414–427. [Google Scholar] [CrossRef]
- Candia, R.; Sørensen, O.; Villadsen, J.; Topsøe, N.Y.; Clausen, B.S.; Topsøe, H. Effect of sulfiding temperature on activity and structures of Co-Mo Al2O3 catalysts. 2. Bull. Sociétés Chim. Belg. 1984, 93, 783–806. [Google Scholar] [CrossRef]
- Tops⊘e, H.; Clausen, B.S. Importance of Co-Mo-S type structures in hydrodesulfurization. Rev.-Sci. Eng. 1984, 26, 395–420. [Google Scholar] [CrossRef]
- Stanislaus, A.; Marafi, A.; Rana, M.S. Recent advances in the science and technology of ultra-low sulfur diesel (ULSD) production. Catal. Today 2010, 153, 1–68. [Google Scholar] [CrossRef]
- Kogan, V.M.; Nikulshin, P.A.; Rozhdestvenskaya, N.N. Evolution and interlayer dynamics of active sites of promoted transition metal sulfide catalysts under hydrodesulfurization conditions. Fuel 2012, 100, 2–16. [Google Scholar] [CrossRef]
- Ferdous, D.; Dalai, A.; Adjaye, J.; Kotlyar, L. Surface morphology of NiMo/Al2O3 catalysts incorporated with boron and phosphorus: Experimental and simulation. Appl. Catal. A Gen. 2005, 294, 80–91. [Google Scholar] [CrossRef]
- Nie, H.; Li, H.; Yang, Q.; Li, D. Effect of structure and stability of active phase on catalytic performance of hydrotreating catalysts. Catal. Today 2018, 316, 13–20. [Google Scholar] [CrossRef]
- Tanimu, A.; Alhooshani, K. Advanced Hydrodesulfurization Catalysts: A Review of Design and Synthesis. Energy Fuels 2019, 33, 2810–2838. [Google Scholar] [CrossRef]
- Baubet, B.; Devers, E.; Hugon, A.; Leclerc, E.; Afanasiev, P. The influence of MoS2 slab 2D morphology and edge state on the properties of alumina-supported molybdenum sulfide catalysts. Appl. Catal. A Gen. 2014, 487, 72–81. [Google Scholar] [CrossRef]
- Chen, J.; Maugé, F.; El Fallah, J.; Oliviero, L. IR spectroscopy evidence of MoS2 morphology change by citric acid addition on MoS2/Al2O3 catalysts—A step forward to differentiate the reactivity of M-edge and S-edge. J. Catal. 2014, 320, 170–179. [Google Scholar] [CrossRef]
- Nikulshin, P.A.; Ishutenko, D.I.; Mozhaev, A.A.; Maslakov, K.I.; Pimerzin, A.A. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions. J. Catal. 2014, 312, 152–169. [Google Scholar] [CrossRef]
- Zhang, C.; Li, P.; Liu, X.; Liu, T.; Jiang, Z.; Li, C. Morphology-performance relation of (Co)MoS2 catalysts in the hydrodesulfurization of FCC gasoline. Appl. Catal. A Gen. 2018, 556, 20–28. [Google Scholar] [CrossRef]
- López-Cruz, C.; Guzman, J.; Cao, G.; Martínez, C.; Corma, A. Modifying the catalytic properties of hydrotreating NiMo-S phases by changing the electrodonor capacity of the support. Catal. Today 2021, 382, 130–141. [Google Scholar] [CrossRef]
- Nath Prajapati, Y.; Verma, N. Hydrodesulfurization of Thiophene on Activated Carbon Fiber Supported NiMo Catalysts. Energy Fuels 2018, 32, 2183–2196. [Google Scholar] [CrossRef]
- Whelan, J.; Katsiotis, M.S.; Stephen, S.; Luckachan, G.E.; Tharalekshmy, A.; Banu, N.-D.; Idrobo, J.-C.; Pantelides, S.T.; Vladea, R.; Banu, I.; et al. Cobalt-Molybdenum Single-Layered Nanocatalysts Decorated on Carbon Nanotubes and the Influence of Preparation Conditions on Their Hydrodesulfurization Catalytic Activity. Energy Fuels 2018, 32, 7820–7826. [Google Scholar] [CrossRef]
- Xu, J.; Guo, Y.; Huang, T.; Fan, Y. Hexamethonium bromide-assisted synthesis of CoMo/graphene catalysts for selective hydrodesulfurization. Appl. Catal. B Environ. 2019, 244, 385–395. [Google Scholar] [CrossRef]
- Bataille, F.; Lemberton, J.-L.; Michaud, P.; Pérot, G.; Vrinat, M.; Lemaire, M.; Schulz, E.; Breysse, M.; Kasztelan, S. Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism. J. Catal. 2000, 191, 409–422. [Google Scholar] [CrossRef]
- Kim, J.H.; Ma, X.; Song, C.; Lee, Y.-K.; Oyama, S.T. Kinetics of Two Pathways for 4,6-Dimethyldibenzothiophene Hydrodesulfurization over NiMo, CoMo Sulfide, and Nickel Phosphide Catalysts. Energy Fuels 2005, 19, 353–364. [Google Scholar] [CrossRef]
- Houalla, M.; Broderick, D.H.; Sapre, A.V.; Nag, N.K.; De Beer, V.H.J.; Gates, B.C.; Kwart, H. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalysed by sulfided Co-Mo gamma Al2O3. J. Catal. 1980, 61, 523–527. [Google Scholar] [CrossRef]
- Yang, H.; Chen, J.; Briker, Y.; Szynkarczuk, R.; Ring, Z. Effect of nitrogen removal from light cycle oil on the hydrodesulphurization of dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. Catal. Today 2005, 109, 16–23. [Google Scholar] [CrossRef]
- Lauritsen, J.V.; Besenbacher, F. Atom-resolved scanning tunneling microscopy investigations of molecular adsorption on MoS2 and CoMoS hydrodesulfurization catalysts. J. Catal. 2015, 238, 49–58. [Google Scholar] [CrossRef]
- Meille, V.; Schulz, E.; Lemaire, M.; Vrinat, M. Hydrodesulfurization of 4-methyl-dibenzothiophene: A detailed mechanistic study. Appl. Catal. A Gen. 1999, 187, 179–186. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Mao, J.; Deng, J.; Gao, Q.; Tang, Y.; Schmidt, O.G. Hierarchical MoS2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries. Adv. Mater. 2013, 25, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Courthéoux, L.; Brunet, S.; Lacroix-Desmazes, P.; Pradel, A.; Girard, E.; Uzio, D. Hybrid CoMoS—Polyaniline nanowires catalysts for hydrodesulfurisation applications. Appl. Catal. A Gen. 2021, 623, 118264. [Google Scholar] [CrossRef]
- Ros, T.G.; van Dillen, A.J.; Geus, J.W.; Koningsberger, D.C. Surface Oxidation of Carbon Nanofibres. Chem. Eur. J. 2002, 8, 1151–1162. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wu, G.; Chen, W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 2012, 4, 5300–5303. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Wang, F.; Wang, H.; An, Y.; Gao, Z.; Xu, F.; Jiang, K. Oxygen-incorporated few-layer MoS2 vertically aligned on three-dimensional graphene matrix for enhanced catalytic performances in quantum dot sensitized solar cells. Carbon 2017, 123, 756–766. [Google Scholar] [CrossRef]
- Bezverkhyy, I.; Afanasiev, P.; Lacroix, M. Promotion of highly loaded MoS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution. J. Catal. 2005, 230, 133–139. [Google Scholar] [CrossRef]
- Coulier, L.; De Beer, V.H.J.; Van Veen, J.A.R.; Niemantsverdriet, J.W. Correlation between hydrodesulfurization activity and order of Ni and Mo sulfidation in planar silica-supported NiMo catalysts: The influence of chelating agents. J. Catal. 2001, 197, 26–33. [Google Scholar] [CrossRef]
- Gandubert, A.D.; Legens, C.; Guillaume, D.; Rebours, S.; Payen, E. X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts relation between activity and promoted sites—Part I: Influence of the Co/Mo ratio. Oil Gas Sci. Technol. 2007, 62, 79–89. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Vp (cc/g) a | Elemental Analysis (wt%) | XRF (wt%) | Co/Mo (mol/mol) | S/Mo (mol/mol) | ||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | S | Mo | Co | |||||
CoMoS/CNF-ox | 19 | 2.19 | 20.9 | 0.0 | 4.9 | 28.7 | 33.9 | 6.9 | 0.34 | 2.5 |
CoMoS/PANI | 15 | 1.74 | 29.0 | 4.3 | 6.4 | 15.9 | 29.2 | 7.9 | 0.44 | 1.6 |
CoMoS/r-GO | 7 | 2.04 | 24.3 | 1.5 | 5.9 | 13.8 | 27.8 | 8.0 | 0.47 | 1.5 |
CoMoS/g-C3N4 | 13 | 1.72 | 17.2 | 1.7 | 7.4 | 21.5 | 35.1 | 8.9 | 0.41 | 1.8 |
Catalysts | %at Co Mixed Phase a | %at Mo | %at Co | Mo Species (% rel) | Co Species (% rel) | ||||
---|---|---|---|---|---|---|---|---|---|
MoS2 | MoOxSy | Mo+6 | CoMoS | CoSx | Co2+ | ||||
CoMoS/CNF-ox | 0.56 | 2.5 | 1.0 | 79 | 13 | 9 | 53 | 7 | 40 |
CoMoS/PANI | 0.13 | 1.1 | 0.9 | 81 | 5 | 14 | 14 | 50 | 36 |
CoMoS/r-GO | 0.26 | 0.6 | 0.6 | 73 | 11 | 16 | 45 | 14 | 40 |
CoMoS/g-C3N4 | 0.12 | 1.4 | 0.8 | 85 | 2 | 13 | 15 | 49 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Courthéoux, L.; Brunet, S.; Lacroix-Desmazes, P.; Pradel, A.; Girard, E.; Uzio, D. Effect of the Microstructure of Composite CoMoS/Carbon Catalysts on Hydrotreatment Performances. Catalysts 2023, 13, 862. https://doi.org/10.3390/catal13050862
Ghosh S, Courthéoux L, Brunet S, Lacroix-Desmazes P, Pradel A, Girard E, Uzio D. Effect of the Microstructure of Composite CoMoS/Carbon Catalysts on Hydrotreatment Performances. Catalysts. 2023; 13(5):862. https://doi.org/10.3390/catal13050862
Chicago/Turabian StyleGhosh, Sourav, Laurence Courthéoux, Sylvette Brunet, Patrick Lacroix-Desmazes, Annie Pradel, Etienne Girard, and Denis Uzio. 2023. "Effect of the Microstructure of Composite CoMoS/Carbon Catalysts on Hydrotreatment Performances" Catalysts 13, no. 5: 862. https://doi.org/10.3390/catal13050862
APA StyleGhosh, S., Courthéoux, L., Brunet, S., Lacroix-Desmazes, P., Pradel, A., Girard, E., & Uzio, D. (2023). Effect of the Microstructure of Composite CoMoS/Carbon Catalysts on Hydrotreatment Performances. Catalysts, 13(5), 862. https://doi.org/10.3390/catal13050862