Properties of CrOx/MCM-41 and Its Catalytic Activity in the Reaction of Propane Dehydrogenation in the Presence of CO2
Abstract
:1. Introduction
2. Results
2.1. BJH/BET Measurements
2.2. Thermogravimetry and Differential Thermal Analysis (TG-DTA)
2.3. Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS)
2.4. X-ray Diffraction (XRD)
2.5. UV/Vis Diffuse-Reflectance Spectroscopy
2.6. Temperature-Programmed Reduction (TPR-H2)
2.7. Catalytic Activity
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Activity Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kustov, L.M.; Tarasov, A.L. Hydrogenation of carbon dioxide: A comparison of different types of active catalysts. Mendeleev Commun. 2014, 24, 349–350. [Google Scholar] [CrossRef]
- Bogdan, V.I.; Kustov, L.M. Reduction of carbon dioxide with hydrogen on a CuO–ZnO mixed catalyst under supercritical conditions. Mendeleev Commun. 2015, 25, 446–448. [Google Scholar] [CrossRef]
- Mishanin, I.I.; Zizganova, A.I.; Bogdan, V.I. Oxidative dehydrogenation of ethane to ethylene with carbon dioxide over supported Ga, Fe, and Cr-containing catalysts. Russ. Chem. Bull. 2018, 67, 1031–1034. [Google Scholar] [CrossRef]
- De Oliveira, J.F.S.; Volanti, D.P.; Bueno, J.M.C.; Ferreira, A.P. Effect of CO2 in the oxidative dehydrogenation reaction of propane over Cr/ZrO2 catalysts. Appl. Catal. A 2018, 558, 55–66. [Google Scholar] [CrossRef]
- Asghari, S.; Haghighi, M.; Taghavinezhad, P. Plasma-enhanced dispersion of Cr2O3 over ceria-doped MCM-41 nanostructured catalyst used in CO2 oxidative dehydrogenation of ethane to ethylene. Micropor. Mesopor. Mater. 2019, 279, 165–177. [Google Scholar] [CrossRef]
- Finashina, E.D.; Kucherov, A.V.; Kustov, L.M. Effect of the conditions of preparing mixed oxide catalyst of Mo–V–Te–Nb–O composition on its activity in the oxidative dehydrogenation of ethane. Russ. J. Phys. Chem. A 2013, 87, 1983–1988. [Google Scholar] [CrossRef]
- Mishanin, I.I.; Kalenchuk, A.N.; Maslakov, K.I.; Lunin, V.V.; Koklin, A.E.; Finashina, E.D.; Bogdan, V.I. Deactivation of a mixed oxide catalyst of Mo–V–Te–Nb–O composition in the reaction of oxidative ethane dehydrogenation. Russ. J. Phys. Chem. A 2016, 90, 1132–1136. [Google Scholar] [CrossRef]
- Finashina, E.D.; Kucherov, A.V.; Kustov, L.M.; Cai, H.; Krzywicki, A. Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation. J. Adv. Oxid. Technol. 2017, 20, 20160165. [Google Scholar] [CrossRef]
- Turakulova, A.O.; Kharlanov, A.N.; Levanov, A.V.; Lunin, V.V. Oxidative dehydrogenation of propane on the VOx/CeZrO/Al2O3 supported catalyst. Russ. J. Phys. Chem. A 2017, 91, 814–821. [Google Scholar] [CrossRef]
- Mishanin, I.I.; Kalenchuk, A.N.; Maslakov, K.I.; Lunin, V.V.; Koklin, A.E.; Finashina, E.D.; Bogdan, V.I. Oxidative dehydrogenation of ethane over a Mo–V–Nb–Te–O mixed-oxide catalyst in a cyclic mode. Kinet. Katal. 2017, 58, 156–160. [Google Scholar] [CrossRef]
- Ermilova, M.; Kucherov, A.; Orekhova, N.; Finashina, E.; Kustov, L.; Yaroslavtsev, A. Ethane oxidative dehydrogenation to ethylene in a membrane reactor with asymmetric ceramic membranes. Chem. Eng. Process.-Process Intens. 2018, 126, 150–155. [Google Scholar] [CrossRef]
- Węgrzyniak, A.; Jarczewski, S.; Kuśtrowski, P.; Michorczyk, P. Influence of carbon precursor on porosity, surface composition and catalytic behaviour of CMK-3 in oxidative dehydrogenation of propane to propene. J. Porous. Mater. 2018, 25, 687–696. [Google Scholar] [CrossRef]
- Varzaneh, A.Z.; Moghaddam, M.S.; Darian, J.T. Oxidative dehydrogenation of propane over vanadium catalyst supported on nano-HZSM-5. Petr. Chem. 2018, 58, 13–21. [Google Scholar] [CrossRef]
- Mishanin, I.I.; Bogdan, V.I. Advantages of ethane oxidative dehydrogenation on the MoVNbTeOx catalyst under elevated pressure. Mendeleev Commun. 2019, 29, 455–457. [Google Scholar] [CrossRef]
- Dury, F.; Centeno, M.A.; Gaigneaux, E.M.; Ruiz, P. An attempt to explain the role of CO2 and N2O as gas dopes in the feed in the oxidative dehydrogenation of propane. Catal. Today 2003, 81, 95–105. [Google Scholar] [CrossRef]
- Botavina, M.A.; Martra, G.; Agafonov, Y.A.; Gaidai, N.A.; Nekrasov, N.V.; Trushin, D.V.; Coluccia, S.; Lapidus, A.L. Oxidative dehydrogenation of C-3-C-4 paraffins in the presence of CO2 over CrOx/SiO2 catalysts. Appl. Catal. A Gen. 2008, 347, 126–132. [Google Scholar] [CrossRef]
- Fadhel, A.Z.; Pollet, P.; Liotta, C.L.; Eckert, C.A. Combining the benefits of homogeneous and heterogeneous catalysis with tunable solvents and near-critical water. Molecules 2010, 15, 8400–8424. [Google Scholar] [CrossRef]
- Nakagawa, K.; Kajita, C.; Ikenaga, N.O.; Nishitani-Gamo, M.; Ando, T.; Suzuki, T. Dehydrogenation of light alkanes over oxidized diamond-supported catalysts in the presence of carbon dioxide. Catal. Today 2003, 84, 149–157. [Google Scholar] [CrossRef]
- Michorczyk, P.; Kuśtrowski, P.; Chmielarz, L.; Ogonowski, J. Influence of redox properties on the activity of iron oxide catalysts in dehydrogenation of propane with CO2. React. Kinet. Catal. Lett. 2004, 82, 121–130. [Google Scholar] [CrossRef]
- Zheng, B.; Hua, W.; Yue, Y.; Gao, Z. Dehydrogenation of propane to propene over different polymorphs of gallium oxide. J. Catal. 2005, 232, 143–151. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, F.; Hua, W.; Yue, Y.; Gao, Z. ZnO supported on high silica HZSM-5 as new catalysts for dehydrogenation of propane to propene in the presence of CO2. Catal. Today 2009, 148, 316–322. [Google Scholar] [CrossRef]
- Chen, M.; Wu, J.-L.; Liu, Y.-M.; Cao, Y.; Guo, L.; He, H.-Y.; Fan, K.-N. Study in support effect of In2O3/MOx (M = Al, Si, Zr) catalysts for dehydrogenation of propane in the presence of CO2. Appl. Catal. A 2011, 407, 20–28. [Google Scholar] [CrossRef]
- Tóth, A.; Halasi, G.; Bánsági, T.; Solymosi, F. Reactions of propane with CO2 over Au catalysts. J. Catal. 2016, 337, 57–64. [Google Scholar] [CrossRef]
- Dury, F.; Gaigneaux, E.M.; Ruiz, P. The active role of CO2 at low temperature in oxidation processes: The case of the oxidative dehydrogenation of propane on NiMoO4 catalysts. Appl. Catal. A 2003, 242, 187–203. [Google Scholar] [CrossRef]
- Michorczyk, P.; Pietrzyk, P.; Ogonowski, J. Preparation and characterization of SBA-1–supported chromium oxide catalysts for CO2 assisted dehydrogenation of propane. Micropor. Mesopor. Mater. 2012, 161, 56–66. [Google Scholar] [CrossRef]
- Tedeeva, M.A.; Kustov, A.L.; Pribytkov, P.V.; Leonov, A.V.; Dunaev, S.F. Dehydrogenation of propane with CO2 on supported CrOx/SiO2 catalysts. Russ. J. Phys. Chem. A 2018, 92, 2403–2407. [Google Scholar] [CrossRef]
- Agafonov, Y.A.; Gaidai, N.A.; Lapidus, A.L. Propane dehydrogenation on chromium oxide and gallium oxide catalysts in the presence of CO2. Kinet. Catal. 2018, 59, 744–753. [Google Scholar] [CrossRef]
- Tedeeva, M.A.; Kustov, A.L.; Pribytkov, P.V.; Evdokimenko, N.D.; Sarkar, B.; Kustov, L.M. Dehydrogenation of propane in the presence of CO2 on Cr(3%)/SiO2 catalyst under supercritical conditions. Mendeleev Commun. 2020, 30, 195–197. [Google Scholar] [CrossRef]
- Tedeeva, M.A.; Kustov, A.L.; Pribytkov, P.V.; Strekalova, A.A.; Kalmykov, K.B.; Dunaev, S.F.; Kustov, L.M. Dehydrogenation of propane in the presence of CO2 on supported monometallic MOy/SiO2 and CrOxMOy/SiO2 (M = Fe, Co, and Ni) bimetallic catalysts. Russ. J. Phys. Chem. A 2021, 95, 55–62. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Zhang, Y. Mesoporous silica-supported chromium catalyst: Characterization and excellent performance in dehydrogenation of propane to propylene with carbon dioxide. Catal. Commun. 2007, 8, 565–570. [Google Scholar] [CrossRef]
- Michorczyk, P.; Ogonowski, J.; Niemczyk, N. Investigation of catalytic activity of CrSBA-1 materials obtained by direct method in the dehydrogenation of propane with CO2. Appl. Catal. A 2010, 374, 142–149. [Google Scholar] [CrossRef]
- Michorczyk, P.; Ogonowski, J.; Zenczak, K. Activity of chromium oxide deposited on different silica supports in the dehydrogenation of propane with CO2—A comparative study. J. Mol. Catal. A Chem. 2011, 349, 1–12. [Google Scholar] [CrossRef]
- Wang, H.-M.; Chen, Y.; Yan, X.; Lang, W.-Z.; Guo, Y.-J. Cr doped mesoporous silica spheres for propane dehydrogenation in the presence of CO2: Effect of Cr adding time in sol-gel process. Micropor. Mesopor. Mater. 2019, 284, 69–77. [Google Scholar] [CrossRef]
- Shkuropatov, A.V.; Knyazeva, E.E.; Ponomareva, O.A.; Ivanova, I.I. Synthesis of hierarchical MWW zeolites and their catalytic properties in petrochemical processes (Review). Petr. Chem. 2018, 58, 815–826. [Google Scholar] [CrossRef]
- Meynen, V.; Cool, P.; Vansant, E.F. Verified syntheses of mesoporous materials. Micropor. Mesopor. Mater. 2009, 125, 170–223. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.-W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Galarneau, A.; Desplantier, D.; Dutartre, R.; Di Renzo, F. Micelle-templated silicates as a test bed for methods of mesopore size evaluation. Micropor. Mesopor. Mater. 1999, 27, 297–308. [Google Scholar] [CrossRef]
- Martínez-Edo, G.; Balmori, A.; Pontón, I.; Martí del Rio, A.; Sánchez-García, D. Functionalized ordered mesoporous silicas (MCM-41): Synthesis and applications in catalysis. Catalysts 2018, 8, 617. [Google Scholar] [CrossRef]
- Michorczyk, P.; Ogonowski, J.; Kuśtrowski, P.; Chmielarz, L. Chromium oxide supported on MCM-41 as a highly active and selective catalyst for dehydrogenation of propane with CO2. Appl. Catal. A 2008, 349, 62–69. [Google Scholar] [CrossRef]
- Lapidus, A.L.; Gaidai, N.A.; Nekrasov, N.V.; Agafonov, Y.A.; Botavina, M.A. Kinetics of propane dehydrogenation in CO2 presence over chromium and gallium oxide catalysts based on MCM-41. DGMK Tag. 2012, 3, 181–188. [Google Scholar]
- Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids. Principles, Methodology and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 530–540. [Google Scholar]
- Wang, Y.; Ohishi, Y.; Shishido, T.; Zhang, Q.; Yang, W.; Guo, Q.; Wan, H.; Takehira, K. Characterizations and catalytic properties of Cr-MCM-41 prepared by direct hydrothermal synthesis and template-ion exchange. J. Catal. 2003, 220, 347–357. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, R.; Yue, Y.; Yang, W.; Gu, S.; Miao, C.; Hua, W.; Gao, Z. Chromium oxide supported on ZSM-5 as a novel efficient catalyst for dehydrogenation of propane with CO2. Micropor. Mesopor. Mater. 2011, 145, 194–199. [Google Scholar] [CrossRef]
- Michorczyk, P.; Zeńczak-Tomera, K.; Michorczyk, B.; Węgrzyniak, A.; Basta, M.; Millot, Y.; Valentin, L.; Dzwigaj, S. Effect of dealumination on the catalytic performance of Cr-containing Beta zeolite in carbon dioxide assisted propane dehydrogenation. J. CO2 Util. 2020, 36, 54–63. [Google Scholar] [CrossRef]
- Takehira, K.; Ohishi, Y.; Shishido, T.; Kawabata, T.; Takaki, K.; Zhang, Q.; Wang, Y. Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO2. J. Catal. 2004, 224, 404–416. [Google Scholar] [CrossRef]
- Ge, X.; Zou, H.; Wang, J.; Shen, J. Modification of Cr/SiO2 for the dehydrogenation of propane to propylene in carbon dioxide. React. Kinet. Catal. Lett. 2005, 85, 253–260. [Google Scholar] [CrossRef]
- Michorczyk, P.; Ogonowski, J. Simultaneous propane dehydrogenation and CO2 hydrogenation over CrOx/SiO2 catalyst. React. Kinet. Catal. Lett. 2006, 87, 177–183. [Google Scholar] [CrossRef]
- Grun, M.; Unger, K.K.; Matsumoto, A.; Tsutsumi, K. Novel pathways for the preparation of mesoporous MCM-41 materials: Control of porosity and morphology. Micropor. Mesopor. Mater. 1999, 27, 207–216. [Google Scholar] [CrossRef]
- Kartavova, K.E.; Mashkin, M.Y.; Kostin, M.Y.; Finashina, E.D.; Kalmykov, K.B.; Kapustin, G.I.; Pribytkov, P.V.; Tkachenko, O.P.; Mishin, I.V.; Kustov, L.M.; et al. Rhodium-Based Catalysts: An Impact of the Support Nature on the Catalytic Cyclohexane Ring Opening. Nanomaterials 2023, 13, 936. [Google Scholar] [CrossRef]
- Tedeeva, M.A.; Kustov, A.L.; Pribytkov, P.V.; Kapustin, G.I.; Leonov, A.V.; Tkachenko, O.P.; Tursunov, O.B.; Evdokimenko, N.D.; Kustov, L.M. Dehydrogenation of propane in the presence of CO2 on GaOx/SiO2 catalyst: Influence of the texture characteristics of the support. Fuel 2022, 313, 122698. [Google Scholar] [CrossRef]
Sample | SBET, m2/g | Vmeso, cm3/g | Dpore, Ǻ |
---|---|---|---|
MCM-41 | 1260 | 0.7 | 23 |
1 Cr/MCM-41 | 1137 | 0.56 | 20 |
3 Cr/MCM-41 | 1092 | 0.55 | 20 |
5 Cr/MCM-41 | 992 | 0.53 | 20 |
7 Cr/MCM-41 | 1018 | 0.54 | 20 |
9 Cr/MCM-41 | 969 | 0.52 | 20 |
Total Spectrum | Cr | Si | O | Total | Cr EDS/Cr Computational, % |
---|---|---|---|---|---|
1 Cr/MCM-41 | 0.7 | 46.4 | 52.9 | 100 | 70 |
3 Cr/MCM-41 | 2.4 | 47.8 | 49.8 | 100 | 80 |
5 Cr/MCM-41 | 5.2 | 45.7 | 49.1 | 100 | 104 |
7 Cr/MCM-41 | 6.4 | 44.1 | 49.5 | 100 | 91 |
9 Cr/MCM-41 | 9.2 | 42.6 | 48.2 | 100 | 102 |
Material | Experimental conditions | T, °C | Conversion of C3H8, % | Selectivity to C3H6, % | Productivity, g (C3H6)·kgcat−1·h−1 | Source |
---|---|---|---|---|---|---|
5 Cr/MCM-41 | C3H8:CO2 (1:2) | 650 | 21.9 | 64 | 315 | This work * |
9 Cr/MCM-41 | C3H8:CO2 (1:2) | 650 | 24 | 70 | 378 | This work * |
Cr/MCM-41 | C3H8:CO2 (1:3.6) | 550 | 16.7 | 90 | 286 | [46] |
5%Cr/SiO2 | C3H8:CO2 (1:3.6) | 600 | 17.7 | 100 | 202 | [47] |
5%Cr/SiO2 | C3H8:CO2 (1:3.6) | 650 | 27 | 85 | 262 | [47] |
CrOx/SiO2 | C3H8:CO2 (1:7) | 600 | 27.7 | 90.8 | 282 | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igonina, M.; Tedeeva, M.; Kalmykov, K.; Kapustin, G.; Nissenbaum, V.; Mishin, I.; Pribytkov, P.; Dunaev, S.; Kustov, L.; Kustov, A. Properties of CrOx/MCM-41 and Its Catalytic Activity in the Reaction of Propane Dehydrogenation in the Presence of CO2. Catalysts 2023, 13, 906. https://doi.org/10.3390/catal13050906
Igonina M, Tedeeva M, Kalmykov K, Kapustin G, Nissenbaum V, Mishin I, Pribytkov P, Dunaev S, Kustov L, Kustov A. Properties of CrOx/MCM-41 and Its Catalytic Activity in the Reaction of Propane Dehydrogenation in the Presence of CO2. Catalysts. 2023; 13(5):906. https://doi.org/10.3390/catal13050906
Chicago/Turabian StyleIgonina, Maria, Marina Tedeeva, Konstantin Kalmykov, Gennadiy Kapustin, Vera Nissenbaum, Igor Mishin, Petr Pribytkov, Sergey Dunaev, Leonid Kustov, and Alexander Kustov. 2023. "Properties of CrOx/MCM-41 and Its Catalytic Activity in the Reaction of Propane Dehydrogenation in the Presence of CO2" Catalysts 13, no. 5: 906. https://doi.org/10.3390/catal13050906
APA StyleIgonina, M., Tedeeva, M., Kalmykov, K., Kapustin, G., Nissenbaum, V., Mishin, I., Pribytkov, P., Dunaev, S., Kustov, L., & Kustov, A. (2023). Properties of CrOx/MCM-41 and Its Catalytic Activity in the Reaction of Propane Dehydrogenation in the Presence of CO2. Catalysts, 13(5), 906. https://doi.org/10.3390/catal13050906