Effects of ZSM-5 Morphology and Fe Promoter for Dimethyl Ether Conversion to Gasoline-Range Hydrocarbons
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Surface Acidic Property of ZSM-5 Zeolites
2.2. Catalytic Activity and Product Distribution According to ZSM-5 Morphology
3. Experimental Section
3.1. Catalyst Preparations and Activity Measurement
3.2. Catalyst Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, B.; Ciais, P.; Janssens, I.A.; Penuelas, J.; Riahi, K.; Rydzak, F.; Van Vuuren, D.P.; Obersteiner, M. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 2017, 8, 14856. [Google Scholar] [CrossRef]
- Sun, J.; Yang, G.; Yoneyama, Y.; Tsubaki, N. Catalysis chemistry of dimethyl ether synthesis. ACS Catal. 2014, 4, 3346–3356. [Google Scholar]
- Tian, P.; Wei, Y.; Ye, M.; Liu, Z. Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catal. 2015, 5, 1922–1938. [Google Scholar]
- Nielsen, N.D.; Jensen, A.D.; Christensen, J.M. The roles of CO and CO2 in high pressure methanol synthesis over Cu-based catalysts. J. Catal. 2021, 393, 324–334. [Google Scholar]
- Palčić, A.; Jaén, S.N.; Wu, D.; Cai, M.; Liu, C.; Pidko, E.A.; Khodakov, A.Y.; Ordomsky, V.; Valtchev, V. Embryonic zeolites for highly efficient synthesis of dimethyl ether from syngas. Microporous Mesoporous Mater. 2011, 322, 111138. [Google Scholar] [CrossRef]
- Peláez, R.; Marín, P.; Ordóñez, S. Direct synthesis of dimethyl ether from syngas over mechanical mixtures of CuO/ZnO/Al2O3 and γ-Al2O3: Process optimization and kinetic modelling. Fuel Process. Technol. 2017, 168, 40–49. [Google Scholar] [CrossRef]
- Pelaez, R.; Bryce, E.; Marin, P.; Ordonez, S. Catalyst deactivation in the direct synthesis of dimethyl ether from syngas over CuO/ZnO/Al2O3 and γ-Al2O3 mechanical mixtures. Fuel Process. Technol. 2018, 179, 378–386. [Google Scholar]
- Sun, Y.; Han, X.; Zhao, Z. Direct coating copper-zinc-aluminum oxalate with H-ZSM-5 to fabricate a highly efficient capsule-structured bifunctional catalyst for dimethyl ether production from syngas. Catal. Sci. Technol. 2019, 9, 3763–3770. [Google Scholar]
- Su, X.; Zhang, K.; Snatenkova, Y.; Matieva, Z.; Bai, X.; Kolesnichenko, N.; Wu, W. High-efficiency nano [Zn, Al] ZSM-5 bifunctional catalysts for dimethyl ether conversion to isoparaffin-rich gasoline. Fuel Process. Technol. 2020, 198, 106242. [Google Scholar] [CrossRef]
- Wen, Z.; Li, Z.; Ge, Q.; Zhou, Y.; Sun, J.; Abroshan, H.; Li, G. Robust nickel cluster@ Mes-HZSM-5 composite nanostructure with enhanced catalytic activity in the DTG reaction. J. Catal. 2018, 363, 26–33. [Google Scholar]
- Tan, E.C.; Talmadge, M.; Dutta, A.; Hensley, J.; Snowden-Swan, L.J.; Humbird, D.; Schaidle, J.; Biddy, M. Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates. Biofuel. Bioprod. Bioref. 2016, 10, 17–35. [Google Scholar] [CrossRef]
- Haro, P.; Trippe, F.; Stahl, R.; Henrich, E. Bio-syngas to gasoline and olefins via DME-A comprehensive techno-economic assessment. Appl. Energy 2013, 108, 54–65. [Google Scholar] [CrossRef]
- Ilias, S.; Bhan, A. Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons. ACS Catal. 2013, 3, 18–31. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.J.; Ali, M.; Choung, J.W.; Lee, W.B.; Bae, J.W.; Park, M.J. Mechanistic kinetic modeling for catalytic conversion of DME to gasoline-range hydrocarbons over nanostructured ZSM-5. Catal. Sci. Technol. 2022, 12, 4798–4810. [Google Scholar] [CrossRef]
- Primo, A.; Garcia, H. Zeolites as catalysts in oil refining. Chem. Soc. Rev. 2014, 43, 7548–7561. [Google Scholar] [CrossRef]
- Kokotailo, G.T.; Lawton, S.L.; Olson, D.H.; Meier, W.M. Structure of synthetic zeolite ZSM-5. Nature 1978, 272, 437–438. [Google Scholar] [CrossRef]
- Li, J.; Wei, Y.; Liu, G.; Qi, Y.; Tian, P.; Li, B.; He, Y.; Liu, Z. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. Catal. Today 2011, 171, 221–228. [Google Scholar] [CrossRef]
- Maximov, A.; Magomedova, M.; Galanova, E.; Afokin, M.; Ionin, D. Primary and secondary reactions in the synthesis of hydrocarbons from dimethyl ether over a Pd-Zn-HZSM-5/Al2O3 catalyst. Fuel Process. Technol. 2020, 199, 106281. [Google Scholar] [CrossRef]
- Gao, P.; Xu, J.; Qi, G.; Wang, C.; Wang, Q.; Zhao, Y.; Zhang, Y.; Feng, N.; Zhao, X.; Li, J.; et al. A mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: Understanding the dehydrogenation process. ACS Catal. 2018, 8, 9809–9820. [Google Scholar] [CrossRef]
- Shoinkhorova, T.; Dikhtiarenko, A.; Ramirez, A.; Chowdhury, A.D.; Caglayan, M.; Vittenet, J.; Bendjeriou-Sedjerari, A.; Ali, O.S.; Morales-Osorio, I.; Xu, W.; et al. Shaping of ZSM-5-based catalysts via spray drying: Effect on methanol-to-olefins performance. ACS Appl Mater. Inter. 2019, 11, 44133–44143. [Google Scholar] [CrossRef]
- Jin, W.Y.; Qiao, J.R.; Yu, J.P.; Wang, Y.L.; Cao, J.P. Influence of hollow ZSM-5 zeolites prepared by treatment with different alkalis on the catalytic conversion of methanol to aromatics. Energy Fuels 2020, 34, 14633–14646. [Google Scholar] [CrossRef]
- Li, J.; Liu, M.; Guo, X.; Xu, S.; Wei, Y.; Liu, Z.; Song, C. Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination–realumination process: A superior MTP catalyst. ACS Appl. Mater. Inter. 2017, 9, 26096–26106. [Google Scholar] [CrossRef]
- Kunz, J.; Kraushaar-Czarnetzki, B. Dynamic processing of dimethyl ether and methanol to gasoline (DMTG): Investigation of kinetic transitions at fluctuating workloads under isothermal conditions. Chem. Eng. J. 2019, 373, 1295–1308. [Google Scholar] [CrossRef]
- Young, L.B.; Butter, S.A.; Kaeding, W.W. Shape selective reactions with zeolite catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. J. Catal. 1982, 76, 418–432. [Google Scholar] [CrossRef]
- Fraenkel, D.; Cherniavsky, M.; Ittah, B.; Levy, M. Shape-selective alkylation of naphthalene and methylnaphthalene with methanol over H-ZSM-5 zeolite catalysts. J. Catal. 1986, 101, 273–283. [Google Scholar] [CrossRef]
- Chen, N.Y.; Ketkar, A.B.; Partridge, R.D. Mobil Oil Corporation, New York. Integrated Catalytic Dewaxing and Catalytic Cracking Process. U.S. Patent 4,944,862, 31 July 1990. [Google Scholar]
- Kuo, J.C.; Prater, C.H.; Wise, J.J. Mobil Oil Corporation, New York. Method for Upgrading Fischer-Tropsch Synthesis Products. U.S. Patent 4,049,741, 20 September 1977. [Google Scholar]
- Wang, T.; Yang, C.; Gao, P.; Zhou, S.; Li, S.; Wang, H.; Sun, Y. ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation. Appl. Catal. B-Environ. 2021, 286, 119929. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, J.; Corma, A. Applications of zeolites to C1 chemistry: Recent advances, challenges, and opportunities. Adv. Mater. 2020, 32, 2002927. [Google Scholar] [CrossRef] [PubMed]
- Łukaszuk, K.A.; Rojo-Gama, D.; Øien-Ødegaard, S.; Lazzarini, A.; Berlier, G.; Bordiga, S.; Lillerud, K.P.; Olsbye, U.; Beato, P.; Lundegaard, L.F.; et al. Zeolite morphology and catalyst performance: Conversion of methanol to hydrocarbons over offretite. Catal. Sci. Technol. 2017, 7, 5435–5447. [Google Scholar] [CrossRef]
- Wang, K.; Dong, M.; Niu, X.; Li, J.; Qin, Z.; Fan, W.; Wang, J. Highly active and stable Zn/ZSM-5 zeolite catalyst for the conversion of methanol to aromatics: Effect of support morphology. Catal. Sci. Technol. 2018, 8, 5646–5656. [Google Scholar] [CrossRef]
- Fu, T.; Zhou, H.; Li, Z. Effect of particle morphology for ZSM-5 zeolite on the catalytic conversion of methanol to gasoline-range hydrocarbons. Catal. Lett. 2016, 146, 1973–1983. [Google Scholar] [CrossRef]
- Wen, C.; Wang, C.; Chen, L.; Zhang, X.; Liu, Q.; Ma, L. Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst. Fuel 2019, 244, 492–498. [Google Scholar] [CrossRef]
- Yang, J.; Gong, K.; Miao, D.; Jiao, F.; Pan, X.; Meng, X.; Xiao, F.; Bao, X. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion. J. Energy Chem. 2019, 35, 44–48. [Google Scholar] [CrossRef]
- Ni, Y.; Sun, A.; Wu, X.; Hai, G.; Hu, J.; Li, T.; Li, G. The preparation of nano-sized H [Zn, Al] ZSM-5 zeolite and its application in the aromatization of methanol. Microporous Mesoporous Mater. 2011, 143, 435–442. [Google Scholar] [CrossRef]
- Freeman, D.; Wells, R.P.K.; Hutchings, G.J. Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts. J. Catal. 2002, 205, 358–365. [Google Scholar] [CrossRef]
- Hajjar, Z.; Khodadadi, A.; Mortazavi, Y.; Tayyebi, S.; Soltanali, S. Artificial intelligence modeling of DME conversion to gasoline and light olefins over modified nano ZSM-5 catalysts. Fuel 2016, 179, 79–86. [Google Scholar] [CrossRef]
- Zhang, Q.; Tan, Y.; Yang, C.; Xie, H.; Han, Y. Characterization and catalytic application of MnCl2 modified HZSM-5 zeolites in synthesis of aromatics from syngas via dimethyl ether. J. Ind. Eng. Chem. 2013, 19, 975–980. [Google Scholar] [CrossRef]
- Kecskeméti, A.; Barthos, R.; Solymosi, F. Aromatization of dimethyl and diethyl ethers on Mo2C-promoted ZSM-5 catalysts. J. Catal. 2018, 258, 111–120. [Google Scholar] [CrossRef]
- Golubev, K.B.; Zhang, K.; Su, X.; Kolesnichenko, N.V.; Wu, W. Dimethyl ether aromatization over nanosized zeolites: Effect of preparation method and zinc modification on catalyst performance. Catal. Commun. 2021, 149, 106176. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Ma, G.; Wang, J.; Lin, J.; Wang, H.; Zhang, C.; Ding, M. Effect of iron loading on acidity and performance of Fe/HZSM-5 catalyst for direct synthesis of aromatics from syngas. Fuel 2018, 228, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Miao, P.; Li, Z.; He, T.; Han, D.; Wu, J.; Wang, Z.; Wu, J. Hydrothermal synthesis of nanocrystalline H [Fe, Al] ZSM-5 zeolites for conversion of methanol to gasoline. Energy Convers. Manag. 2015, 93, 259–266. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, P.; Wang, X.; Lyu, Y.; Liu, W.; Liu, X.; Yan, Z. Active sites and induction period of Fe/ZSM-5 catalyst in methane dehydroaromatization. ACS Catal. 2021, 11, 6771–6786. [Google Scholar] [CrossRef]
- Li, J.; Han, D.; He, T.; Liu, G.; Zi, Z.; Wang, Z.; Wu, J.; Wu, J. Nanocrystal H [Fe, Al] ZSM-5 zeolites with different silica-alumina composition for conversion of dimethyl ether to gasoline. Fuel Process. Technol. 2019, 191, 104–110. [Google Scholar] [CrossRef]
- Li, J.; Han, D.; Zi, Z.; He, T.; Liu, G.; Wang, Z.; Wu, J.; Wu, J. The synthesis of H [Fe, Al] ZSM-5 zeolites with uniform nanocrystals for dimethyl ether to gasoline reaction. Fuel 2022, 313, 122643. [Google Scholar] [CrossRef]
- Jamil, A.K.; Muraza, O.; Miyake, K.; Ahmed, M.H.M.; Yamani, Z.H.; Hirota, Y.; Nishiyama, N. Stable production of gasoline-ranged hydrocarbons from dimethyl ether over iron-modified ZSM-22 zeolite. Energy Fuels 2018, 32, 11796–11801. [Google Scholar] [CrossRef]
- LaFollette, M.R.; Lobo, R.F. Olefin methylation over iron zeolites and the methanol to hydrocarbons reaction. Appl. Catal. A Gen. 2022, 641, 118645. [Google Scholar] [CrossRef]
- Wei, J.; Yao, R.; Ge, Q.; Xu, D.; Fang, C.; Zhang, J.; Xu, H.; Sun, J. Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation. Appl. Catal. B-Environ. 2021, 283, 119648. [Google Scholar] [CrossRef]
- Wu, W.; Hao, R.; Liu, F.; Su, X.; Hou, Y. Single-crystalline α-Fe2O3 nanostructures: Controlled synthesis and high-index plane-enhanced photodegradation by visible light. J. Mater. Chem. A 2013, 1, 6888–6894. [Google Scholar] [CrossRef]
- Zhu, Y.; Hua, Z.; Zhou, J.; Wang, L.; Zhao, J.; Gong, Y.; Wu, W.; Ruan, M.; Shi, J. Hierarchical mesoporous zeolites: Direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chem. Eur. J. 2011, 17, 14618–14627. [Google Scholar] [CrossRef]
- Jin, D.; Ye, G.; Zheng, J.; Yang, W.; Zhu, K.; Coppens, M.-O.; Zhou, X. Hierarchical silicoaluminophosphate catalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of premanufactured building blocks. ACS Catal. 2017, 7, 5887–5902. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Pérez-Ramırez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Sing, K.S.W. Physisorption of nitrogen by porous materials. J. Porous Mater. 1995, 2, 5–8. [Google Scholar] [CrossRef]
- Beerthuis, R.; Huang, L.; Shiju, N.R.; Rothenberg, G.; Shen, W.; Xu, H. Facile synthesis of a novel hierarchical ZSM-5 zeolite: A stable acid catalyst for dehydrating glycerol to acrolein. ChemCatChem 2018, 10, 211. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, D.; Ren, S.; Chen, X.; Qiu, M.; Wu, X.; Yang, C.; Zeng, G.; Sun, Y. Solvent-free synthesis of c-axis oriented ZSM-5 crystals with enhanced methanol to gasoline catalytic activity. ChemCatChem 2016, 8, 3317–3322. [Google Scholar] [CrossRef]
- Ali, M.; Koo, H.-M.; Kasipandi, S.; Han, G.Y.; Bae, J.W. Direct synthesis of liquid fuels and aromatics from syngas over mesoporous FeZrOx catalyst mixed with Mo/ferrierite. Fuel 2020, 264, 116851. [Google Scholar] [CrossRef]
- Martins, G.V.A.; Berlier, G.; Bisio, C.; Coluccia, S.; Pastore, H.O.; Marchese, L. Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study. J. Phys. Chem. C 2008, 112, 7193–7200. [Google Scholar] [CrossRef]
- Lee, K.Y.; Lee, S.W.; Ihm, S.K. Acid strength control in MFI zeolite for the methanol-to-hydrocarbons (MTH) reaction. Ind. Eng. Chem. Res. 2014, 53, 10072–10079. [Google Scholar] [CrossRef]
- Galadima, A.; Muraza, O. From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons: A review. J. Nat. Gas. Sci. Eng. 2015, 25, 303–316. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, T.; Li, Y.; Xiao, R.; Vitidsant, T.; Reubroycharoen, P.; Wang, C.; Zhang, Q.; Ma, L. Olefin-rich gasoline-range hydrocarbons from oligomerization of bio-syngas over Ni/ASA catalyst. Fuel Process. Technol. 2017, 167, 702–710. [Google Scholar] [CrossRef]
- Khadzhiev, S.N.; Magomedova, M.V.; Peresypkina, E.G. Mechanism of olefin synthesis from methanol and dimethyl ether over zeolite catalysts: A review. Petrol. Chem. 2014, 54, 245–269. [Google Scholar] [CrossRef]
- Chang, C.D.; Lang, W.H.; Silvestri, A.J. Synthesis gas conversion to aromatic hydrocarbons. J. Catal. 1979, 56, 268–273. [Google Scholar] [CrossRef]
- Wan, Z.; Wu, W.; Chen, W.; Yang, H.; Zhang, D. Direct synthesis of hierarchical ZSM-5 zeolite and its performance in catalyzing methanol to gasoline conversion. Ind. Eng. Chem. Res. 2014, 53, 19471–19478. [Google Scholar] [CrossRef]
- Niu, X.; Gao, J.; Wang, K.; Miao, Q.; Dong, M.; Wang, G.; Fan, W.; Qin, Z.; Wang, J. Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics. Fuel Process. Technol. 2017, 157, 99–107. [Google Scholar] [CrossRef]
- Oseke, G.G.; Atta, A.Y.; Mukhtar, B.; Jibril, B.Y.; Aderemi, B.O. Highly selective and stable Zn-Fe/ZSM-5 catalyst for aromatization of propane. Appl. Petrochem. Res. 2020, 10, 55–65. [Google Scholar] [CrossRef]
Catalyst | XRF a | XRD b | N2-Sorption c | NH3-TPD d | Py-IR e | XDME (mol%) | Selectivity f | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Si/Al Ratio | Scryst (nm) | Rcryst (%) | Sg/Sext (m2/g) | Vp/Vmeso (cm3/g) | PD (nm) | W/M/S (Total) (mmol/g) | B/L (µmol/g) | B/L Ratio | C1–C4/C5+/Aro | ||
N-ZSM-5 | 72 | 32 | 68 | 366/196 | 0.29/0.20 | 4.1 | 0.32/0.0/0.16 (0.48) | 159.9/4.5 | 32.2 | 100 | 34.7/41.7/23.6 |
H-ZSM-5 | 74 | 34 | 29 | 376/177 | 0.40/0.29 | 7.2 | 0.23/0.06/0.06 (0.35) | 84.3/5.4 | 15.5 | 100 | 37.1/41.0/21.9 |
S-ZSM-5 | 94 | 45 | 100 | 347/232 | 0.10/0.04 | 3.9 | 0.19/0.0/0.12 (0.31) | 48.4/4.3 | 11.4 | 100 | 43.4/38.1/18.5 |
C-ZSM-5 | 84 | 69 | 71 | 360/94 | 0.24/0/10 | 4.6 | 0.32/0.0/0.13 (0.45) | 84.8/4.1 | 20.7 | 100 | 39.5/40.5/20.0 |
Catalyst | XRD a | N2-Sorption b | NH3-TPD c | Catalytic Activity (mol%) d | |||||
---|---|---|---|---|---|---|---|---|---|
Scryst (nm) | Rcryst (%) | Sg/Sext (m2/g) | VP/Vmeso (cm3/g) | PD (nm) | W/S (Total) (mmol/g) | XDME (mol%) | Product Distribution (mol%) (C1–C4/C5/C6+ (Aromatics)) | ||
N-ZSM-5 | Fe2O3 | ||||||||
N-ZSM-5 | 32 | - | 68 | 366/196 | 0.29/0.20 | 4.1 | 0.32/0.16 (0.48) | 100.0 | 34.7/12.8/52.5 (23.6) |
Fe(1)/N-ZSM-5 | 38 | - | 65 | 341/173 | 0.29/0.20 | 4.9 | 0.31/0.15 (0.46) | 100.0 | 38.2/11.5/50.3 (20.3) |
Fe(5)/N-ZSM-5 | 42 | 8.7 | 55 | 316/150 | 0.25/0.16 | 4.7 | 0.23/0.13 (0.36) | 91.7 | 38.3/9.3/52.4 (18.3) |
Fe(10)/N-ZSM-5 | 46 | 11.1 | 36 | 310/145 | 0.24/0/16 | 4.8 | 0.21/0.10 (0.31) | 100.0 | 21.9/8.5/69.6 (17.6) |
Fe(15)/N-ZSM-5 | 46 | 13.6 | 21 | 294/141 | 0.24/0.16 | 6.0 | 0.18/0.10 (0.27) | 83.5 | 44.5/7.8/47.7 (17.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Kim, J.J.; Zafar, F.; Shen, D.; Wang, X.; Bae, J.W. Effects of ZSM-5 Morphology and Fe Promoter for Dimethyl Ether Conversion to Gasoline-Range Hydrocarbons. Catalysts 2023, 13, 910. https://doi.org/10.3390/catal13050910
Ali M, Kim JJ, Zafar F, Shen D, Wang X, Bae JW. Effects of ZSM-5 Morphology and Fe Promoter for Dimethyl Ether Conversion to Gasoline-Range Hydrocarbons. Catalysts. 2023; 13(5):910. https://doi.org/10.3390/catal13050910
Chicago/Turabian StyleAli, Mansoor, Jong Jin Kim, Faisal Zafar, Dongming Shen, Xu Wang, and Jong Wook Bae. 2023. "Effects of ZSM-5 Morphology and Fe Promoter for Dimethyl Ether Conversion to Gasoline-Range Hydrocarbons" Catalysts 13, no. 5: 910. https://doi.org/10.3390/catal13050910
APA StyleAli, M., Kim, J. J., Zafar, F., Shen, D., Wang, X., & Bae, J. W. (2023). Effects of ZSM-5 Morphology and Fe Promoter for Dimethyl Ether Conversion to Gasoline-Range Hydrocarbons. Catalysts, 13(5), 910. https://doi.org/10.3390/catal13050910