A Brief Review on the Latest Developments on Pharmaceutical Compound Degradation Using g-C3N4-Based Composite Catalysts
Abstract
:1. Introduction
2. Synthesis of Different Types of g-C3N4-Based Catalysts for PC Degradation
2.1. Various Precursors for Preparing g-C3N4
2.2. Composite with Other Materials
2.3. Doping of g-C3N4-Based Catalysts
3. Different Categories of g-C3N4-Based Catalysts Reported in the Literature for PC Degradation
3.1. g-C3N4-Based Z-Scheme Photocatalysts
3.2. g-C3N4-Based S Scheme Photocatalysts
3.3. g-C3N4-Based Fenton-Type Catalysts
3.4. g-C3N4-Based Sonocatalysts for PCs Degradation
4. Degradation of Different PCs
4.1. Tetracycline (TC)
4.2. Diclofenac (DC)
4.3. Sulfamethoxazole (SMX)
4.4. Ibuprofen (Ibu)
4.5. Other Drugs
4.6. Application on Multiple Compounds
5. Optimization Techniques
6. Real Field Application
7. Characterization Techniques
7.1. Fourier Transformed Infrared Spectroscopy (FTIR)
7.2. Electron Microscopic Analysis
7.3. BET Surface Area Analysis
7.4. XPS Analysis
7.5. Diffuse Reflectance Spectra (DRS) Analysis
7.6. X-ray Diffraction (XRD) Analysis
7.7. Photoluminescence (PL) Spectroscopy
7.8. Identification of the Intermediate Products
7.9. Photoelectrochemical Tests
7.10. Electron Spin Resonance (ESR) Tests
8. Future Perspective and Current Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AMX | amoxicillin |
ANN | artificial neural network |
CBZ | carbamazepine |
CFX | cefalexin |
CIP | ciprofloxacin |
DC | diclofenac |
LFX | levofloxacin |
NPX | naproxen |
OTC | oxytetracycline |
PC | pharmaceutical compound |
PMS | peroxymonosulfate |
PR RSM | paracetamol response surface methodology |
SDZ | sulfadiazine |
SMX | sulfamethoxazole |
TC | tetracycline |
TCH | tetracycline hydrochloride |
TCS | triclosan |
References
- Mahamallik, P.; Saha, S.; Pal, A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. Chem. Eng. J. 2015, 276, 155–165. [Google Scholar] [CrossRef]
- Di, G.; Zhu, Z.; Huang, Q.; Zhang, H.; Zhu, J.; Qiu, Y.; Yin, D.; Zhao, J. Targeted modulation of g-C3N4 photocatalytic performance for pharmaceutical pollutants in water using ZnFe-LDH derived mixed metal oxides: Structure-activity and mechanism. Sci. Total Environ. 2019, 650, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.D.; Nguyen, T.B.; Tran, L.H.; Nguyen, T.G.; Fatimah, I.; Kuncoro, E.P.; Doong, R. Z-scheme S, B co-doped g-C3N4 nanotube@MnO2 heterojunction with visible-light-responsive for enhanced photodegradation of diclofenac by peroxymonosulfate activation. Chem. Eng. J. 2023, 452, 139249. [Google Scholar] [CrossRef]
- He, J.; Yang, J.; Jiang, F.; Liu, P.; Zhu, M. Photo-assisted peroxymonosulfate activation via 2D/2D heterostructure of Ti3C2/g-C3N4 for degradation of diclofenac. Chemosphere 2020, 258, 127339. [Google Scholar] [CrossRef]
- Morales-Paredes, C.A.; Rodriguez-Diaz, J.M.; Boluda-Botella, N. Pharmaceutical compounds used in the COVID-19 pandemic: A review of their presence in water and treatment techniques for their elimination. Sci. Total Environ. 2022, 814, 152691. [Google Scholar] [CrossRef]
- Pattanayak, D.S.; Pal, D.; Mishra, J.; Thakur, C. Noble metal-free doped graphitic carbon nitride (g-C3N4) for efficient photodegradation of antibiotics: Progress, limitations, and future directions. Environ. Sci. Pollut. Res. 2023, 30, 25546–25558. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Chinthala, M.; Polagani, R.K.; Vo, D.N. Removal of tetracycline from wastewater using g-C3N4 based photocatalysts: A review. Environ. Res. 2023, 216, 114660. [Google Scholar] [CrossRef]
- Ghosh, U.; Pal, A. Insight into the multiple roles of nitrogen doped carbon quantum dots in an ultrathin 2D-0D-2D all-solid-state Z scheme heterostructure and its performance in tetracycline degradation under LED illumination. Chem. Eng. J. 2022, 431, 133914. [Google Scholar] [CrossRef]
- Ghosh, U.; Majumdar, A.; Pal, A. 3D macroporous architecture of self-assembled defect engineered ultrathin g-C3N4 nanosheets for tetracycline degradation under LED light irradiation. Mater. Res. Bull. 2021, 133, 111074. [Google Scholar] [CrossRef]
- Ghosh, U.; Pal, A. Drastically enhanced tetracycline degradation performance of a porous 2D g-C3N4 nanosheet photocatalyst in real water matrix: Influencing factors and mechanism insight. J. Water Process Eng. 2022, 50, 103315. [Google Scholar] [CrossRef]
- Majumdar, A.; Ghosh, U.; Pal, A. Novel 2D/2D g-C3N4/Bi4NbO8Cl nano-composite for enhanced photocatalytic degradation of oxytetracycline under visible LED light irradiation. J. Colloid Interface Sci. 2021, 584, 320–331. [Google Scholar] [CrossRef]
- Guo, F.; Huang, X.; Chen, Z.; Cao, L.; Cheng, X.; Chen, L.; Shi, W. Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics. Sep. Purif. Technol. 2021, 265, 118477. [Google Scholar] [CrossRef]
- Chi, X.; Liu, F.; Gao, Y.; Song, J.; Guan, R.; Yuan, H. An efficient B/Na co-doped porous g-C3N4 nanosheets photocatalyst with enhanced photocatalytic hydrogen evolution and degradation of tetracycline under visible light. Appl. Surf. Sci. 2022, 576, 151837. [Google Scholar] [CrossRef]
- Guo, F.; Li, M.; Ren, H.; Huang, X.; Shu, K.; Shi, W.; Lu, C. Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light. Sep. Purif. Technol. 2019, 228, 115770. [Google Scholar] [CrossRef]
- Smykalova, A.; Sokolova, B.; Foniok, K.; Matejka, V.; Praus, P. Photocatalytic degradation of selected pharmaceuticals using g-C3N4 and TiO2 nanomaterials. Nanomaterials 2019, 9, 1194. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Jia, H.; Li, Z.; Miao, C.; Lu, R.; Zhang, S.; Zhang, Z. Magnetic recyclable g-C3N4/Fe3O4@MIL-100(Fe) ternary catalyst for photo-Fenton degradation of ciprofloxacin. J. Environ. Chem. Eng. 2022, 10, 108698. [Google Scholar] [CrossRef]
- Wang, F.; Feng, Y.; Chen, P.; Wang, Y.; Su, Y.; Zhang, Q.; Zeng, Y.; Xie, Z.; Liu, H.; Liu, Y.; et al. Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination. Appl. Catal. B Environ. 2018, 227, 114–122. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, X.; Dong, X.; Liu, X.; Tan, Y.; Yuan, F.; Zheng, S.; Li, C. Hierarchical assembly of highly efficient visible-light-driven Ag/g-C3N4/kaolinite composite photocatalyst for the degradation of ibuprofen. J. Mater. 2020, 6, 582–592. [Google Scholar] [CrossRef]
- Feyzi, L.; Rahemi, N.; Allahyari, S. Efficient degradation of tetracycline in aqueous solution using a coupled S-scheme ZnO/g-C3N4/zeolite P supported catalyst with water falling film plasma reactor. Process Saf. Environ. Prot. 2022, 161, 827–847. [Google Scholar] [CrossRef]
- Mirzaei, A.; Yerushalmi, L.; Chen, Z.; Haghighat, F. Photocatalytic degradation of sulfamethoxazole by hierarchical magnetic ZnO@g-C3N4: RSM optimization, kinetic study, reaction pathway and toxicity evaluation. J. Hazard. Mater. 2018, 359, 516–526. [Google Scholar] [CrossRef]
- Baladi, E.; Davar, F.; Hojjati-Najafabadi, A. Synthesis and characterization of g-C3N4-CoFe2O4-ZnO magnetic nanocomposites for enhancing photocatalytic activity with visible light for degradation of penicillin G antibiotic. Environ. Res. 2022, 215, 114270. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, B.; Pu, Q.; Chen, X.; Wen, G.; Li, Z. Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics. J. Hazard. Mater. 2019, 373, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, M.; Huang, X.; Wu, Y.; Li, L. S-scheme g-C3N4/TiO2/CFs heterojunction composites with multi-dimensional through-holes and enhanced visible-light photocatalytic activity. Ceram. Int. 2022, 48, 8196–8208. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Sharma, G.; Al-Muhtaseb, A.H.; Naushad, M.; Ghfar, A.A.; Stadler, F.J. Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J. 2018, 334, 462–478. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Wang, J. Peroxymonosulfate activation by Fe−Co−O-Codoped graphite carbon nitride for degradation of sulfamethoxazole. Environ. Sci. Technol. 2020, 54, 10361–10369. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, W.; Zhao, Z.; Liu, W.; Ye, J.; Tong, M.; Li, Y. Different degradation mechanisms of carbamazepine and diclofenac by single-atom Barium embedded g-C3N4: The role of photosensitation-like mechanism. J. Hazard. Mater. 2021, 416, 125936. [Google Scholar] [CrossRef]
- Tian, Y.; Tian, X.; Zeng, W.; Nie, Y.; Yang, C.; Dai, C.; Li, Y.; Lu, L. Enhanced peroxymonosulfate decomposition into ·OH and 1O2 for sulfamethoxazole degradation over Se doped g-C3N4 due to induced exfoliation and N vacancies formation. Sep. Purif. Technol. 2021, 267, 118664. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All solid-state Z-scheme in Cds-Au-TiO2 three component nanojunction system. Nat. Mater. 2006, 5, 782–786. [Google Scholar] [CrossRef]
- Chen, W.; He, Z.; Huang, G.; Wu, C.; Chen, W.; Liu, X. Direct Z scheme 2D/2D MnIn2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution. Chem. Eng. J. 2019, 359, 244–253. [Google Scholar] [CrossRef]
- Pham, V.V.; Truong, T.K.; Hai, L.V.; La, H.P.P.; Nguyen, H.T.; Lam, V.Q.; Tong, H.D.; Nguyen, T.Q.; Sabbah, A.; Chen, K.; et al. S-Scheme α-Fe2O3/g-C3N4 nanocomposites as heterojunction photocatalysts for antibiotic degradation. Appl. Nanomater. 2022, 5, 4506–4514. [Google Scholar] [CrossRef]
- Ni, S.; Fu, Z.; Li, L.; Ma, M.; Liu, Y. Step-scheme heterojunction g-C3N4/TiO2 for efficient photocatalytic degradation of tetracycline hydrochloride under UV light. Colloids Surf. A Physicochem. Eng. Asp. 2022, 649, 129475. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, Y.; Deng, F.; Wang, M.; Chen, D. Porous Z-scheme MnO2/Mn-modified alkalinized g-C3N4 heterojunction with excellent Fenton-like photocatalytic activity for efficient degradation of pharmaceutical pollutants. Sep. Purif. Technol. 2020, 246, 116890. [Google Scholar] [CrossRef]
- Mei, X.; Chen, S.; Wang, G.; Chen, W.; Lu, W.; Zhang, B.; Fang, Y.; Qi, C. Metal-free carboxyl modified g-C3N4 for enhancing photocatalytic degradation activity of organic pollutants through peroxymonosulfate activation in wastewater under solar irradiation. J. Solid State Chem. 2022, 310, 123053. [Google Scholar] [CrossRef]
- Luo, J.; Dai, Y.; Xu, X.; Liu, Y.; Yang, S.; He, H.; Sun, C.; Xia, Q. Green and efficient synthesis of Co-MOF-based/g-C3N4 composite catalysts to activate peroxymonosulfate for degradation of the antidepressant venlafaxine. J. Colloid Interf. Sci. 2022, 610, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, J. Magnetic 2D/2D oxygen doped g-C3N4/biochar composite to activate peroxymonosulfate for degradation of emerging organic pollutants. J. Hazard. Mater. 2022, 423, 127207. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dai, H.; Tan, C.; Pan, Q.; Hu, F.; Peng, X. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Appl. Catal. B Environ. 2022, 310, 121326. [Google Scholar] [CrossRef]
- Li, T.; Ge, L.; Peng, X.; Wang, W.; Zhang, W. Enhanced degradation of sulfamethoxazole by a novel Fenton-like system with significantly reduced consumption of H2O2 activated by g-C3N4/MgO composite. Water Res. 2021, 190, 116777. [Google Scholar] [CrossRef]
- Li, X.; Gan, X. Photo-Fenton degradation of multiple pharmaceuticals at low concentrations via Cu-doped-graphitic carbon nitride (g-C3N4) under simulated solar irradiation at a wide pH range. J. Environ. Chem. Eng. 2022, 10, 108290. [Google Scholar] [CrossRef]
- Cao, Z.; Jia, Y.; Wang, Q.; Cheng, H. High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation. Appl. Clay Sci. 2021, 212, 106213. [Google Scholar] [CrossRef]
- Qiao, X.; Liu, X.; Zhang, W.; Cai, Y.; Zhong, Z.; Li, Y.; Lu, J. Superior photo-Fenton activity towards chlortetracycline degradation over novel g-C3N4 nanosheets/schwertmannite nanocomposites with accelerated Fe(III)/Fe(II) cycling. Sep. Purif. Technol. 2021, 279, 119760. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Zhang, K.; Zada, A.; Qi, K. Sonocatalytic degradation of tetracycline hydrochloride with CoFe2O4/g-C3N4 composite. Ultrason. Sonochem. 2023, 94, 106325. [Google Scholar] [CrossRef]
- He, Y.; Ma, Z.; Junior, L.B. Distinctive binary g-C3N4/MoS2 heterojunctions with highly efficient ultrasonic catalytic degradation for levofloxacin and methylene blue. Ceram. Int. 2020, 46, 12364–12372. [Google Scholar] [CrossRef]
- Vinesh, V.; Ashokkumar, M.; Neppolian, B. rGO supported self-assembly of 2D nano sheet of (g-C3N4) into rod-like nano structure and its application in sonophotocatalytic degradation of an antibiotic. Ultrason. Sonochem. 2020, 68, 105218. [Google Scholar] [CrossRef]
- Gholami, P.; Khataee, A.; Vahid, B.; Karimi, A.; Golizadeh, M.; Ritala, M. Sonophotocatalytic degradation of sulfadiazine by integration of microfibrillated carboxymethyl cellulose with Zn-Cu-Mg mixed metal hydroxide/g-C3N4 composite. Sep. Purif. Technol. 2020, 245, 116866. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Wu, Z.; Yu, H.; Mo, D.; Wang, H.; Xiao, Z.; Zhou, C. Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation. J. Colloid Interf. Sci. 2019, 536, 17–29. [Google Scholar] [CrossRef]
- Palanivel, B.; Shkir, M.; Alshahrani, T.; Mani, A. Novel NiFe2O4 deposited S-doped g-C3N4 nanorod: Visible-light-driven heterojunction for photo-Fenton like tetracycline degradation. Diam. Relat. Mater. 2021, 112, 108148. [Google Scholar] [CrossRef]
- Preeyanghaa, M.; Dhileepan, M.D.; Madhavan, J.; Neppolian, B. Revealing the charge transfer mechanism in magnetically recyclable ternary g-C3N4/BiOBr/Fe3O4 nanocomposite for efficient photocatalytic degradation of tetracycline antibiotics. Chemosphere 2022, 303, 135070. [Google Scholar] [CrossRef]
- Bui, T.S.; Bansal, P.; Lee, B.; Mahvelati-Shamsabadi, T. Facile fabrication of novel Ba-doped g-C3N4 photocatalyst with remarkably enhanced photocatalytic activity towards tetracycline elimination under visible-light irradiation. Appl. Surf. Sci. 2020, 506, 144184. [Google Scholar] [CrossRef]
- Cao, Y.; Alsharif, S.; El-Shafay, A.S. Preparation, suppressed the charge carriers recombination, and improved photocatalytic performance of g-C3N4/MoS2 p-n heterojunction photocatalyst for tetracycline and dyes degradation upon visible light. Mater. Sci. Semicond. Process. 2022, 144, 106569. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, Y.; Li, J.; Wang, Q.; Mei, Q.; Cheng, H. Rapid electron transfer-promoted tetracycline hydrochloride degradation: Enhanced activity in visible light-coupled peroxymonosulfate with PdO/g-C3N4/kaolinite catalyst. Chem. Eng. J. 2023, 457, 141191. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Jiang, L.; Yuan, X.; Liang, J.; Zhang, J.; Yu, H.; Chu, W.; Wu, Z.; Li, H.; et al. Strategic combination of nitrogen-doped carbon quantum dots and g-C3N4: Efficient photocatalytic peroxydisulfate for the degradation of tetracycline hydrochloride and mechanism insight. Sep. Purif. Technol. 2021, 272, 118947. [Google Scholar] [CrossRef]
- Guo, F.; Shi, W.; Wang, H.; Han, M.; Li, H.; Huang, H.; Liu, Y.; Kang, Z. Facile fabrication of a CoO/g-C3N4 p-n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal. Sci. Technol. 2017, 7, 3325–3331. [Google Scholar] [CrossRef]
- Guo, F.; Shi, W.; Li, M.; Shi, Y.; Wen, H. 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline. Sep. Purif. Technol. 2019, 210, 608–615. [Google Scholar] [CrossRef]
- Guo, F.; Huang, X.; Chen, Z.; Sun, H.; Chen, L. Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater. Chem. Eng. J. 2020, 395, 125118. [Google Scholar] [CrossRef]
- Guo, B.; Liu, B.; Wang, C.; Lu, J.; Wang, Y.; Yin, S.; Javed, M.S.; Han, W. Boosting photocharge separation in Z-schemed g-C3N4/RGO/ln2S3 photocatalyst for H2 evolution and antibiotic degradation. J. Ind. Eng. Chem. 2022, 110, 217–224. [Google Scholar] [CrossRef]
- He, Y.; Ma, B.; Yang, Q.; Tong, Y.; Ma, Z.; Junior, L.B.; Yao, B. Surface construction of a novel metal-free g-C3N4-based heterojunction photocatalyst for the efficient removal of bio-toxic antibiotic residues. Appl. Surf. Sci. 2022, 571, 151299. [Google Scholar] [CrossRef]
- Huang, H.; Liu, C.; Ou, H.; Ma, T.; Zhang, Y. Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis. Appl. Surf. Sci. 2019, 470, 1101–1110. [Google Scholar] [CrossRef]
- Obregon, S.; Ruiz-Gomez, M.A.; Rodriguez-Gonzalez, V.; Vaquez, A.; Hernandez-Uresti, D.B. A novel type-II Bi2W2O9/g-C3N4 heterojunction with enhanced photocatalytic performance under simulated solar irradiation. Mater. Sci. Semicond. Process. 2020, 113, 105056. [Google Scholar] [CrossRef]
- Panneri, S.; Ganguly, P.; Mohan, M.; Nair, B.N.; Mohamed, A.A.P.; Warrier, K.G.; Hareesh, U.S. Photoregenerable, bifunctional granules of carbon-doped g-C3N4 as adsorptive photocatalyst for the efficient removal of tetracycline antibiotic. ACS Sustain. Chem. Eng. 2017, 5, 1610–1618. [Google Scholar] [CrossRef]
- Peng, X.; Wu, J.; Zhao, Z.; Wang, X.; Dai, H.; Xu, L.; Xu, G.; Jian, Y.; Hu, F. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe–Nx sites. Chem. Eng. J. 2022, 427, 130803. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, F.; Wen, K.; Lu, J. Enhanced photocatalytic activity for tetracyclines degradation with Ag modified g-C3N4 composite under visible light. J. Photochem. Photobiol. A Chem. 2020, 389, 112217. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Guo, R.; Li, X.; Peng, Y.; Zhao, X.; Pu, X. Hollow mesoporous g-C3N4/Ag2CrO4 photocatalysis with direct Z-scheme: Excellent degradation performance for antibiotics and dyes. Sep. Purif. Technol. 2021, 270, 118797. [Google Scholar] [CrossRef]
- Shi, Y.; Li, J.; Sun, Y.; Wan, D.; Wan, H.; Wang, Y. FeOOH coupling and nitrogen vacancies functionalized g-C3N4 heterojunction for efficient degradation of antibiotics: Performance evaluation, active species evolution and mechanism insight. J. Alloy. Compd. 2022, 903, 163898. [Google Scholar] [CrossRef]
- Song, H.; Liu, L.; Wang, H.; Feng, B.; Xiao, M.; Tang, Y.; Qu, X.; Gai, H.; Huang, T. Adjustment of the band gap of co-doped KCl/NH4Cl/g-C3N4 for enhanced photocatalytic performance under visible light. Mater. Sci. Semicond. Process. 2021, 128, 105757. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, Y.; Wang, Q.; Wang, Z.; Guan, R.; Shi, W. Potassium gluconate-cooperative pore generation based on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen production and antibiotic degradation. J. Environ. Chem. Eng. 2022, 10, 107986. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, Z.; Zeng, G.; Zhang, C.; Xiao, R.; Zhou, C.; Xiong, W.; Yang, Y.; Lei, L.; Liu, Y.; et al. Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light. Chem. Eng. J. 2019, 378, 122132. [Google Scholar] [CrossRef]
- Wang, W.; Fang, J.; Chen, H. Nano-confined g-C3N4 in mesoporous SiO2 with improved quantum size effect and tunable structure for photocatalytic tetracycline antibiotic degradation. J. Alloy. Compd. 2020, 819, 153064. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Guo, Y.; Shen, M.; Wang, M.; Li, B.; Shi, J. Multifunctional 2D porous g-C3N4 nanosheets hybridized with 3D hierarchical TiO2 microflowers for selective dye adsorption, antibiotic degradation and CO2 reduction. Chem. Eng. J. 2020, 396, 125347. [Google Scholar] [CrossRef]
- Wang, M.; Jin, C.; Kang, J.; Liu, J.; Tang, Y.; Li, Z.; Li, S. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: Characterization, efficiency and mechanism. Chem. Eng. J. 2021, 416, 128118. [Google Scholar] [CrossRef]
- Wu, K.; Chen, D.; Fang, J.; Wu, S.; Yang, F.; Zhu, X.; Fang, Z. One-step synthesis of sulfur and tungstate co-doped porous g-C3N4 microrods with remarkably enhanced visible-light photocatalytic performances. Appl. Surf. Sci. 2018, 462, 991–1001. [Google Scholar] [CrossRef]
- Wu, K.; Chen, D.; Lu, S.; Fang, J.; Zhu, X.; Yang, F.; Pan, T.; Fang, Z. Supramolecular self-assembly synthesis of noble-metal-free (C, Ce) co-doped g-C3N4 with porous structure for highly efficient photocatalytic degradation of organic pollutants. J. Hazard. Mater. 2020, 382, 121027. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zuo, H.; Du, H.; Zhang, S.; Wang, L.; Yan, Q. Construction of layered embedding dual Z-Scheme Bi2O2CO3/g-C3N4/Bi2O3: Tetracycline degradation pathway, toxicity analysis and mechanism insight. Sep. Purif. Technol. 2022, 282, 120096. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, F.; Chen, Z.; Huang, S.; Wei, W.; Xie, M.; Xu, H.; Li, H. One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance. Appl. Surf. Sci. 2019, 469, 739–746. [Google Scholar] [CrossRef]
- Zhang, C.; Ouyang, Z.; Yang, Y.; Long, X.; Qin, L.; Wang, W.; Zhou, Y.; Qin, D.; Qin, F.; Lai, C. Molecular engineering of donor-acceptor structured g-C3N4 for superior photocatalytic oxytetracycline degradation. Chem. Eng. J. 2022, 448, 137370. [Google Scholar] [CrossRef]
- Zhao, C.; Ran, F.; Dai, L.; Li, C.; Zheng, C.; Si, C. Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation. Carbohydr. Polym. 2021, 255, 117343. [Google Scholar] [CrossRef]
- Lu, C.; Wang, J.; Cao, D.; Guo, F.; Hao, X.; Li, D.; Shi, W. Synthesis of magnetically recyclable g-C3N4/NiFe2O4 S-scheme heterojunction photocatalyst with promoted visible-light-response photo-Fenton degradation of tetracycline. Mater. Res. Bull. 2023, 158, 112064. [Google Scholar] [CrossRef]
- Li, F.; Huang, T.; Sun, F.; Chen, L.; Li, P.; Shao, F.; Yang, X.; Liu, W. Ferric oxide nanoclusters with low-spin FeIII anchored g-C3N4 rod for boosting photocatalytic activity and degradation of diclofenac in water under solar light. Appl. Catal. B Environ. 2022, 317, 121725. [Google Scholar] [CrossRef]
- Papamichail, P.; Nannou, C.; Giannakoudakis, D.A.; Bikiaris, N.D.; Papoulia, C.; Pavlidou, E.; Lambropoulou, D.; Samanidou, V.; Deliyanni, E. Maximization of the photocatalytic degradation of diclofenac using polymeric g-C3N4 by tuning the precursor and the synthetic protocol. Catal. Today 2023, 418, 114075. [Google Scholar] [CrossRef]
- Jin, X.; Wu, Y.; Wang, Y.; Lin, Z.; Liang, D.; Zheng, X.; Wei, D.; Liu, H.; Lv, W.; Liu, G. Carbon quantum dots-modified reduced ultrathin g-C3N4 with strong photoredox capacity for broad spectrum-driven PPCPs remediation in natural water matrices. Chem. Eng. J. 2021, 420, 129935. [Google Scholar] [CrossRef]
- Hu, Z.; Cai, X.; Wang, Z.; Li, S.; Wang, Z.; Xie, X. Construction of carbon-doped supramolecule-based g-C3N4/TiO2 composites for removal of diclofenac and carbamazepine: A comparative study of operating parameters, mechanisms, degradation pathways. J. Hazard. Mater. 2019, 380, 120812. [Google Scholar] [CrossRef] [PubMed]
- John, P.; Johari, K.; Gnanasundaram, N.; Appusamy, A.; Thanabalan, M. Enhanced photocatalytic performance of visible light driven TiO2/g-C3N4 for degradation of diclofenac in aqueous solution. Environ. Technol. Innov. 2021, 22, 101412. [Google Scholar] [CrossRef]
- Han, Y.; Gan, L.; Gong, H.; Han, J.; Qiao, W.; Xu, L. Photoactivation of peroxymonosulfate by wood pulp cellulose biochar/g-C3N4 composite for diclofenac degradation: The radical and nonradical pathways. Biochar 2022, 4, 35. [Google Scholar] [CrossRef]
- Jimenez-Salcedo, M.; Monge, M.; Tena, M.T. The photocatalytic degradation of sodium diclofenac in different water matrices using g-C3N4 nanosheets: A study of the intermediate by-products and mechanism. J. Environ. Chem. Eng. 2021, 9, 105827. [Google Scholar] [CrossRef]
- Oliveros, A.N.; Pimentel, J.A.I.; Luna, M.D.G.; Garcia-Segura, S.; Abarca, R.R.M.; Doong, R. Visible-light photocatalytic diclofenac removal by tunable vanadium pentoxide/boron-doped graphitic carbon nitride composite. Chem. Eng. J. 2021, 403, 126213. [Google Scholar] [CrossRef]
- Muelas-Ramos, V.; Sampaio, M.J.; Silva, C.G.; Bedia, J.; Rodriguez, J.J.; Faria, J.L. Degradation of diclofenac in water under LED irradiation using combined g-C3N4/NH2-MIL-125 photocatalysts. J. Hazard. Mater. 2021, 416, 126199. [Google Scholar] [CrossRef]
- Reddy, C.V.; Kakarla, R.R.; Cheolho, B.; Shim, J.; Aminabhavi, T.M. Heterostructured 2D/2D ZnIn2S4/g-C3N4 nanohybrids for photocatalytic degradation of antibiotic sulfamethoxazole and photoelectrochemical properties. Environ. Res. 2023, 225, 115585. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Liao, J.; Chen, L.; Wu, X.; Zhang, X.; Sun, W.; Ge, C. Constructing a 3D interconnected “trap-zap” β-CDPs/Fe-g-C3N4 catalyst for efficient sulfamethoxazole degradation via peroxymonosulfate activation: Performance, mechanism, intermediates and toxicity. Chemosphere 2022, 294, 133780. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Pan, Y.; Xiong, Z.; Yao, G.; Xie, R.; Lai, B. Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): Mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole. Chem. Eng. J. 2020, 384, 123361. [Google Scholar] [CrossRef]
- Zhao, G.; Li, W.; Zhang, H.; Wang, W.; Ren, Y. Single atom Fe-dispersed graphitic carbon nitride (g-C3N4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation. Chem. Eng. J. 2022, 430, 132937. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, W.; Chen, L.; Deng, H.; Wan, J. A novel ternary visible-light-driven photocatalyst AgCl/Ag3PO4/g-C3N4: Synthesis, characterization, photocatalytic activity for antibiotic degradation and mechanism analysis. Catal. Commun. 2017, 100, 191–195. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Z.; Lv, M.; Wang, H.; Chen, D.; Feng, Y. Photodegradation performance and transformation mechanisms of sulfamethoxazole by porous g-C3N4 modified with ammonia bicarbonate. Sep. Purif. Technol. 2020, 235, 116172. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, W.; Chen, L.; Deng, H. Z-scheme mechanism of photogenerated carriers for hybrid photocatalyst Ag3PO4/g-C3N4 in degradation of sulfamethoxazole. J. Colloid Interface Sci. 2017, 487, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Qi, J.; Tian, J.; Gao, S.; Cui, F. Construction of Ag/g-C3N4 photocatalysts with visible-light photocatalytic activity for sulfamethoxazole degradation. Chem. Eng. J. 2018, 341, 547–555. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Yan, Y.; Wang, W.; Ren, Y.; Li, X. Synthesis of highly porous g-C3N4 nanotubes for efficient photocatalytic degradation of sulfamethoxazole. Mater. Today Commun. 2021, 27, 102288. [Google Scholar] [CrossRef]
- Liang, H.; Guo, J.; Yu, M.; Zhou, Y.; Zhan, R.; Liu, C.; Niu, J. Porous loofah-sponge-like ternary heterojunction g-C3N4/Bi2WO6/MoS2 for highly efficient photocatalytic degradation of sulfamethoxazole under visible light irradiation. Chemosphere 2021, 279, 130552. [Google Scholar] [CrossRef]
- Liu, S.; Tang, W. Photodecomposition of ibuprofen over g-C3N4/Bi2WO6/rGO heterostructured composites under visible/solar light. Sci. Total Environ. 2020, 731, 139172. [Google Scholar] [CrossRef]
- Mao, S.; Liu, C.; Xia, M.; Wang, F.; Ju, X. Construction of a Z-scheme 1D/2D FeV3O8/g-C3N4 composite for ibuprofen degradation: Mechanism insight, theoretical calculation and degradation pathway. Catal. Sci. Technol. 2021, 11, 3466–3480. [Google Scholar] [CrossRef]
- Meng, F.; Wang, J.; Tian, W.; Zhang, H.; Liu, S.; Tan, X.; Wang, S. Effects of inter/intralayer adsorption and direct/indirect reaction on photo-removal of pollutants by layered g-C3N4 and BiOBr. J. Clean. Prod. 2021, 322, 129025. [Google Scholar] [CrossRef]
- Akbarzadeh, R.; Fung, C.S.L.; Rather, R.A.; Lo, I.M.C. One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of ibuprofen. Chem. Eng. J. 2018, 341, 248–261. [Google Scholar] [CrossRef]
- Cao, W.; Yuan, Y.; Yang, C.; Wu, S.; Cheng, J. In-situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen. Chem. Eng. J. 2020, 391, 123608. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Yang, J.; Sun, Q.; Yang, Y.; Wu, X. Multiphase TiO2 surface coating g-C3N4 formed a sea urchin like structure with interface effects and improved visible-light photocatalytic performance for the degradation of ibuprofen. Int. J. Hydrog. Energy 2018, 43, 13284–13293. [Google Scholar] [CrossRef]
- Jimenez-Salcedo, M.; Monge, M.; Tena, M.T. Photocatalytic degradation of ibuprofen in water using TiO2/UV and g-C3N4/visible light: Study of intermediate degradation products by liquid chromatography coupled to high-resolution mass spectrometry. Chemosphere 2019, 215, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Salcedo, M.; Monge, M.; Tena, M.T. Combination of Au-Ag plasmonic nanoparticles of varied compositions with carbon nitride for enhanced photocatalytic degradation of Ibuprofen under visible light. Materials 2021, 14, 3912. [Google Scholar] [CrossRef]
- Liang, M.; Zhang, Z.; Long, R.; Wang, Y.; Yu, Y.; Pei, Y. Design of a Z-scheme g-C3N4/CQDs/CdIn2S4 composite for efficient visible-light-driven photocatalytic degradation of ibuprofen. Environ. Pollut. 2020, 259, 113770. [Google Scholar] [CrossRef]
- Liu, R.; Sun, L.; Qiao, Y.; Bie, Y.; Wang, P.; Zhang, X.; Zhang, Q. Efficient photocatalytic degradation of pharmaceutical pollutants using plasma-treated g-C3N4/TiO. Energy Technol. 2020, 8, 2000095. [Google Scholar] [CrossRef]
- Liu, S.; Tang, W.; Chou, P. Microwave-assisted synthesis of triple 2D g-C3N4/Bi2WO6/rGO composites for ibuprofen photodegradation: Kinetics, mechanism and toxicity evaluation of degradation products. Chem. Eng. J. 2020, 387, 124098. [Google Scholar] [CrossRef]
- Wang, J.; Tang, L.; Zeng, G.; Deng, Y.; Liu, Y.; Wang, L.; Zhou, Y.; Guo, Z.; Wang, J.; Zhang, C. Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl. Catal. B Environ. 2017, 209, 285–294. [Google Scholar] [CrossRef]
- Wei, Q.; Xiong, S.; Li, W.; Jin, C.; Chen, Y.; Hou, L.; Wu, Z.; Pan, Z.; He, Q.; Wang, Y.; et al. Double Z-scheme system of α-SnWO4/UiO-66(NH2)/g-C3N4 ternary heterojunction with enhanced photocatalytic performance for ibuprofen degradation and H2 evolution. J. Alloy. Compd. 2021, 885, 160984. [Google Scholar] [CrossRef]
- Deng, Y.; Tang, L.; Feng, C.; Zeng, G.; Wang, J.; Zhou, Y.; Liu, Y.; Peng, B.; Feng, H. Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation. J. Hazard. Mater. 2018, 344, 758–769. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.; Wang, Y.; Zhu, B.; Yang, J. Fabrication of magnetically recoverable Fe3O4/CdS/g-C3N4 photocatalysts for effective degradation of ciprofloxacin under visible light. Ceram. Int. 2020, 46, 20974–20984. [Google Scholar] [CrossRef]
- Savunthari, K.V.; Arunagiri, D.; Shanmugam, S.; Ganesan, S.; Arasu, M.V.; Al-Dhabi, N.A.; Chi, N.T.L.; Ponnusamy, V.K. Green synthesis of lignin nanorods/g-C3N4 nanocomposite materials for efficient photocatalytic degradation of triclosan in environmental water. Chemosphere 2021, 272, 129801. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yue, M.; Han, Y.; Xu, X.; Yue, Q.; Xu, S. Highly-efficient degradation of triclosan attributed to peroxymonosulfate activation by heterogeneous catalyst g-C3N4/MnFe2O. Chem. Eng. J. 2020, 391, 123554. [Google Scholar] [CrossRef]
- Yu, B.; Yan, W.; Meng, Y.; Zhang, Y.; Li, X.; Zhong, Y.; Ding, J.; Zhang, H. Selected dechlorination of triclosan by high-performance g-C3N4/Bi2MoO6 composites: Mechanisms and pathways. Chemosphere 2023, 312, 137247. [Google Scholar] [CrossRef]
- Mafa, P.J.; Malfane, M.E.; Idris, A.O.; Liu, D.; Gui, J.; Mamba, B.B.; Kuvarega, A.T. Multi-elemental doped g-C3N4 with enhanced visible light photocatalytic Activity: Insight into naproxen Degradation, Kinetics, effect of Electrolytes, and mechanism. Sep. Purif. Technol. 2022, 282, 120089. [Google Scholar] [CrossRef]
- Truong, H.B.; Huy, B.T.; Ray, S.K.; Gyawali, G.; Lee, Y.; Cho, J.; Hur, J. Magnetic visible-light activated photocatalyst ZnFe2O4/BiVO4/g-C3N4 for decomposition of antibiotic lomefloxacin: Photocatalytic mechanism, degradation pathway, and toxicity assessment. Chemosphere 2022, 299, 134320. [Google Scholar] [CrossRef]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Magnetic fluorinated mesoporous g-C3N4 for photocatalytic degradation of amoxicillin: Transformation mechanism and toxicity assessment. Appl. Catal. B Environ. 2019, 242, 337–348. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Park, C.M. Rational design of a novel LaFeO3/g-C3N4/BiFeO3 double Z-scheme structure: Photocatalytic performance for antibiotic degradation and mechanistic insight. Chem. Eng. J. 2021, 423, 130076. [Google Scholar] [CrossRef]
- Xie, X.; Chen, C.; Wang, X.; Li, J.; Naraginti, S. Efficient detoxification of triclosan by a S–Ag/TiO2@g-C3N4 hybrid photocatalyst: Process optimization and bio-toxicity assessment. RSC Adv. 2019, 9, 20439–20449. [Google Scholar] [CrossRef]
- Su, Q.; Li, J.; Yuan, H.; Wang, B.; Wang, Y.; Li, Y.; Xing, Y. Visible-light-driven photocatalytic degradation of ofloxacin by g-C3N4/ NH2-MIL-88B(Fe) heterostructure: Mechanisms, DFT calculation, degradation pathway and toxicity evolution. Chem. Eng. J. 2022, 427, 131594. [Google Scholar] [CrossRef]
- Huang, D.; Sun, X.; Liu, Y.; Ji, H.; Liu, W.; Wang, C.; Ma, W.; Cai, Z. A carbon-rich g-C3N4 with promoted charge separation for highly efficient photocatalytic degradation of amoxicillin. Chin. Chem. Lett. 2021, 32, 2787–2791. [Google Scholar] [CrossRef]
- Nivetha, M.S.; Kumar, J.V.; Ajarem, J.S.; Allam, A.A.; Manikandan, V.; Arulmozhi, R.; Abirami, N. Construction of SnO2/g-C3N4 an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent. Environ. Res. 2022, 209, 112809. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Xiao, L.; Li, Q.; Hao, G.; Hu, Y.; Jiang, W. 0D/1D Co3O4 quantum dots/surface hydroxylated g-C3N4 nanofibers heterojunction with enhanced photocatalytic removal of pharmaceuticals and personal care products. Sep. Purif. Technol. 2022, 297, 121481. [Google Scholar] [CrossRef]
- Thang, N.Q.; Sabbah, A.; Chen, L.; Chen, K.; Thi, C.M.; Viet, P.V. High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects: A case study of Ag/g-C3N4/ZnO nanocomposite materials. Chemosphere 2021, 282, 130971. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, A.; Liu, Y.; Fu, Y.; Du, Y. Local surface plasmon resonance (LSPR)-coupled charge separation over g-C3N4-supported WO3/BiOCl heterojunction for photocatalytic degradation of antibiotics. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128818. [Google Scholar] [CrossRef]
- Shanavas, S.; Roopan, S.M.; Priyadharshan, A.; Devipriya, D.; Jayapandi, S.; Acevedo, R.; Anbarasan, P.M. Computationally guided synthesis of (2D/3D/2D) rGO/Fe2O3/g-C3N4 nanostructure with improved charge separation and transportation efficiency for degradation of pharmaceutical molecules. Appl. Catal. B Environ. 2019, 255, 117758. [Google Scholar] [CrossRef]
- Qarajehdaghi, M.; Mehrizad, A.; Gharbani, P.; Shahverdizadeh, G.H. Quaternary composite of CdS/g-C3N4/rGO/CMC as a susceptible visible-light photocatalyst for effective abatement of ciprofloxacin: Optimization and modeling of the process by RSM and ANN. Process Saf. Environ. Prot. 2023, 169, 352–362. [Google Scholar] [CrossRef]
- AttariKhasraghi, N.; Zare, K.; Mehrizad, A.; Modirshahla, N.; Behnajady, M.A. Zeolite 4A supported CdS/g-C3N4 type-II heterojunction: A novel visible-light-active ternary nanocomposite for potential photocatalytic degradation of cefoperazone. J. Mol. Liq. 2021, 342, 117479. [Google Scholar] [CrossRef]
- Kumar, A.; Khan, M.; Zeng, X.; Lo, I.M.C. Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol-gel route: A magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage effluent under visible light. Chem. Eng. J. 2018, 353, 645–656. [Google Scholar] [CrossRef]
- Rapti, I.; Boti, V.; Albanis, T.; Konstantinou, I. Photocatalytic degradation of psychiatric pharmaceuticals in hospital WWTP secondary effluents using g-C3N4 and g-C3N4/MoS2 catalysts in laboratory-scale pilot. Catalysts 2023, 13, 252. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Papadaki, M.; Rapti, I.; Konstantinou, I. Photocatalytic degradation of pharmaceutical amisulpride using g-C3N4 catalyst and UV-A irradiation. Catalysts 2023, 13, 226. [Google Scholar] [CrossRef]
- Kumar, V.V.; Avisar, D.; Prasanna, L.V.; Betzalel, Y.; Mamane, H. Rapid visible-light degradation of EE2 and its estrogenicity in hospital wastewater by crystalline promoted g-C3N. J. Hazard. Mater. 2020, 398, 122880. [Google Scholar]
- Yan, W.; Yan, L.; Jing, C. Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms. Appl. Catal. B Environ. 2019, 244, 475–485. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, X.; Du, Y.; Fu, Y.; Guo, X.; Zou, C.; Wu, Y. The role of iron-doped g-C3N4 heterogeneous catalysts in Fenton-like process investigated by experiment and theoretical simulation. Chem. Eng. J. 2022, 446, 137252. [Google Scholar] [CrossRef]
- Hayat, A.; Al-Sehemi, A.G.; El-Nasser, K.S.; Taha, T.A.; Al-Ghamdi, A.A.; Syed, J.A.S.; Amin, M.A.; Ali, T.; Bashir, T.; Palamanit, A.; et al. Graphitic carbon nitride (g-C3N4)-based semiconductor as a beneficial candidate in photocatalysis diversity. Int. J. Hydrog. Energy 2022, 47, 5142–5191. [Google Scholar] [CrossRef]
- Patnaik, S.; Sahoo, D.P.; Parida, K. Recent advances in anion doped g-C3N4 photocatalysts: A review. Carbon 2021, 172, 682–711. [Google Scholar] [CrossRef]
- Yuda, A.; Kumar, A. A review of g-C3N4 based catalysts for direct methanol fuel cells. Int. J. Hydrog. Energy 2022, 47, 3371–3395. [Google Scholar] [CrossRef]
Description of the g-C3N4-Based Photocatalyst | Optimized Degradation Efficiency with Reaction Condition | References |
---|---|---|
B/Na-co-doped porous g-C3N4 nanosheet photocatalyst | TC degradation of 78.39% within 30 min under visible light irradiation (10 W LED lamp) | [13] |
Cl-doped porous g-C3N4 nanosheets | At a catalyst dose of 0.5 g/L, TC concentration = 10 mg/L, under visible light irradiation (300 W Xenon lamp, with cut-off filter at 420 nm), 92% degradation within 120 min reaction time | [14] |
ZnO/g-C3N4/zeolite P supported catalyst | 95.5% TC degradation in plasma reactor (16.5 kV as operating voltage, 300 Hz regulated frequency, airflow rate = 130 mL/min) | [19] |
Ag-AgVO3/g-C3N4 composite | 83.6% degradation at 120 min (rate constant = 0.0298 min−1) under visible light irradiation (300 W Xenon lamp, with 410 nm filter): TC concentration = 30 mg/L, catalyst dose = 0.2 g/L | [22] |
g-C3N4/TiO2/CFs | 99.99% TC-HCl degradation (initial concentration = 10 mg/L) with a catalyst dose of 0.5 g/L, under the irradiation of visible light (350 W Xe lamp) for 90 min | [23] |
MnIn2S4/g-C3N4 photocatalyst | With TCH concentration of 50 mg/L, catalyst dose = 1 g/L (g-C3N4 kept as 20% mass ratio in the composite), under visible light irradiation (300 W Xenon lamp, with 400 nm filter) almost complete degradation | [30] |
g-C3N4/TiO2 | In the presence of catalyst (g-C3N4:TiO2 = 1:25) at a dose = 1 g/L, under UV light irradiation (300 W Mercury lamp), maximum degradation efficiency obtained 97.6% for TCH in 90 min | [32] |
Porous Z-scheme MnO2/Mn-modified alkalinized g-C3N4 heterojunction | With 0.5 g/L catalyst dose, 96.7% TC removal | [33] |
Fe-g-C3N4/Bi2WO6 heterojunctions | 98.42% degradation in the presence of 1 mM of H2O2, with TC = 10 mg/L, catalyst dose = 0.4 g/L, solution pH = 6.5 | [37] |
rGO supported self-assembly of 2D nanosheet of (g-C3N4) | With 0.25 g/L catalyst dose, TC concentration = 15 mg/L, almost complete degradation (under visible light irradiation and exposure to ultrasound) | [44] |
Nitrogen self-doped g-C3N4 nanosheets | With 0.5 g/L catalyst dose, 10 mg/L TC concentration, under visible light irradiation, 81.67% degradation in 60 min | [46] |
NiFe2O4-deposited S-doped g-C3N4 nanorod | 97% degradation in 60 min under visible light irradiation | [47] |
g-C3N4/BiOBr/Fe3O4 nanocomposite | With catalyst dose = 0.5 g/L, TC = 15 mg/L, under visible light irradiation (300 W Halogen lamp), complete degradation in 60 min | [48] |
Ba-doped g-C3N4 photocatalyst | 91.94% TC degradation within 120 min under visible light irradiation at 2% Ba loading at a solution pH 10 | [49] |
g-C3N4/MoS2 p-n heterojunction photocatalyst | Using photocatalyst dose of 1 g/L, TC concentration of 20 mg/L, irradiation under Xe lamp (300 W) complete degradation achieved within 40 min (rate constant = 547 × 10−4 min−1) | [50] |
PdO/g-C3N4/kaolinite catalyst | At 4% loading of PdO, catalyst dose (0.5 g/L) 94.5% degradation of TCH (40 mg/L) by PMS activation under visible light (300 W Xenon lamp, with 420 nm cut-off filter) irradiation within 20 min | [51] |
Nitrogen-doped carbon quantum dots modified g-C3N4 composite | 90% TCH degradation under the action of 0.5 g/L catalyst dose, TCH concentration = 20 mg/L, peroxydisulphate (PDS) dose = 0.5 g/L, under visible light irradiation (300 W Xenon lamp, with 420 nm cut-off filter) within 60 min reaction time | [52] |
CoO/g-C3N4 p-n heterojunction | Initial concentration of TC = 10 mg/L, catalyst dose = 0.5 g/L (30 wt% CoO), 90% degradation within 60 min under visible light irradiation (300 W Xenon lamp, with cut-off filter at 420 nm) | [53] |
CuInS2/g-C3N4 heterojunction photocatalyst | 83.7% degradation within 60 min, initial concentration of TC = 20 mg/L, catalyst dose = 0.5 g/L (CuInS2 mass = 50 wt%) under visible light irradiation (300 W Xenon lamp, with cut-off filter at 420 nm) | [54] |
CoP nanoparticles anchored on g-C3N4 nanosheets | 96.7% degradation within 120 min reaction time under visible light irradiation (500 W Xenon lamp with 520 nm cut-off filter) | [55] |
g-C3N4/RGO/In2S3 | With initial TCH concentration = 20 mg/L, catalyst dose = 0.5 g/L, 95.6% degradation in 60 min under visible light irradiation | [56] |
Metal-free g-C3N4-based heterojunction photocatalyst | Catalyst dose of 2 g/L, TC concentration = 20 mg/L, under visible light irradiation (300 W Xe lamp with 420 nm filter) 91% removal in 100 min | [57] |
BixOyIz/g-C3N4 | TCH concentration = 10 mg/L, under visible light irradiation (500 W Xe lamp with 420 nm filter), 40% degradation in 4 h | [58] |
Bi2W2O9/g-C3N4 heterojunction | 2wt% Bi2W2O9 in the matrix, with 1 g/L catalyst dose, with initial concentration of TCH = 10 mg/L, under visible light irradiation (35 W Xe lamp), at pH 10.54, 95% degradation occurred | [59] |
Carbon-doped g-C3N4 | More than 95% degradation in 90 min reaction time under visible light irradiation | [60] |
Single-atom Fe-g-C3N4 catalyst | With TC concentration = 10 mg/L, catalyst dose = 0.1 g/L, PMS = 0.25 mM, 93.29% degradation achieved | [61] |
Ag-modified g-C3N4 composite | With 8 wt% Ag in the matrix, 1 g/L catalyst dose, 20 mg/L TC concentration, under visible light irradiation (300 W Xe lamp, with 420 nm filter), at pH 11, 90% degradation achieved | [62] |
g-C3N4/Ag2CrO4 photocatalyst | With catalyst dose 1 g/L, TC concentration = 10 mg/L, under visible light irradiation (1000 W halogen lamp), almost complete degradation in 180 min | [63] |
FeOOH coupling and nitrogen vacancies functionalized g-C3N4 heterojunction | With 4 g/L catalyst dose, initial concentration of OTC = 10 mg/L, under visible light irradiation (300 W Xe lamp, with 420 nm filter), 92.83% degradation in 90 min | [64] |
Co-doped KCl/NH4Cl/g-C3N4 catalyst | With catalyst dose = 1 g/L, TC concentration = 10 mg/L, under visible light irradiation (500 W Xe lamp with 420 nm filter), almost complete degradation in 120 min | [65] |
Potassium-gluconate-cooperative pore generation based on g-C3N4 nanosheets | With catalyst dose = 1 g/L, TC concentration = 20 mg/L, under visible light irradiation (300 W Xe lamp, with 420 nm filter), 82.2% degradation in 30 min | [66] |
Sulfur-doped carbon quantum dots loaded hollow tubular g-C3N4 | With catalyst dose = 1 g/L, TC concentration = 20 mg/L, under visible light irradiation (300 W Xe lamp), about 90% degradation in 60 min | [67] |
Nano-confined g-C3N4 in mesoporous SiO2 | With 0.33 g/L catalyst dose, TC concentration = 20 mg/L, under visible light irradiation (300 W Xe lamp), complete degradation in 120 min | [68] |
Multifunctional 2D porous g-C3N4 nanosheets hybridized with 3D hierarchical TiO2 microflowers | With 0.5 g/L catalyst dose, TC concentration = 20 mg/L, under visible light irradiation, 90% degradation achieved in 60 min | [69] |
CuO/g-C3N4 2D/2D heterojunction photocatalysts | With catalyst dose of 0.1 g/L, 30 mg/L OTC, under visible light irradiation (300 W Xe lamp, with 420 nm filter), 100% degradation in 10 min | [70] |
Sulfur- and tungstate-co-doped porous g-C3N4 microrods | With 0.5 g/L catalyst dose, TC concentration of 10 mg/L, under visible light irradiation (300 W Xe lamp, with 420 nm filter), 85.3% degradation in 120 min | [71] |
Supramolecular self-assembly synthesis of noble-metal-free (C, Ce) co-doped g-C3N4 with porous structure | With 0.5 g/L catalyst dose, 10 mg/L TC concentration, 90% degradation in 60 min | [72] |
Bi2O2CO3/g-C3N4/ Bi2O3 | With catalyst dose = 0.2 g/L, TC = 10 mg/L, under visible light irradiation (300 W Xe lamp), 95% degradation in 60 min | [73] |
Fe-doped surface-alkalinized g-C3N4 | With catalyst dose = 0.5 g/L, TC concentration = 20 mg/L, under visible light irradiation (300 W Xe lamp), 70% degradation in 80 min | [74] |
Donor–acceptor structured g-C3N4 | With 0.5 g/L catalyst dose, OTC concentration = 20 mg/L, degradation of 93% at 60 min | [75] |
C-doped g-C3N4/WO3 | With catalyst dose = 1 g/L, TC concentration = 10 mg/L, under visible light irradiation (500 W Xe lamp with 420 nm filter), ~78% degradation in 60 min | [76] |
g-C3N4/NiFe2O4 S scheme | 79.3% degradation at pH 3 | [77] |
Description of the Catalyst | Reaction Conditions for Optimum Degradation Efficiency | Optimized Degradation Efficiency | References |
---|---|---|---|
Z-scheme S, B-co-doped g-C3N4 nanotube@MnO2 heterojunction | In the presence of 0.06 mM PMS, photocatalyst dose of 0.5 g/L, DC concentration = 20 mg/L, under the irradiation of 8 × 8 W visible light lamps at a wavelength of 460 nm | 99% degradation | [3] |
2D/2D heterostructure of Ti3C2/g-C3N4 | Initial concentration of DC = 10 mg/L, catalyst dose = 0.25 g/L, PMS concentration = 0.25 g/L | 100% degradation efficiency within 30 min | [4] |
Ferric oxide nanoclusters anchored g-C3N4 nanorods | Initial concentration of DC = 1 mg/L, dose of catalyst = 0.1 g/L, irradiation under 300 W Xenon arc lamp | Kinetic rate constant of 0.206 min−1 | [78] |
Polymeric g-C3N4 photocatalyst | At a catalyst dose of 1 g/L, initial concentration of DC = 20 mg/L, solution pH = 5 | Complete removal within 120 min | [79] |
TiO2/g-C3N4 | Initial concentration of DC = 5 mg/L, 0.3 g of catalyst loading, pH = 5, irradiation under 1000 W halogen lamp | Maximum degradation efficiency of 93.49% | [82] |
Cellulose biochar/g-C3N4 composite (WPBC50/g-C3N4) | At a DC concentration of 0.05 mM, catalyst dose of 1.5 g/L, 3 mM of PMS under visible light irradiation | Complete removal within 25 min | [83] |
g-C3N4 nanosheets | Initial concentration of DC = 3 mg/L, catalyst dose = 0.65 g/L under solar and LED irradiation | - | [84] |
Tunable V2O5/boron-doped g-C3N4 composite | With 5 wt% B doping, 2 g/L catalyst dose | 100% degradation within 105 min under visible light irradiation | [85] |
g-C3N4/NH2-MIL-125 photocatalyst | Under the action of the catalyst composed of MOF and g-C3N4 in the ratio 50:50. DC concentration kept at 10 mg/L, under UV LED irradiation at 384 nm | Complete eradication within 2 h | [86] |
Description of the Catalyst | Reaction Condition | Optimized Degradation Efficiency | References |
---|---|---|---|
ZnO@g-C3N4 | Photocatalyst dose of 0.65 g/L, pH 5.6, airflow rate of 1.89 L/min | 90.4% oxidative removal within 60 min of reaction time | [20] |
Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction | Degradation reaction with catalyst dose of 0.2 g/L, with initial concentration of SMX = 25.328 mg/L, under visible light irradiation (800 W Xenon lamp, with 400 nm cut-off filter) | 99.5% degradation under Xenon lamp for irradiation within 1 h and 92.1% degradation under natural sunlight within 2 h | [24] |
Fe-Co-O-co-doped g-C3N4 | - | Complete degradation of 0.04 mM of sulfamethoxazole within 30 min at a reaction rate of 0.085 min−1 | [25] |
Se-doped g-C3N4 | - | 93% degradation of SMX in 180 min with a rate constant of 0.0149 min−1 | [27] |
g-C3N4/MgO composite | With the dose of the catalyst = 0.2 g/L, initial concentration of SMX = 20 mg/L | 92 ± 3% degraded within 3 h | [38] |
Heterostructured 2D/2D ZnIn2S4/g-C3N4 nanohybrids | In the presence of 0.2 g/L catalyst, initial concentration of SMX = 15 mg/L, under visible light irradiation (solar simulation AM 1.5 G, intensity 100 mW/cm−2) | 89.4% degradation in 2 h | [87] |
β-CDPs/Fe-g-C3N4 catalyst | In the presence of 0.2 g/L catalyst, 2 mM of PMS | Rate constant value of 0.132 min−1 | [88] |
FeCo2S4-modified g-C3N4 photocatalyst | At a pH of 6.5, a reaction temperature of 40 °C | 91.9% degradation with a rate constant of 0.151 min−1 | [89] |
Fe-dispersed g-C3N4 photocatalyst | Initial concentration of sulfamethoxazole 10 mg/L, dose of catalyst 50 mg/L | 98.7% degradation within 6 min | [90] |
AgCl/Ag3PO4/g-C3N4 | With 43% AgCl in the matrix | 95% removal within 2 h of reaction time | [91] |
Porous g-C3N4 modified with ammonium bicarbonate | Under the action of 0.05 g/L catalyst dose, initial concentration of SMX = 0.5 mg/L, at pH 9, under visible light irradiation (150 W Xenon lamp) | 93.37% degradation within 30 min | [92] |
Ag3PO4/g-C3N4 | With a catalyst dose of 1 mg/L, under the irradiation of Xenon lamp | Complete degradation within 90 min of visible light irradiation | [93] |
Ag/g-C3N4 | Under the action of 0.05 g/L catalyst dose, 2.538 mg/L of initial concentration of SMX, under the irradiation of Xe lamp (300 W with 400 nm cut-off filter) | 99.5% degradation using 10 wt% Ag in the matrix | [94] |
g-C3N4 nanotubes | Under the action of 0.4 g/L catalyst dose, 100 mg/L of SMX, under irradiation of Xe lamp (300 W) | Complete degradation within 120 min of reaction time | [95] |
Porous loofah-sponge-like ternary heterojunction g-C3N4/Bi2WO6/MoS2 | - | Under visible light irradiation, over 99% degradation took place in 60 min with a rate constant value of 0.089 min−1 | [96] |
Description of the Catalyst | Reaction Conditions | Optimized Degradation Efficiency | References |
---|---|---|---|
Ag/g-C3N4/kaolinite composite | 7 wt% Ag, with catalyst dose = 1 g/L, Ibu = 5 mg/L, under visible light irradiation (500 W Xe lamp, with 400 nm filter) | Almost complete degradation in 300 min with, rate constant = 0.0113 min−1 | [18] |
g-C3N4/Bi2WO6/rGO heterostructured composites | At a catalyst dose of 0.2 g/L, Ibu concentration = 5 mg/L, pH = 4.3, under visible light irradiation (300 W Xenon lamp with 420 nm filter) | 93% degradation with a rate constant of 0.011 min−1 under visible light irradiation and 98.6% degradation under sunlight | [97] |
1D/2D FeV3O8/g-C3N4 | 10 wt% FeV3O8 in the matrix, with catalyst dose = 0.33 g/L, Ibu = 10 mg/L, under visible light irradiation (300 W Xenon lamp with 420 nm filter) | 95% degradation in 85 min | [98] |
Layered g-C3N4 and BiOBr | With catalyst dose = 0.2 g/L, Ibu = 20 mg/L | Complete degradation in 10 min | [99] |
g-C3N4/Ag/AgCl/BiVO4 micro flower composite | Under the catalyst dose of 0.25 g/L, under visible light irradiation (compact fluorescent lamps) | 94.7% degradation within 1 h of reaction time | [100] |
g-C3N4/MIL-68(In)-NH2 heterojunction composite | Under the action of 0.15 g/L of catalyst, 20 mg/L of Ibu concentration, with visible light irradiation (300 W Xenon lamp, with cut-off filter at 420 nm) | Photocatalytic rate = 0.01739 min−1, 93% degradation, in 120 min | [101] |
TiO2/g-C3N4 composite | With catalyst dose of 1 g/L, 5 mg/L of Ibu concentration, under the visible light irradiation (250 W Xe lamp) | Almost complete degradation in 60 min | [102] |
TiO2/UV and g-C3N4 visible light | With initial concentration of Ibu as 5 mg/L, catalyst dose of 2.69 g/L, at pH 2.51 under the action of 4–10 W LED lamps | Complete degradation in 120 min | [103] |
Au-Ag/g-C3N4 nanohybrids | With initial concentration of Ibu as 5 mg/L, catalyst dose of 2.69 g/L, under the action of natural sunlight and 4–10 W LED lamps | Complete degradation in 120 min under natural sunlight | [104] |
g-C3N4/CQDs/CDIn2S4 | Initial concentration of Ibu = 80 mg/L, dose of catalyst = 0.1 g/L, under visible light irradiation (300 W Xenon lamp with 420 nm filter) | About 90% degradation in 60 min | [105] |
Plasma-treated g-C3N4/TiO2 | Using g-C3N4/TiO2 catalyst with 15 min treatment of plasma oxygen | 95% degradation within 90 min | [106] |
Triple 2D g-C3N4/Bi2WO6/rGO composites | 3 wt% rGO in the composite, catalyst dose = 2 g/L, Ibu = 5 mg/L, pH = 4.3 | 86% degradation under visible light and 98% removal under natural sunlight | [107] |
g-C3N4/Bi2WO6 2D/2D heterojunction | With 0.2 g/L catalyst, initial concentration of Ibu = 103.145 mg/L | 96.1% degradation efficiency within 1 h, | [108] |
α-SnWO4/UiO-66(NH2)/g-C3N4 ternary heterojunction | With 0.5 g/L catalyst dose, Ibu = 10 mg/L under visible light irradiation (Xe lamp) | More than 90% degraded in 120 min reaction time | [109] |
Description of the Catalyst | Target Compound | Optimized Degradation Efficiency | References |
---|---|---|---|
g-C3N4/Fe3O4@MIL-100(Fe) | CIP | 94.7% degradation of CIP having an initial concentration of 200 mg/L within 120 min of visible light irradiation | [16] |
Mesoporous g-C3N4 | CIP | 92.3% degradation with an initial concentration of 4 mg/L, catalyst dose = 1 g/L | [17] |
Ag-modified phosphorus-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst | CIP | 92.6% degradation efficiency for CIP with an initial concentration of 10 mg/L | [110] |
Fe3O4/CdS/g-C3N4 | CIP | 81% degradation with an initial concentration of CIP = 20 mg/L, catalyst dose = 0.5 g/L in 180 min reaction time | [111] |
Lignin nanorods/g-C3N4 nanocomposite | TCS | 99.9% removal with an initial concentration of TCS = 10 mg/L, catalyst dose = 0.5 g/L in 90 min time | [112] |
g-C3N4/MnFe2O4 | TCS | Almost complete degradation of TCS having initial concentration of 9 mg/L, catalyst dose = 0.2 g/L, in 60 min of reaction time | [113] |
g-C3N4/Bi2MoO6 | TCS | 95.5% oxidative removal of TCS (initial concentration = 2 mg/L), catalyst dose = 1 g/L | [114] |
Multi-elemental doped g-C3N4 | NPX | 92.9% removal with initial concentration of naproxen = 10 mg/L, catalyst dose = 0.3 g/L | [115] |
ZnFe2O4/BiVO4/g-C3N4 | Lomefloxacin | 96.1% removal after 105 min of visible light irradiation, with initial concentration of lomefloxacin = 25 mg/L, with dose of catalyst = 0.5 g/L | [116] |
Magnetic fluorinated mesoporous g-C3N4 | AMX | Initial concentration of AMX 91.35 mg/L, dose of catalyst = 1 g/L, 90% removal | [117] |
La/FeO3/g-C3N4/BiFeO3 | CIP | Almost complete degradation of CIP at initial concentration of 10 mg/L, catalyst dose = 0.4 g/L in 60 min | [118] |
S-Ag/TiO2@g-C3N4 | TCS | 92.3% degradation with TCS concentration = 10 mg/L, pH = 7.8, catalyst dose = 0.2 g/L in 60 min | [119] |
g-C3N4/NH2-MIL-88B(Fe) | Ofloxacin | 96.5% removal in 150 min, with ofloxacin concentration = 10 mg/L, catalyst dose = 0.25 g/L | [120] |
Carbon-rich g-C3N4 nanosheet | AMX | Complete degradation in 150 min under irradiation of simulated solar light and in 300 min under irradiation of visible light | [121] |
SnO2/g-C3N4 | AMX | 92.1% AMX removal in 80 min, with initial concentration of AMX = 10 mg/L, dose of catalyst = 0.25 g/L under 300 W Xe lamp irradiation | [122] |
Catalyst | Target Drugs | Optimized Reaction Condition | Reference |
---|---|---|---|
g-C3N4/TiO2 nanomaterials | PR, Ibu, DC | With an initial concentration of paracetamol = 25 mg/L, Ibu = 15 mg/L, DC = 25 mg/L, catalyst dose = 0.9 g/L, complete degradation of paracetamol and Ibu was possible; however, DC did not get fully degraded | [15] |
Single barium-atom-embedded g-C3N4 catalyst | DC and CBM | Almost complete degradation of CBZ (1 mg/L) and DC (8 mg/L) under visible light irradiation in 60 min | [26] |
α-Fe2O3/g-C3N4 | CFX and AMX | Complete degradation of both drugs at initial concentration of 20 mg/L within 180 min | [31] |
Carbon quantum dots modified reduced ultrathin g-C3N4 | DC, TCS, NPX | 100% degradation within 6 min | [80] |
Carbon-doped supramolecule-based g-C3N4/TiO2 composites | DC and CBM | 98.92% and 99.77% degradation of DC and CBZ in 30 min and 6 h illumination under LED | [81] |
0D/1D Co3O4 quantum dots/surface-hydroxylated g-C3N4 nanofibers | TC, DC, MT | 97.3% degradation for TC, 88.9% for DC, 63.2% for MT in 60 min of reaction time | [123] |
Ag/g-C3N4/ZnO nanocomposite | PR, AMX, CFX | With an initial concentration of each drug = 40 mg/L, catalyst dose = 0.08 g/L, 78% degradation for PR, 70% for cefalexin, and 35% for AMX | [124] |
g-C3N4-supported WO3/BiOCl heterojunction | LFX and TCH | 92.5% degradation of TCH at initial concentration of 20 mg/L | [125] |
(2D/3D/2D) rGO/Fe2O3/g-C3N4 nanostructure | TC and CIP | Complete degradation of both compounds at an initial concentration of 50 mg/L within 60 min | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, S.; Pal, A. A Brief Review on the Latest Developments on Pharmaceutical Compound Degradation Using g-C3N4-Based Composite Catalysts. Catalysts 2023, 13, 925. https://doi.org/10.3390/catal13060925
Biswas S, Pal A. A Brief Review on the Latest Developments on Pharmaceutical Compound Degradation Using g-C3N4-Based Composite Catalysts. Catalysts. 2023; 13(6):925. https://doi.org/10.3390/catal13060925
Chicago/Turabian StyleBiswas, Subhadeep, and Anjali Pal. 2023. "A Brief Review on the Latest Developments on Pharmaceutical Compound Degradation Using g-C3N4-Based Composite Catalysts" Catalysts 13, no. 6: 925. https://doi.org/10.3390/catal13060925
APA StyleBiswas, S., & Pal, A. (2023). A Brief Review on the Latest Developments on Pharmaceutical Compound Degradation Using g-C3N4-Based Composite Catalysts. Catalysts, 13(6), 925. https://doi.org/10.3390/catal13060925