Nano-Hollow Zeolite-Encapsulated Highly Dispersed Ultra-Fine Fe Nanoparticles as Fischer–Tropsch Catalyst for Syngas-to-Olefins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Textural Characteristics and N2 Physisorption
2.2. HAADF-STEM and XRD Experiments
2.3. H2-TPR Experiments
2.4. Catalytic Performance
3. Experimental Section
3.1. Materials
3.2. Catalysts Preparation
3.2.1. Synthesis of Parent S-1 Zeolite
3.2.2. Synthesis of Fe/S Catalyst
3.2.3. Preparation of Fe@ n-hS and Fe@ n-hS-HT Catalysts
3.3. Catalyst Characterization
3.4. Catalytic Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Gao, S.; Yu, J. Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis. Chem. Rev. 2022, 123, 6039–6106. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Lyu, F.; Yin, Y. Encapsulated Metal Nanoparticles for Catalysis. Chem. Rev. 2021, 121, 834–881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Zhang, B.; Zhao, H.; Kolb, U.; Zhu, Y.; Liu, L.; Han, Y.; Wang, G.; Xiao, F.S.; et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 2018, 1, 540–546. [Google Scholar] [CrossRef]
- Babucci, M.; Guntida, A.; Gates, B.C. Atomically Dispersed Metals on Well-Defined Supports including Zeolites and Metal–Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis. Chem. Rev. 2020, 120, 11956–11985. [Google Scholar] [CrossRef]
- Niu, X.; Li, X.; Yuan, G.; Feng, F.; Wang, M.; Zhang, X.; Wang, Q. Hollow Hierarchical Silicalite-1 Zeolite Encapsulated PtNi Bimetals for Selective Hydroconversion of Methyl Stearate into Aviation Fuel Range Alkanes. Ind. Eng. Chem. Res. 2020, 59, 8601–8611. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Gao, Z.; Zhang, X.; Zhang, L.; Wang, M.; Chen, B.; Diao, Y.; Li, Y.; Shi, C.; et al. Embedding high loading and uniform Ni nanoparticles into silicalite-1 zeolite for dry reforming of methane. Appl. Catal. B Environ. 2022, 307, 121202. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, W.; Xiong, X.; Wang, Y.; Cheng, K.; Kang, J.; Zhang, Q.; Wang, Y. Selective Hydrogenation of CO2 to Ethanol over Sodium-Modified Rhodium Nanoparticles Embedded in Zeolite Silicalite-1. J. Phys. Chem. C 2021, 125, 24429–24439. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Zhou, H.; Wang, L.; Wang, L.; Zhu, Q.; Xiao, J.; Meng, X.; Xiao, F.S. Coking-Resistant Iron Catalyst in Ethane Dehydrogenation Achieved through Siliceous Zeolite Modulation. J. Am. Chem. Soc. 2020, 142, 16429–16436. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, Y.; Sun, W.; Zhao, G.; Liu, Y.; Lu, Y. Insight into deactivation of the carbon-/sintering-resistant Ni@Silicalite-1 for catalytic partial oxidation of methane to syngas. Fuel 2022, 320, 123892. [Google Scholar] [CrossRef]
- Gao, J.; Wu, Y.; Jia, C.; Zhong, Z.; Gao, F.; Yang, Y.; Liu, B. Controllable synthesis of alpha-MoC1-x and beta-Mo2C nanowires for highly selective CO2 reduction to CO. Catal. Commun. 2016, 84, 147–150. [Google Scholar] [CrossRef]
- Song, W.; Zhang, B.; Chen, L.; Shi, J.; Cheng, X.; Wu, L.; Yang, W.; Zhou, J.; Zhang, Y.; Tang, Y.; et al. An Fe–Mn–Cu/SiO2 @silicalite-1 catalyst for CO hydrogenation: The role of the zeolite shell on light-olefin production. Catal. Sci. Technol. 2016, 6, 3559–3567. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, M.; Huang, C.; Zhong, L.; Fang, K. Carbon-encapsulated highly dispersed FeMn nanoparticles for Fischer–Tropsch synthesis to light olefins. New J. Chem. 2018, 42, 2413–2421. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, A.; Luo, L.; Zhang, X.; Liu, M.; Wang, J.; Guo, X.; Song, C. Hollow zeolite-encapsulated Fe-Cu bimetallic catalysts for phenol degradation. Catal. Today 2017, 297, 335–343. [Google Scholar] [CrossRef]
- Li, S.; Tuel, A.; Laprune, D.; Meunier, F.; Farrusseng, D. Transition-Metal Nanoparticles in Hollow Zeolite Single Crystals as Bifunctional and Size-Selective Hydrogenation Catalysts. Chem. Mater. 2015, 27, 276–282. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, M.; Huang, C.; Han, Y.; Fang, K. Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas. ACS Appl. Mater. Interfaces 2020, 12, 57950–57962. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, M.; Tuel, A. Hollow TS-1 crystals formed via a dissolution–recrystallization process. Microp. Mesoporous Mater. 2007, 102, 80–85. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, A.; Liu, M.; Guo, X.; Song, C. Hollow ZSM-5 with Silicon-Rich Surface, Double Shells, and Functionalized Interior with Metallic Nanoparticles and Carbon Nanotubes. Adv. Funct. Mater. 2015, 25, 7479–7487. [Google Scholar] [CrossRef]
- Wei, F.F.; Liu, J.; Zhang, Q.Y.; Zhang, Y.T.; Zhang, X.; Cao, C.Y.; Song, W.G. Sharp size-selective catalysis in a liquid solution over Pd nanoparticles encapsulated in hollow silicalite-1 zeolite crystals. RSC Adv. 2016, 6, 89499–89502. [Google Scholar] [CrossRef]
- Kwok, K.M.; Ong, S.W.D.; Chen, L.; Zeng, H.C. Transformation of Stöber Silica Spheres to Hollow Hierarchical Single-Crystal ZSM-5 Zeolites with Encapsulated Metal Nanocatalysts for Selective Catalysis. ACS Appl. Mater. Interfaces 2019, 11, 14774–14785. [Google Scholar] [CrossRef]
- Cui, T.L.; Ke, W.Y.; Zhang, W.B.; Wang, H.H.; Li, X.H.; Chen, J.S. Encapsulating Palladium Nanoparticles Inside Mesoporous MFI Zeolite Nanocrystals for Shape-Selective Catalysis. Angew. Chem. Int. Ed. 2016, 55, 9178–9182. [Google Scholar] [CrossRef]
- Liu, G.; Tian, Y.; Zhang, B.; Wang, L.; Zhang, X. Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation. J. Hazard. Mater. 2019, 367, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Alov, N.V. Determination of the States of Oxidation of Metals in Thin Oxide Films by X-ray Photoelectron Spectroscopy. J. Anal. Chem. 2005, 60, 431–435. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, X.; Yi, H.; Yu, Q.; Zhang, Y.; Wei, J.; Yuan, Y. Synthesis, characterization and application of Fe-zeolite: A review. Appl. Catal. A Gen. 2022, 630, 118467. [Google Scholar] [CrossRef]
Samples | SBET a (m2/g) | Smicro b (m2/g) | Smeso/ext c (m2/g) | Vtotal d (cm3/g) | Vmicro b (cm3/g) |
---|---|---|---|---|---|
Parent S-1 | 407.07 | 367.68 | 39.39 | 0.2441 | 0.1754 |
Fe/S | 386.21 | 347.82 | 38.39 | 0.2392 | 0.1698 |
Fe@n-hS | 382.27 | 338.27 | 44.00 | 0.3075 | 0.1564 |
Fe@n-hS-HT | 334.10 | 290.15 | 43.95 | 0.2930 | 0.1540 |
Samples | a (Å) | b (Å) | c (Å) | Unit Cell Volume (Å3) |
---|---|---|---|---|
Parent S-1 | 20.1174 | 19.9213 | 13.4036 | 5371.66 |
Fe/S | 20.1181 | 19.9228 | 13.4081 | 5374.09 |
Fe@n-hS | 20.1349 | 19.9588 | 13.4460 | 5403.54 |
Fe@n-hS-HT | 20.1366 | 19.9263 | 13.4173 | 5383.69 |
Samples | Metal Content a/% | Fe/Si b | XPS/XRF | dFe (nm) | |
---|---|---|---|---|---|
Fe | XPS c | XRF | |||
Fe/S | 4.72 | 0.104 | 0.081 | 1.28 | 40.8 |
Fe@n-hS | 4.69 | 0.038 | 0.054 | 0.70 | - |
Fe@n-hS-HT | 4.43 | 0.042 | 0.056 | 0.75 | 3.4 |
Samples | Peak α % (°C) | Peak β % (°C) | Peak γ % (°C) | Peak δ (or δ1) % (°C) |
---|---|---|---|---|
Fe/S | 7.43% (310.8) | 60.51% (378.5) | 6.81% (436.1) | 25.25% (472.6) |
Fe@n-hS | 13.43% (339.5) | 21.66% (444.0) | 30.42% (572.1) | 34.49% (871.3) |
Fe@n-hS-HT | 18.41% (342.8) | 64.40% (453.5) | 4.47% (633.0) | 12.72% (881.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Wang, T.; Wang, Y.; Zhu, Y.; Xie, L.; Xing, E.; Wu, Y.; Da, Z. Nano-Hollow Zeolite-Encapsulated Highly Dispersed Ultra-Fine Fe Nanoparticles as Fischer–Tropsch Catalyst for Syngas-to-Olefins. Catalysts 2023, 13, 948. https://doi.org/10.3390/catal13060948
Hu R, Wang T, Wang Y, Zhu Y, Xie L, Xing E, Wu Y, Da Z. Nano-Hollow Zeolite-Encapsulated Highly Dispersed Ultra-Fine Fe Nanoparticles as Fischer–Tropsch Catalyst for Syngas-to-Olefins. Catalysts. 2023; 13(6):948. https://doi.org/10.3390/catal13060948
Chicago/Turabian StyleHu, Rui, Tianye Wang, Yifan Wang, Yuan Zhu, Li Xie, Enhui Xing, Yu Wu, and Zhijian Da. 2023. "Nano-Hollow Zeolite-Encapsulated Highly Dispersed Ultra-Fine Fe Nanoparticles as Fischer–Tropsch Catalyst for Syngas-to-Olefins" Catalysts 13, no. 6: 948. https://doi.org/10.3390/catal13060948
APA StyleHu, R., Wang, T., Wang, Y., Zhu, Y., Xie, L., Xing, E., Wu, Y., & Da, Z. (2023). Nano-Hollow Zeolite-Encapsulated Highly Dispersed Ultra-Fine Fe Nanoparticles as Fischer–Tropsch Catalyst for Syngas-to-Olefins. Catalysts, 13(6), 948. https://doi.org/10.3390/catal13060948