Research on Photocatalytic Wastewater Treatment Reactors: Design, Optimization, and Evaluation Criteria
Abstract
:1. Introduction
2. Mechanism of Photocatalytic Wastewater Treatment and the Role of Photocatalysis in the Wastewater Treatment Process
2.1. Mechanism of Photocatalytic Wastewater Treatment
2.2. The Role of Photocatalysis in the Wastewater Treatment Process
3. Factors to Be Considered in the Design of PWTRs
3.1. The Selection of Photocatalysts
3.2. Loading Forms and Amount of Photocatalyst in PWTRs
3.2.1. Slurry PWTRs
3.2.2. Immobilized PWTRs
3.2.3. Loading Amount of Photocatalyst
3.3. Summary of Photocatalyst Recovery and Reuse Module
3.4. Design of Light Source Modules
3.4.1. The Type of Light Source
Solar
Artificial Sunlight Sources
3.4.2. The Wavelength of the Light Source
3.4.3. The Irradiation Intensity of the Light Source
3.4.4. The Uniformity of the Light Source
3.5. Summary of Reaction Condition Control Module
3.5.1. Flow Rate
3.5.2. Temperature
3.5.3. pH
3.5.4. Dissolved Oxygen
3.5.5. Composition of Pollutants
4. Optimization of Photocatalytic PWTRs
4.1. Multi-Technology Coupling
4.2. Optimal Adjustment of Parameters
4.3. Integration and Automatic Control of Each Module
5. Evaluation Method for PWTRs
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Loosdrecht, M.C.; Brdjanovic, D. Water treatment. Anticipating the next century of wastewater treatment. Science 2014, 344, 1452–1453. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.N.; Jin, B.; Chow, C.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xie, Y.; Rabeah, J.; Brückner, A.; Cao, H. Visible-Light Photocatalytic Ozonation Using Graphitic C3N4 Catalysts: A Hydroxyl Radical Manufacturer for Wastewater Treatment. Acc. Chem. Res. 2020, 53, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Masuda, S.; Sano, I.; Hojo, T.; Li, Y.Y.; Nishimura, O. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes. Chemosphere 2018, 193, 581–590. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Ding, M.; Chen, W.; Wang, K.; Lu, C. Simultaneous removal of dissolved organic matter and nitrate from sewage treatment plant effluents using photocatalytic membranes. Water Res. 2018, 143, 250–259. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 113, 4545–4548. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.Y.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Vilar, V.J.P.; Amorim, C.C.; Li Puma, G.; Malato, S.; Dionysiou, D.D. Intensification of photocatalytic processes for niche applications in the area of water, wastewater and air treatment. Chem. Eng. J. 2017, 310, 329–330. [Google Scholar] [CrossRef] [Green Version]
- Nolan, M.; Iwaszuk, A.; Lucid, A.K.; Carey, J.J.; Fronzi, M. Design of Novel Visible Light Active Photocatalyst Materials: Surface Modified TiO2. Adv. Mater. 2016, 28, 5425–5446. [Google Scholar] [CrossRef]
- Li, J.; Yuan, H.; Zhang, W.; Jin, B.; Feng, Q.; Huang, J.; Jiao, Z. Advances in Z-scheme semiconductor photocatalysts for the photoelectrochemical applications: A review. Carbon Energy 2022, 4, 294–331. [Google Scholar] [CrossRef]
- Wang, D.; Mueses, M.A.; Marquez, J.A.C.; Machuca-Martinez, F.; Grcic, I.; Peralta Muniz Moreira, R.; Li Puma, G. Engineering and modeling perspectives on photocatalytic reactors for water treatment. Water Res. 2021, 202, 117421–117442. [Google Scholar] [CrossRef] [PubMed]
- Ghiyasiyan-Arani, M.; Salavati-Niasari, M. Synergic and coupling effect between SnO2 nanoparticles and hierarchical AlV3O9 microspheres toward emerging electrode materials for lithium-ion battery devices. Inorg. Chem. Front. 2021, 8, 2735–2748. [Google Scholar] [CrossRef]
- Mancuso, A.; Iervolino, G. Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review. Catalysts 2022, 12, 1074. [Google Scholar] [CrossRef]
- Zonouz, A.F.; Ashrafi, M.; Ghiyasiyan-Arani, M.; Hamadanian, M. Effect of sol–gel synthesized Al0.1Zr0.9O1.95 nanoparticles and PVP on PVDF-based separators in lithium-ion battery performance: The RSM study. J. Elastomers Plast. 2020, 53, 241–257. [Google Scholar] [CrossRef]
- Han, P.; Martens, W.; Waclawik, E.R.; Sarina, S.; Zhu, H. Metal Nanoparticle Photocatalysts: Synthesis, Characterization, and Application. Part. Part. Syst. Charact. 2018, 35, 1700489–1700505. [Google Scholar] [CrossRef]
- Loeb, S.K.; Alvarez, P.J.J.; Brame, J.A.; Cates, E.L.; Choi, W.; Crittenden, J.; Dionysiou, D.D.; Li, Q.; Li-Puma, G.; Quan, X.; et al. The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset? Environ. Sci. Technol. 2019, 53, 2937–2947. [Google Scholar] [CrossRef] [Green Version]
- Kanafin, Y.N.; Kanafina, D.; Malamis, S.; Katsou, E.; Inglezakis, V.J.; Poulopoulos, S.G.; Arkhangelsky, E. Anaerobic Membrane Bioreactors for Municipal Wastewater Treatment: A Literature Review. Membranes 2021, 11, 967. [Google Scholar] [CrossRef]
- Ollis, D.F.; Pelizzetti, E.; Serpone, N. Photocatalyzed destruction of water contaminants. Environ. Sci. Technol. 1991, 25, 1522–1529. [Google Scholar] [CrossRef]
- Buzzetti, L.; Crisenza, G.; Melchiorre, P. Mechanistic Studies in Photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 3730–3747. [Google Scholar] [CrossRef] [Green Version]
- Nosaka, Y.; Nosaka, A. Understanding Hydroxyl Radical (OH) Generation Processes in Photocatalysis (Open Access Viewpoint). ACS Energy Lett. 2016, 1, 356–359. [Google Scholar] [CrossRef] [Green Version]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Ma, J.; Zhang, Y.; Zhang, L.; Jiao, T. Recent Developments in Functional Nanocomposite Photocatalysts for Wastewater Treatment: A Review. Adv. Sustain. Syst. 2022, 6, 2200106–2200119. [Google Scholar] [CrossRef]
- Li, X.; Xie, J.; Jiang, C.; Yu, J.; Zhang, P. Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 2018, 12, 32–63. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodríguez-Hernandéz, J.A.; González-González, R.B.; Macias-Garbett, R.; Martínez-Ruiz, M.; Reyes-Pardo, H.; Hernández Martínez, S.A.; Parra-Arroyo, L.; Melchor-Martínez, E.M.; Sosa-Hernández, J.E.; et al. Detection and Tertiary Treatment Technologies of Poly-and Perfluoroalkyl Substances in Wastewater Treatment Plants. Front. Environ. Sci. 2022, 10, 864894–864914. [Google Scholar] [CrossRef]
- Demirbas, A.; Edris, G.; Alalayah, W.M. Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 999–1006. [Google Scholar] [CrossRef]
- Melvin, S.D.; Leusch, F.D.L. Removal of trace organic contaminants from domestic wastewater: A meta-analysis comparison of sewage treatment technologies. Environ. Int. 2016, 92–93, 183–188. [Google Scholar] [CrossRef]
- Van Nieuwenhuijzen, A.F.; Van Bentem, A.G.N.; Buunnen, A.; Reitsma, B.A.; Uijterlinde, C.A. The limits and ultimate possibilities of technology of the activated sludge process. Water Sci. Technol. 2008, 58, 1671–1677. [Google Scholar] [CrossRef]
- Gao, T.; Xiao, K.; Zhang, J.; Xue, W.; Wei, C.; Zhang, X.; Liang, S.; Wang, X.; Huang, X. Techno-economic characteristics of wastewater treatment plants retrofitted from the conventional activated sludge process to the membrane bioreactor process. Front. Environ. Sci. Eng. 2022, 16, 49–60. [Google Scholar] [CrossRef]
- Li, W.; Yu, H. Advances in Energy-Producing Anaerobic Biotechnologies for Municipal Wastewater Treatment. Engineering 2016, 2, 438–446. [Google Scholar] [CrossRef]
- Ghumra, D.P.; Agarkoti, C.; Gogate, P.R. Improvements in effluent treatment technologies in Common Effluent Treatment Plants (CETPs): Review and recent advances. Process Saf. Environ. Prot. 2021, 147, 1018–1051. [Google Scholar] [CrossRef]
- Ozgun, H.; Cicekalan, B.; Akdag, Y.; Koyuncu, I.; Ozturk, I. Comparative evaluation of cost for preliminary and tertiary municipal wastewater treatment plants in Istanbul. Sci. Total Environ. 2021, 778, 146258–146267. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, M.; Mei, Q.; Niu, S.; Zhou, J.L. Aging microplastics in wastewater pipeline networks and treatment processes: Physicochemical characteristics and Cd adsorption. Sci. Total Environ. 2021, 797, 148940–148949. [Google Scholar] [CrossRef] [PubMed]
- Cates, E.L. Photocatalytic Water Treatment: So Where Are We Going with This? Environ. Sci. Technol. 2017, 51, 757–758. [Google Scholar] [CrossRef]
- Gunten, U.V. Oxidation Processes in Water Treatment: Are We on Track? Environ. Sci. Technol. 2018, 52, 5062–5075. [Google Scholar] [CrossRef]
- Shukla, K.; Agarwalla, S.; Duraiswamy, S.; Gupta, R.K. Recent advances in heterogeneous micro-photoreactors for wastewater treatment application. Chem. Eng. Sci. 2021, 235, 116511–116529. [Google Scholar] [CrossRef]
- Klementova, S.; Kahoun, D.; Doubková, L.; Frejlachova, K.; Zlamal, M. Catalytic photodegradation of pharmaceuticals—Homogeneous and heterogeneous photocatalysis. Photochem. Photobiol. 2017, 16, 67–71. [Google Scholar] [CrossRef]
- Mak, C.H.; Han, X.; Du, M.; Kai, J.-J.; Tsang, K.F.; Jia, G.; Cheng, K.-C.; Shen, H.-H.; Hsu, H.-Y. Heterogenization of homogeneous photocatalysts utilizing synthetic and natural support materials. J. Mater. Chem. A 2021, 9, 4454–4504. [Google Scholar] [CrossRef]
- Wetchakun, K.; Wetchakun, N.; Sakulsermsuk, S. An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. J. Ind. Eng. Chem. 2019, 71, 19–49. [Google Scholar] [CrossRef]
- Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical development and prospects of photocatalysts for pollutant removal in water. J. Hazard. Mater. 2020, 395, 122599–122618. [Google Scholar] [CrossRef]
- Guo, Y.; Li, H.; Ma, W.; Shi, W.; Zhu, Y.; Choi, W. Photocatalytic activity enhanced via surface hybridization. Carbon Energy 2020, 2, 308–349. [Google Scholar] [CrossRef]
- Wu, M.; Gong, Y.; Nie, T.; Zhang, J.; Wang, R.; Wang, H.; He, B. Template-free synthesis of nanocage-like g-C3N4 with high surface area and nitrogen defects for enhanced photocatalytic H-2 activity. J. Mater. Chem. A 2019, 7, 5324–5332. [Google Scholar] [CrossRef]
- Wk, A.; Bjcb, C.; Ydk, B.; Hos, A. Sub-micro photocatalytic TiO2 particles for a water depollution: Comparable removal efficiency to commercial P25 and easy separation via a simple sedimentation. Catal. Today 2021, 403, 47–57. [Google Scholar] [CrossRef]
- Fu, Z.A.; Huang, C.B.; Zhao, X.A.; Fu, Z.C. Study on preparation and recovery of magnetic BiOI/rGO/Fe3O4 composite photocatalyst. Results Phys. 2020, 16, 102931–102934. [Google Scholar] [CrossRef]
- Dong, J.; Shi, Y.; Huang, C.; Wu, Q.; Zeng, T.; Yao, W. A New and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production. Appl. Catal. B Environ. 2019, 243, 27–35. [Google Scholar] [CrossRef]
- Chu, Z.; Qiu, L.; Chen, Y.; Zhuang, Z.; Du, P.; Xiong, J. TiO2-loaded carbon fiber: Microwave hydrothermal synthesis and photocatalytic activity under UV light irradiation. J. Phys. Chem. Solids 2020, 136, 109138–109161. [Google Scholar] [CrossRef]
- Kavitha, R.; Nithya, P.M.; Girish Kumar, S. Noble metal deposited graphitic carbon nitride based heterojunction photocatalysts. Appl. Surf. Sci. 2020, 508, 145142–145231. [Google Scholar] [CrossRef]
- Lammer, A.D.; Thiabaud, G.; Brewster, J.T.; Alaniz, J.; Bender, J.A.; Sessler, J.L. Lanthanide Texaphyrins as Photocatalysts. Inorg. Chem. 2018, 57, 3458–3464. [Google Scholar] [CrossRef]
- Radhika, N.P.; Selvin, R.; Kakkar, R.; Umar, A. Recent advances in nano-photocatalysts for organic synthesis. Arab. J. Chem. 2019, 12, 4550–4578. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Asim, M.; Khan, T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012, 113, 170–183. [Google Scholar] [CrossRef]
- Baaloudj, O.; Assadi, I.; Nasrallah, N.; Jery, A.E.; Assadi, A.A. Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: A review. J. Water Process Eng. 2021, 42, 102089–102099. [Google Scholar] [CrossRef]
- Vaya, D.; Surolia, P.K. Semiconductor based photocatalytic degradation of pesticides: An overview. Environ. Technol. Innov. 2020, 20, 101128–101152. [Google Scholar] [CrossRef]
- Tahir, M.B.; Kiran, H.; Iqbal, T. The detoxification of heavy metals from aqueous environment using Nano-Photocatalysis approach: A review. Environ. Sci. Pollut. Res. 2019, 26, 10515–10528. [Google Scholar] [CrossRef] [PubMed]
- Colina-Marquez, J.; Machuca-Mabtiez, F.; Puma, G.L. Photocatalytic Mineralization of Commercial Herbicides in a Pilot-Scale Solar CPC Reactor: Photoreactor Modeling and Reaction Kinetics Constants Independent of Radiation Field. Environ. Sci. Technol. 2009, 43, 8953–8960. [Google Scholar] [CrossRef] [PubMed]
- Bhatkhande, D. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light. Chem. Eng. J. 2004, 102, 283–290. [Google Scholar] [CrossRef]
- Oller, I.; Gernjak, W.; Maldonado, M.I.; Perez-Estrada, L.A.; Sanchez-Perez, J.A.; Malato, S. Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater. 2006, 138, 507–517. [Google Scholar] [CrossRef]
- Martín-Sómer, M.; Pablos, C.; Grieken, R.V.; Marugán, J. Influence of Light Distribution on The Performance of Photocatalytic Reactors: Led vs Mercury Lamps. Appl. Catal. B Environ. 2017, 215, 1–7. [Google Scholar] [CrossRef]
- Song, K.; Mohseni, M.; Taghipour, F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water Res. 2016, 94, 341–349. [Google Scholar] [CrossRef]
- Ibrahim, M.; Macadam, J.; Autin, O.; Jefferson, B. Evaluating the impact of LED bulb development on the economic viability of ultraviolet technology for disinfection. Environ. Technol. 2014, 35, 400–406. [Google Scholar] [CrossRef]
- Alpert, D.J.; Sprung, J.L.; Pacheco, J.E.; Prairie, M.R.; Reilly, H.E.; Milne, T.A.; Nimlos, M.R. Sandia National Laboratories’ work in solar detoxification of hazardous wastes. Sol. Energy Mater. 1991, 24, 594–607. [Google Scholar] [CrossRef]
- Minero, C.; Pelizzetti, E.; Malato, S.; Blanco, J. Large solar plant photocatalytic water decontamination: Degradation of pentachlorophenol. Chemosphere 1993, 26, 2103–2119. [Google Scholar] [CrossRef]
- Hofstadler, K.; Bauer, R.; Novalic, S.; Heisler, G. New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: Photomineralization of 4-chlorophenol. Environ. Sci. Technol. 1994, 28, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Minero, C.; Pelizzetti, E.; Malato, S.; Blanco, J. Large solar plant photocatalytic water decontamination: Degradation of atrazine. Sol. Energ. 1996, 56, 411–419. [Google Scholar] [CrossRef]
- van Well, M.; Dillert, R.H.G.; Bahnemann, D.W.; Benz, V.W.; Mueller, M.A. A novel nonconcentrating reactor for solar water detoxification. J. Sol. Energ. Eng. 1997, 119, 114–119. [Google Scholar] [CrossRef]
- Freudenhammer, H.; Bahnemann, D.; Bousselmi, L.; Geissen, S.-U.; Ghrabi, A.; Saleh, F.; Si-Salah, A.; Siemon, U.; Vogelpohl, A. Detoxification and recycling of wastewater by solar-catalytic treatment. Water Sci. Technol. 1997, 35, 149–156. [Google Scholar] [CrossRef]
- Puma, G.L.; Yue, P.L. A laminar falling film slurry photocatalytic reactor. Part II—Experimental validation of the model. Chem. Eng. Sci. 1998, 53, 3007–3021. [Google Scholar] [CrossRef]
- Vidal, A.; Diaz, A.I.; El Hiraiki, A.; Romero, M.; Muguruza, I.; Senhaji, F.; Gonzalez, J. Solar photocatalysis for detoxification and disinfection of contaminated water: Pilot plant studies. Catal. Today 1999, 54, 283–290. [Google Scholar] [CrossRef]
- Klare, M.; Scheen, J.; Vogelsang, K.; Jacobs, H.; Broekaert, J.A.C. Degradation of short-chain alkyl- and alkanolamines by TiO2- and Pt/TiO2-assisted photocatalysis. Chemosphere 2000, 41, 353–362. [Google Scholar] [CrossRef]
- Yatmaz, H.C.; Wallis, C.; Howarth, C.R. The spinning disc reactor—Studies on a novel TiO2 photocatalytic reactor. Chemosphere 2001, 42, 397–403. [Google Scholar] [CrossRef]
- Bousselmi, L.; Geissen, S.U.; Schroeder, H. Textile wastewater treatment and reuse by solar catalysis: Results from a pilot plant in Tunisia. Water Sci. Technol. 2004, 49, 331–337. [Google Scholar] [CrossRef]
- Sichel, C.; Tello, J.; de Cara, M.; Fernández-Ibáñez, P. Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal. Today 2007, 129, 152–160. [Google Scholar] [CrossRef]
- Benotti, M.J.; Stanford, B.D.; Wert, E.C.; Snyder, S.A. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res. 2009, 43, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.; Monteagudo, J.M.; San Martin, I. Photocatalytic treatment of an industrial effluent using artificial and solar UV radiation: An operational cost study on a pilot plant scale. J. Environ. Manag. 2012, 98, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, D.H.; Álvarez, P.M.; Rey, A.; Beltrán, F.J. Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation. A pilot-scale study. Sep. Purif. Technol. 2015, 149, 132–139. [Google Scholar] [CrossRef]
- Aguas, Y.; Hincapie, M.; Fernandez-Ibanez, P.; Polo-Lopez, M.I. Solar photocatalytic disinfection of agricultural pathogenic fungi (Curvularia sp.) in real urban wastewater. Sci. Total Environ. 2017, 607–608, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Haranaka-Funai, D.; Didier, F.; Giménez, J.; Marco, P.; Esplugas, S.; Machulek-Junior, A. Photocatalytic treatment of valproic acid sodium salt with TiO2 in different experimental devices: An economic and energetic comparison. Chem. Eng. J. 2017, 327, 656–665. [Google Scholar] [CrossRef]
- Duran, A.; Monteagudo, J.M.; San Martin, I.; Merino, S. Photocatalytic degradation of aniline using an autonomous rotating drum reactor with both solar and UV-C artificial radiation. J. Environ. Manag. 2018, 210, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Moreira, N.F.F.; Narciso-da-Rocha, C.; Polo-Lopez, M.I.; Pastrana-Martinez, L.M.; Faria, J.L.; Manaia, C.M.; Fernandez-Ibanez, P.; Nunes, O.C.; Silva, A.M.T. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Res. 2018, 135, 195–206. [Google Scholar] [CrossRef]
- Bansal, P.; Verma, A. In-situ dual effect studies using novel Fe-TiO2 composite for the pilot-plant degradation of pentoxifylline. Chem. Eng. J. 2018, 332, 682–694. [Google Scholar] [CrossRef]
- Fernandes, A.; Gągol, M.; Makoś, P.; Khan, J.A.; Boczkaj, G. Integrated photocatalytic advanced oxidation system (TiO2/UV/O3/H2O2) for degradation of volatile organic compounds. Sep. Purif. Technol. 2019, 224, 1–14. [Google Scholar] [CrossRef]
- Mofrad, M.M.G.; Pourzamani, H.; Amin, M.M.; Parseh, I.; Alipour, M. In situ treatment of metalworking wastewater by chemical addition-dissolved air flotation coupled with UV, H2O2 & ZnO. Heliyon 2020, 6, e030910–e030921. [Google Scholar] [CrossRef] [Green Version]
- Samy, M.; Ibrahim, M.G.; Fujii, M.; Diab, K.E.; ElKady, M.; Gar Alalm, M. CNTs/MOF-808 painted plates for extended treatment of pharmaceutical and agrochemical wastewaters in a novel photocatalytic reactor. Chem. Eng. J. 2021, 406, 127152–127167. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Gopalram, K.; Appunni, S. Photocatalytic degradation of 2,4-dicholorophenoxyacetic acid by TiO2 modified catalyst: Kinetics and operating cost analysis. Environ. Sci. Pollut. Res. Int. 2021, 28, 33331–33343. [Google Scholar] [CrossRef] [PubMed]
- Rani, C.N.; Karthikeyan, S. Synergic effects on degradation of a mixture of polycyclic aromatic hydrocarbons in a UV slurry photocatalytic membrane reactor and its cost estimation. Chem. Eng. Process.-Process Intensif. 2021, 159, 108179–108189. [Google Scholar] [CrossRef]
- Ballari, M.d.l.M.; Alfano, O.M.; Cassano, A.E. Mass transfer limitations in slurry photocatalytic reactors: Experimental validation. Chem. Eng. Sci. 2010, 65, 4931–4942. [Google Scholar] [CrossRef]
- Claes, T.; Dilissen, A.; Leblebici, M.E.; Van Gerven, T. Translucent packed bed structures for high throughput photocatalytic reactors. Chem. Eng. J. 2019, 361, 725–735. [Google Scholar] [CrossRef]
- Mukherjee, P.S.; Ray, A.K. Major Challenges in the Design of a Large-Scale Photocatalytic Reactor for Water Treatment. Chem. Eng. Technol. 1999, 22, 253–260. [Google Scholar] [CrossRef]
- Subramanian, M.; Kannan, A. Photocatalytic degradation of phenol in a rotating annular reactor. Chem. Eng. Sci. 2010, 65, 2727–2740. [Google Scholar] [CrossRef]
- Cao, F.; Zhao, L.; Guo, L.; Li, H.; Chao, H. Optimization of the concentration field in a suspended photocatalytic reactor. Energy 2014, 74, 140–146. [Google Scholar] [CrossRef]
- Tokode, O.; Prabhu, R.; Lawton, L.A.; Robertson, P. A photocatalytic impeller reactor for gas phase heterogeneous photocatalysis. J. Environ. Chem. Eng. 2017, 5, 3942–3948. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Ang, M.; Pareek, V. CFD simulation of a pilot scale slurry photocatalytic reactor and design of multiple-lamp reactors. Chem. Eng. Ence 2014, 111, 266–277. [Google Scholar] [CrossRef]
- Sundar, K.P.; Kanmani, S. Progression of Photocatalytic reactors and it’s comparison: A Review. Chem. Eng. Res. Des. 2020, 154, 135–150. [Google Scholar] [CrossRef]
- Jo, W.-K.; Park, G.T.; Tayade, R.J. Synergetic effect of adsorption on degradation of malachite green dye under blue LED irradiation using spiral-shaped photocatalytic reactor. J. Chem. Technol. Biotechnol. 2015, 90, 2280–2289. [Google Scholar] [CrossRef]
- Le, C.C.; Wismer, M.K.; Shi, Z.C.; Zhang, R.; Conway, D.V.; Li, G.; Vachal, P.; Davies, I.W.; MacMillan, D.W.C. A General Small-Scale Reactor To Enable Standardization and Acceleration of Photocatalytic Reactions. ACS Cent. Sci. 2017, 3, 647–653. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, F.; Pellutiè, L.; Sordello, F.; Minero, C.; Ortel, E.; Hodoroaba, V.D.; Maurino, V. Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl. Catal. B Environ. 2017, 216, 80–87. [Google Scholar] [CrossRef]
- Leblebici, M.E.; Rongé, J.; Martens, J.A.; Stefanidis, G.D.; Van Gerven, T. Computational modelling of a photocatalytic UV-LED reactor with internal mass and photon transfer consideration. Chem. Eng. J. 2015, 264, 962–970. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, H.; Song, R.; Shin, S.; Ham, S.-Y.; Park, H.-D.; Lee, J.; Fischer, P.; Bodenschatz, E. Hierarchical optofluidic microreactor for water purification using an array of TiO2 nanostructures. NPJ Clean Water 2022, 5, 62–72. [Google Scholar] [CrossRef]
- Hakki, H.K.; Allahyari, S. Intensification of photocatalytic wastewater treatment using a novel continuous microcapillary photoreactor irradiated by visible LED lights. Chem. Eng. Process. 2022, 175, 108937–108947. [Google Scholar] [CrossRef]
- Teixeira, S.; Magalhes, B.; Martins, P.M.; Kühn, K.; Soler, L.; Lanceros-Méndez, S.; Cuniberti, G. Photocatalysis: Reusable Photocatalytic Optical Fibers for Underground, Deep-Sea, and Turbid Water Remediation (Global Challenges 3/2018). Glob. Chall. 2018, 2, 1870030–1870038. [Google Scholar] [CrossRef]
- Zeng, Z.; Jing, D.; Guo, L. Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam. Energy 2021, 228, 120578–120588. [Google Scholar] [CrossRef]
- Vezzoli, M.; Martens, W.N.; Bell, J.M. Investigation of phenol degradation: True reaction kinetics on fixed film titanium dioxide photocatalyst. Appl. Catal. A Gen. 2011, 404, 155–163. [Google Scholar] [CrossRef]
- Plantard, G.; Goetz, V. Correlations between optical, specific surface and photocatalytic properties of media integrated in a photo-reactor. Chem. Eng. J. 2014, 252, 194–201. [Google Scholar] [CrossRef]
- Moreno-SanSegundo, J.; Casado, C.; Marugán, J. Enhanced numerical simulation of photocatalytic reactors with an improved solver for the radiative transfer equation. Chem. Eng. J. 2020, 388, 124183–124208. [Google Scholar] [CrossRef]
- Li, K.; He, Y.; Xu, Y.; Wang, Y.; Jia, J. Degradation of rhodamine B using an unconventional graded photoelectrode with wedge structure. Environ. Sci. Technol. 2011, 45, 7401–7407. [Google Scholar] [CrossRef] [PubMed]
- Visan, A.; Rafieian, D.; Ogieglo, W.; Lammertink, R.G.H. Modeling intrinsic kinetics in immobilized photocatalytic microreactors. Appl. Catal. B Environ. 2014, 150–151, 93–100. [Google Scholar] [CrossRef]
- Leblebici, M.E.; Stefanidis, G.D.; Gerven, T.V. Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment. Chem. Eng. Process. Process Intensif. 2015, 97, 106–111. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Yuan, Y.; Fang, Y.; Jin, L. Development of a novel capillary array photocatalytic reactor and application for degradation of azo dye. Chem. Eng. J. 2012, 184, 9–15. [Google Scholar] [CrossRef]
- Sza, B.; Jie, Z.; Jian, S.B.; Ztac, D. Capillary microphotoreactor packed with TiO2-coated glass beads: An efficient tool for photocatalytic reaction. Chem. Eng. Process.-Process Intensif. 2020, 147, 107746–107769. [Google Scholar] [CrossRef]
- Claes, T.; Gerven, T.V.; Leblebici, M.E. Design considerations for photocatalytic structured packed bed reactors. Chem. Eng. J. 2021, 403, 126355–126397. [Google Scholar] [CrossRef]
- Kouamé, A.N.; Masson, R.; Robert, D.; Keller, N.; Keller, V. β-SiC foams as a promising structured photocatalytic support for water and air detoxification. Catal. Today 2013, 209, 13–20. [Google Scholar] [CrossRef]
- Ribbens, S.; Tytgat, T.; Hauchecorne, B.; Smits, M.; Meynen, V.; Cool, P.; Martens, J.A.; Lenaerts, S. The benefit of glass bead supports for efficient gas phase photocatalysis: Case study of a commercial and a synthesised photocatalyst. Chem. Eng. J. 2011, 174, 318–325. [Google Scholar] [CrossRef]
- Hou, J.; Liu, H.; Zhao, L. Optimization of radiation absorption model in solar photocatalytic reactors: Coupling photocatalyst concentration distribution. Appl. Therm. Eng. 2019, 160, 114090–114097. [Google Scholar] [CrossRef]
- Gad-Allah, T.A.; Kato, S.; Satokawa, S.; Kojima, T. Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): Parametric and kinetic studies. Desalination 2009, 244, 1–11. [Google Scholar] [CrossRef]
- Malato, S.; Maldonado, M.I.; Fernández-Ibáñez, P.; Oller, I.; Polo, I.; Sánchez-Moreno, R. Inmaculada Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Mater. Sci. Semicond. Process. 2016, 42, 15–23. [Google Scholar] [CrossRef]
- Saravanan, P.; Pakshirajan, K.; Saha, P. Degradation of phenol by TiO2-based heterogeneousphotocatalysts in presence of sunlight. J. Hydro-Environ. Res. 2009, 3, 45–50. [Google Scholar] [CrossRef]
- Ashouri, R.; Rasekh, B.; Kasaeian, A.; Sheikhpour, M.; Yazdian, F.; Mobarakeh, M.D. Effect of ZnO-based nanophotocatalyst on degradation of aniline. J. Mol. Model. 2021, 27, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, N.M.; Arami, M.; Limaee, N.Y.; Tabrizi, N.S. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid Interface Sci. 2006, 295, 159–164. [Google Scholar] [CrossRef]
- Badri, R.; Goutham, N.R.; Srikanth, B.; Gopinath, K.P. A novel nano-sized calcium hydroxide catalyst prepared from clam shells for the photodegradation of methyl red dye. J. Environ. Chem. Eng. 2018, 6, 3640–3647. [Google Scholar] [CrossRef]
- Khatami, M.; Iravani, S. Green and Eco-Friendly Synthesis of Nanophotocatalysts: An Overview. Comments Inorg. Chem. 2021, 41, 133–187. [Google Scholar] [CrossRef]
- Jacinto, M.J.; Ferreira, L.F.; Silva, V.C. Magnetic materials for photocatalytic applications—A review. J. Sol-Gel Sci. Technol. 2020, 96, 1–14. [Google Scholar] [CrossRef]
- Li, Q.; Kong, H.; Jia, R.; Shao, J.; He, Y. Enhanced catalytic degradation of amoxicillin with TiO2 –Fe3O4 composites via a submerged magnetic separation membrane photocatalytic reactor (SMSMPR). RSC Adv. 2019, 9, 12538–12546. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Liu, L.; Wang, R.; Zhu, W.; Ren, X.; Luo, L.; Zhang, X.; Luo, S.; Ai, X.; Wang, J. Binary composite MoS2/TiO2 nanotube arrays as a recyclable and efficient photocatalyst for solar water disinfection. Chem. Eng. J. 2020, 401, 126052–126060. [Google Scholar] [CrossRef]
- Sorathiya, K.; Mishra, B.; Kalarikkal, A.; Reddy, K.P.; Gopinath, C.S.; Khushalani, D. Enhancement in Rate of Photocatalysis Upon Catalyst Recycling. Sci. Rep. 2016, 6, 35075–35083. [Google Scholar] [CrossRef] [Green Version]
- Destaillats, H.; Puma, G.L. Radiation field modeling and optimization of a compact and modular multi-plate photocatalytic reactor (MPPR) for air/water purification by Monte Carlo method. Chem. Eng. J. 2013, 217, 475–485. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Wu, Z.; Liang, J.; Chen, X.; Leng, L.; Wang, H.; Wang, H. Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B Environ. 2018, 211, 715–725. [Google Scholar] [CrossRef]
- Abdel-Maksoud, Y.; Imam, E.; Ramadan, A. TiO2 Solar Photocatalytic Reactor Systems: Selection of Reactor Design for Scale-up and Commercialization—Analytical Review. Catalysts 2016, 6, 138. [Google Scholar] [CrossRef] [Green Version]
- Keller, N.; Ivanez, J.; Highfield, J.; Ruppert, A.M. Photo-/thermal synergies in heterogeneous catalysis: Towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Appl. Catal. B Environ. 2021, 296, 120320–120356. [Google Scholar] [CrossRef]
- Jebasingh, V.K.; Herbert, G.M.J. A review of solar parabolic trough collector. Renew. Sustain. Energy Rev. 2016, 54, 1085–1091. [Google Scholar] [CrossRef]
- Fendrich, M.; Quaranta, A.; Orlandi, M.; Bettonte, M.; Miotello, A. Solar Concentration for Wastewaters Remediation: A Review of Materials and Technologies. Appl. Sci. 2018, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Otálvaro-Marín, H.L.; Mueses, M.A.; Crittenden, J.C.; Machuca-Martinez, F. Solar photoreactor design by the photon path length and optimization of the radiant field in a TiO2 -based CPC reactor. Chem. Eng. J. 2017, 315, 283–295. [Google Scholar] [CrossRef]
- Colina-Marquez, J.; Castilla-Caballero, D.; Machuca-Martinez, F. Modeling of a falling-film photocatalytic reactor: Fluid dynamics for turbulent regime. Appl. Math. Model. 2016, 40, 4812–4821. [Google Scholar] [CrossRef]
- Chaúque, B.J.M.; Brandão, F.G.; Rott, M.B. Development of solar water disinfection systems for large-scale public supply, state of the art, improvements and paths to the future—A systematic review. J. Environ. Chem. Eng. 2022, 10, 107887–107910. [Google Scholar] [CrossRef]
- Casado, C.; Timmers, R.; Sergejevs, A.; Clarke, C.T.; Allsopp, D.W.E.; Bowen, C.R.; van Grieken, R.; Marugán, J. Design and validation of a LED-based high intensity photocatalytic reactor for quantifying activity measurements. Chem. Eng. J. 2017, 327, 1043–1055. [Google Scholar] [CrossRef]
- Zhong, W.; Wang, D.; Xu, X. Phenol removal efficiencies of sewage treatment processes and ecological risks associated with phenols in effluents. J. Hazard. Mater. 2012, 217–218, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Würtele, M.A.; Kolbe, T.; Lipsz, M.; Külberg, A.; Weyers, M.; Kneissl, M.; Jeke, M. Application of GaN-based ultraviolet-C light emitting diodes—UV LEDs—For water disinfection. Water Res. A J. Int. Water Assoc. 2011, 45, 1481–1489. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Amor, C.; Fernandes, J.R.; Tavares, P.B.; Lucas, M.S.; Peres, J.A. Treatment of crystallized-fruit wastewater by UV-A LED photo-Fenton and coagulation flocculation. Chemosphere Environ. Toxicol. Risk Assess. 2016, 145, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, D.; Li, Y. Single-atom catalysis for carbon neutrality. Carbon Energy 2022, 4, 1021–1079. [Google Scholar] [CrossRef]
- Casado, C.; García-Gil, Á.; van Grieken, R.; Marugán, J. Critical role of the light spectrum on the simulation of solar photocatalytic reactors. Appl. Catal. B Environ. 2019, 252, 1–9. [Google Scholar] [CrossRef]
- Rieth, A.J.; Qin, Y.; Martindale, B.C.M.; Nocera, D.G. Long-Lived Triplet Excited State in a Heterogeneous Modified Carbon Nitride Photocatalyst. J. Am. Chem. Soc. 2021, 143, 4646–4652. [Google Scholar] [CrossRef]
- Li, D.; Zhang, N.; Yuan, R.; Chen, H.; Zhou, B. Effect of wavelengths on photocatalytic oxidation mechanism of sulfadiazine and sulfamethoxazole in the presence of TiO2. J. Environ. Chem. Eng. 2021, 9, 106243–106259. [Google Scholar] [CrossRef]
- Choi, H.; Fazli, M.; Rasoulifard, M.H. Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water. Chem. Eng. J. 2016, 300, 414–422. [Google Scholar] [CrossRef]
- Martín-Sómer, M.; Vega, B.; Pablos, C.; Grieken, R.; Marugán, J. Wavelength dependence of the efficiency of photocatalytic processes for water treatment. Appl. Catal. B Environ. Int. J. Devoted Catal. Sci. Appl. 2018, 221, 258–265. [Google Scholar] [CrossRef]
- Ouyang, W.; Liu, S.; Yao, K.; Zhao, L.; Cao, L.; Jiang, S.; Hou, H. Ultrafine hollow TiO2 nanofibers from core-shell composite fibers and their photocatalytic properties. Compos. Commun. 2018, 9, 76–80. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H. Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study. J. Water Process Eng. 2022, 47, 102671–102700. [Google Scholar] [CrossRef]
- Sun, J.; Yu, W.; Usman, A.; Isimjan, T.T.; DGobbo, S.; Alarousu, E.; Takanabe, K.; Mohammed, O.F. Generation of Multiple Excitons in Ag2S Quantum Dots: Single High-Energy versus Multiple-Photon Excitation. J. Phys. Chem. Lett. 2014, 5, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Ollis, D.F. Solar-Assisted Photocatalysis for Water Purification: Issues, Data, Questions. In Photochemical Conversion and Storage of Stolar Energy, Proceedings of the Eighth International Conference on Photocemical Conversion and Storage of Solar Energy, IPS-8, Palermo, Italy, 15–20 July 1990; Springer: Dordrecht, The Netherlands, 1991; Volume 8, pp. 593–622. [Google Scholar] [CrossRef]
- Nogueira, E.; Orlando, V.; Ochoa, J.; Fernandez, A.; Vazquez, M. Accelerated Life Test of high luminosity blue LEDs. Microelectron. Reliab. 2016, 64, 631–634. [Google Scholar] [CrossRef] [Green Version]
- Heredia Deba, S.A.; Wols, B.A.; Yntema, D.R.; Lammertink, R.G.H. Photocatalytic ceramic membrane: Effect of the illumination intensity and distribution. J. Photochem. Photobiol. A Chem. 2023, 437, 114469–114477. [Google Scholar] [CrossRef]
- Khodadadian, F.; Poursaeidesfahani, A.; Li, Z.; Ommen, J.R.v.; Stankiewicz, A.I.; Lakerveld, R. Model-Based Optimization of a Photocatalytic Reactor with Light-Emitting Diodes. Chem. Eng. Technol. Ind. Chem. Plant Equip. Process Eng. Biotechnol. 2016, 39, 1946–1954. [Google Scholar] [CrossRef]
- Bi, Z.X.T. Effects of Liquid and Gas Flow Rates on the Performance of a Fluidized Bed Photocatalytic Reactor. Int. J. Chem. React. Eng. 2008, 6, 77–90. [Google Scholar] [CrossRef]
- Enesca, A. The Influence of Photocatalytic Reactors Design and Operating Parameters on the Wastewater Organic Pollutants Removal—A Mini-Review. Catalysts 2021, 11, 556. [Google Scholar] [CrossRef]
- Cloteaux, A.; Gérardin, F.; Thomas, D.; Midoux, N.; André, J.C. Fixed bed photocatalytic reactor for formaldehyde degradation: Experimental and modeling study. Chem. Eng. J. 2014, 249, 121–129. [Google Scholar] [CrossRef]
- Murillo-Acevedo, Y.; Bernal-Sanchez, J.; Giraldo, L.; Sierra-Ramirez, R.; Moreno-Piraján, J. Initial Approximation to the Design and Construction of a Photocatalysis Reactor for Phenol Degradation with TiO2 Nanoparticles. ACS Omega 2019, 4, 19605–19613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalani, M.J.; Salay Naderi, M.; Gharehpetian, G.B. Power consumption control of LEDs considering their specific characteristics and ambient temperature variations. Comput. Electr. Eng. 2019, 77, 191–204. [Google Scholar] [CrossRef]
- Koe, W.; Lee, J.; Chong, W.; Pang, Y.; Sim, L. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. Int. 2020, 27, 2522–2565. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Qi, W.; An, X.; Liu, H.; Qu, J. Faceted TiO2 photocatalytic degradation of anthraquinone in aquatic solution under solar irradiation. Sci. Total Environ. 2019, 688, 592–599. [Google Scholar] [CrossRef]
- Ma, Z.; Jia, Q.; Shi, Y.; Duan, X.; Han, B. Synergistic effect of aeration-assisted photocatalysis: Two parallel mechanism pathways for TXP-10 surfactant removal. J. Water Process Eng. 2020, 38, 101618–101625. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Xian, T.; Liu, G.; Yang, H. Photocatalytic purification of simulated dye wastewater in different pH environments by using BaTiO3/Bi2WO6 heterojunction photocatalysts. Opt. Mater. 2021, 113, 110853–110866. [Google Scholar] [CrossRef]
- Suhaimi, N.A.A.; Kong, C.P.Y.; Shahri, N.N.M.; Nur, M.; Hobley, J.; Usman, A. Dynamics of Diffusion- and Immobilization-Limited Photocatalytic Degradation of Dyes by Metal Oxide Nanoparticles in Binary or Ternary Solutions. Catalysts 2022, 12, 1254. [Google Scholar] [CrossRef]
- Khan, S.J.; Reed, R.H.; Rasul, M.G. Thin-film fixed-bed reactor for solar photocatalytic inactivation of Aeromonas hydrophila: Influence of water quality. BMC Microbiol. 2012, 12, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, Y.; Li Puma, G.; Wang, C.; Wang, P.; Zhang, W.; Wang, Q. Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO2 nanofibers photocatalyst: The impact of wastewater components. J. Hazard. Mater. 2015, 285, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Peral, J.; Ollis, D. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J. Catal. 1992, 136, 554–565. [Google Scholar] [CrossRef]
- Mazierski, P.; Nadolna, J.; Lisowski, W.; Winiarski, M.J.; Gazda, M.; Nischk, M.; Klimczuk, T.; Zaleska-Medynska, A. Effect of irradiation intensity and initial pollutant concentration on gas phase photocatalytic activity of TiO2 nanotube arrays. Catal. Today 2017, 284, 19–26. [Google Scholar] [CrossRef]
- Mamba, G.; Mishra, A. Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation. Catalysts 2016, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Hou, R.; Gao, Y.; Zhu, H.; Yang, G.; Liu, W.; Huo, Y.; Xie, Z.; Li, H. Coupling system of Ag/BiOBr photocatalysis and direct contact membrane distillation for complete purification of N-containing dye wastewater. Chem. Eng. J. 2017, 317, 386–393. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Rittmann, B.E. Integrated photocatalytic-biological reactor for accelerated phenol mineralization. Appl. Microbiol. Biotechnol. 2010, 86, 1977–1985. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Ma, H. Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis. J. Clean. Prod. 2021, 313, 127758–127764. [Google Scholar] [CrossRef]
- Olivo-Alanís, D.; García-González, A.; Mueses, M.A.; García-Reyes, R.B. Generalized kinetic model for the photocatalytic degradation processes: Validation for dye wastewater treatment in a visible-LED tubular reactor. Appl. Catal. B Environ. 2022, 317, 121804–121816. [Google Scholar] [CrossRef]
- Grao, M.; Ratova, M.; Kelly, P. Design and optimisation of a low-cost titanium dioxide-coated stainless steel mesh photocatalytic water treatment reactor. J. Clean. Prod. 2021, 297, 126641–126651. [Google Scholar] [CrossRef]
- Asha, R.C.; Yadav, M.S.P.; Kumar, M. Sulfamethoxazole removal in membrane-photocatalytic reactor system—Experimentation and modelling. Environ. Technol 2019, 40, 1697–1704. [Google Scholar] [CrossRef]
- Matiazzo, T.; Ramaswamy, K.; Vilar, V.J.P.; Padoin, N.; Soares, C. Radiation field modeling of the NETmix milli-photocatalytic reactor: Effect of LEDs position over the reactor window. Chem. Eng. J. 2022, 429, 131670–131678. [Google Scholar] [CrossRef]
- Janczarek, M.; Kowalska, E. Computer Simulations of Photocatalytic Reactors. Catalysts 2021, 11, 198. [Google Scholar] [CrossRef]
- Khodadadian, F.; Garza, F.G.; Ommen, J.R.; Stankiewicz, A.I.; Lakerveld, R. The Application of Automated Feedback and Feedforward Control to a LED-based Photocatalytic Reactor. Chem. Eng. J. 2018, 362, 375–385. [Google Scholar] [CrossRef]
- Yu, Y.; Šuligoj, A.; Shidlovsky, Z.; Shachar, D.; Yaron, S.; Paz, Y. Towards on-demand photocatalysis: Controlling the operation of a photocatalytic reactor based on real-time, automatic monitoring of toxicity towards the working bacteria of a proceeding bioreactor. Chem. Eng. J. 2021, 433, 133621–133632. [Google Scholar] [CrossRef]
- Nair, R.G.; Bharadwaj, P.J.; Samdarshi, S.K. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment. Ecotoxicol. Environ. Saf. 2016, 134, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Brandi, R.J.; Citroni, M.A.; Alfano, O.M.; Cassano, A.E. Absolute quantum yields in photocatalytic slurry reactors. Chem. Eng. Sci. 2003, 58, 979–985. [Google Scholar] [CrossRef]
Light Source | Treating Capacity | Photocatalysts | Amount of Photocatalyst | pH | Contaminant | Year | Reference |
---|---|---|---|---|---|---|---|
Solar | 12,000 L | P25 | 0.1 wt% | - | Trichloroethylene | 1991 | [59] |
Solar | 838 L | P25 | 0.14 g/L | - | Sodium pentachlorophenolate | 1993 | [60] |
UV | 2 L | TiO2 coated optical fibers | 3.1 mM | - | 4-chlorophenol | 1994 | [61] |
Solar | 220 L | P25 | 0.2 g/L | - | Atrazine | 1996 | [62] |
Solar | 30 L | TiO2 | - | - | Dichloroacetic acid | 1997 | [63] |
Solar | 5 L/h | TiO2 deposited on substrate | - | 3 | Municipal wastewater | 1997 | [64] |
UV | 480 L | P25 | 2.75 g/L | - | Salicylic acid | 1998 | [65] |
Solar | 25 L | TiO2 | 0.5 wt% | 7.8 | Escherichia coli | 1999 | [66] |
Solar | 80 L | P25 | 0.02 g/L | 10 | Diethylamine | 2000 | [67] |
UV | 10 L | P25 deposited on disk | - | 3.1 | 4-chlorophenol | 2001 | [68] |
UV | 1 m3/h | Suspended or deposited P25 | - | - | Dichloroacetic acid | 2004 | [69] |
Solar | 14 L | P25 supported on substrate | 20 g/m2 | 4 | Escherichia coli | 2007 | [70] |
UV | 11,000 L | P25 | 0.05 g/L | 8 | Pharmaceuticals and endocrine disrupting compounds | 2009 | [71] |
Solar | 28 L | TiO2/H2O2 | - | 2 | Wastewater from a power plant | 2012 | [72] |
Solar | 1.8 L | TiO2 | 0.2 g/L | 3 | Acetaminophen, antipyrine, bisphenol A, caffeine, metoprolol and testosterone | 2015 | [73] |
Solar | 20 L | TiO2/H2O2 | 35 g/L | Curvularia sp. | 2017 | [74] | |
UV | 2 L | TiO2 | 0.4 mg/L | - | Valproic acid sodium salt | 2017 | [75] |
UV | 6 L | TiO2/H2O2 | 15.6 g/m2 | 4 | Aniline | 2018 | [76] |
Solar | 20 L | P25 | 0.02 g/L | 3 | Sulfamethoxazole, carbamazepine, and diclofenac | 2018 | [77] |
Solar | 5 L | Fe-TiO2 | - | - | Pentoxifylline | 2018 | [78] |
UV | 15 L | TiO2/O3 | 0.1 g/L | 11 | Volatile organic compounds | 2019 | [79] |
UV | 5.3 L | ZnO/H2O2 | 0.6 g/L | 10 | Metalworking wastewater | 2020 | [80] |
Visible light | 200 mL | Carbon nanotubes/ MOF-808 on substrate | - | 2–10 | Pharmaceutical and agrochemical chemicals | 2021 | [81] |
UV | 2 L | TiO2 | 2 g/L | 4.5 | 2,4-dicholorophenoxyacetic acid | 2021 | [82] |
UV | 235,000 L | TiO2 | 0.5 g/L | 6.1 | Polycyclic aromatic hydrocarbons | 2021 | [83] |
Catalyst and Pollutant | Constant Parameters | Initial pH | Degradation (%) |
---|---|---|---|
CuO–TiO2/rGO Methyl orange | Light source: UV light Pollutant concentration: ~0.01 mM Catalyst dosage: 1 g/L Temperature: 30 ± 3 °C Irradiation time: 90 min | 3.0–11.0 Optimum: 7 | >98 |
X–Ni Amitrole | Light source: UV light Pollutant concentration: 0.30 mmol/L Catalyst dosage: 250 mg/L Temperature: 25 °C Irradiation time: 120 min | 3.0–12.0 Optimum: 12.0 | 96.90 |
pCMS–CoFe2O4 RhB | Light source: visible light Pollutant concentration: 10 mg/L Catalyst dosage: 0.5 mg/mL Temperature: 28 °C Irradiation time: 180 min | 3.0–11.0 Optimum: 5 | ~100 |
TiO2 nanotube array MTP | Light source: UV light Pollutant concentration: 0.1 mg/L Catalyst dosage: – Temperature: – Irradiation time: 120 min | 3.0–11.0 Optimum: 6.0 | 87.09 |
Fe3+–TiO2 Atrazine | Light source: UV light Pollutant concentration: 0.05 mmol/L Catalyst dosage: 25 mg/L Temperature: – Irradiation time: 120 min | 3.0–11.0 Optimum: 11.0 | 99.47 |
ZnO m–Cresol Purple | Light source: UV light Pollutant concentration: 0.05 mmol/L Catalyst dosage: 1.5 g/L Temperature: 25 °C Irradiation time: 150 min | 4.0–10.0 Optimum: 8.0 | 97.00 |
TiO2 Tetracycline | Light source: UV light Pollutant concentration: 1.24 mmol/L Catalyst dosage: 1 g/L Temperature: 25 °C Irradiation time: 120 min | 5.0–11.0 Optimum: 5.0 | 83.40 |
TiO2/non-woven fibers Reactive Yellow 145 | Light source: UV light Pollutant concentration: 0.03 mmol/L Catalyst dosage: – Temperature: 20 °C Irradiation time: 240 min | 3.0–11.5 Optimum: 3.0 | ~99.00 |
Evaluation Methods | Function | Parameter Meaning |
---|---|---|
Reaction rate constant | k is reaction rate constant, is the outlet concentration, is the inlet concentration, and t is reaction time. | |
Specific removal rate | is specific removal rate, is the outlet concentration, and is the inlet concentration. | |
Photon absorption efficiency | is the dimensionless photon efficiency, R is the reaction rate (mol·L−1·s−1), and Z is the amount of electron transfer in each molecule that is degraded and is the photon flux (mol·L−1·s−1). | |
Overall photonic efficiency [123] | In the first function, is photon absorption efficiency, is the number of photons absorbed by the plates surface, is the number of photons emitted by each lamp, and is the number of lamps. In the second function, is the uniformity of the distribution of the dimensionless radiation intensity, I(x,y) is the number of photons striking the differential area dA at the position I(x,y) on the plate surface, Imax is the maximum value of I(x,y), and A is the total surface area. In the third function, is the overall photonic efficiency. Note that the above parameters take values between 0 and 1, with numbers approaching 1 giving the most efficient reactor configuration. | |
Time and space yield [105] | The first function is used to evaluate the continuous stirred tank reactor (CSTR); VR is the reactor volume (1 m3), and k has units of day−1. The second function is used to evaluate the plug flow photocatalytic reactors; is the outlet concentration, and is the inlet concentration. | |
Photocatalytic spatial and temporal yields [105] | In the first function, LP is the standardized lamp power (kW), P is the lamp power of the experimental setup, and V is the volume of the reaction medium in the experimental setup (m3). In the second function, STY is the time and space yield. |
Reactor | Pollutant/ Catalyst/ Light Source | Reaction Rate Constant (day−1) | Removal Rate | Time and Space Yield (m3 Pollutant/m3 Reactor/Day) | Photocatalytic Spatial and Temporal Yields (m3 Pollutant/m3 Reactor/Day/kW) | Reference |
---|---|---|---|---|---|---|
Toroidal reactor | Phenol/ TiO2/ UV lamps (30 W) | 28.8 | 100% | 2.88 × 10−2 | 1.83 × 10−3 | [87] |
Spiral-shaped photocatalytic reactor | Malachite green dye/ Degussa P25/ Blue LED (40 mW) | 1.80 | 76% | 1.80 × 10−3 | 1.125 × 10−5 | [92] |
Circular reactor | Phenol/ TiO2/ UV-LEDs (264 mW) | 30.24 | 58% | 3.03 × 10−2 | 3.21 × 10−3 | [95] |
Optofluidic microreactor | Rhodamine 6G/ TiO2/ UV light | 7949 | 100% | 7.949 | - | [96] |
Microcapillary photoreactor | Methyl orange/ CuPc-Bi2O3-ZnO Visible light LED (60 W) | 1548.5 | 90.83% | 2.2416 × 10−2 | 3.74 × 10 −2 | [97] |
Fiber optic reactors | Ciprofloxacin/ TiO2/ Artificial sunlight | 0.96 | 95.1% | 9.6 × 10−4 | - | [98] |
Parallel plate reactor | Phenol/ TiO2/ UV lamps (15 W × 7) | 36 | 86% | 3.60 × 10−2 | 1.03 × 10−3 | [99] |
Capillary array photocatalytic reactor | Methyl orange/ TiO2/ UV lamps (11 W) | 58.5 | 95% | 5.85 × 10−3 | 1.15 × 10−6 | [106] |
Capillary microphotoreactor packed with TiO2-coated glass beads | Methylene blue/ P25/ Xe lamp (300 W) | 16042.6 | 96% | 2.322 × 103 | 5.936 × 10−4 | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, J.; Gao, X.; Zou, J.; Pang, F. Research on Photocatalytic Wastewater Treatment Reactors: Design, Optimization, and Evaluation Criteria. Catalysts 2023, 13, 974. https://doi.org/10.3390/catal13060974
Mei J, Gao X, Zou J, Pang F. Research on Photocatalytic Wastewater Treatment Reactors: Design, Optimization, and Evaluation Criteria. Catalysts. 2023; 13(6):974. https://doi.org/10.3390/catal13060974
Chicago/Turabian StyleMei, Junnan, Ximei Gao, Jun Zou, and Fei Pang. 2023. "Research on Photocatalytic Wastewater Treatment Reactors: Design, Optimization, and Evaluation Criteria" Catalysts 13, no. 6: 974. https://doi.org/10.3390/catal13060974
APA StyleMei, J., Gao, X., Zou, J., & Pang, F. (2023). Research on Photocatalytic Wastewater Treatment Reactors: Design, Optimization, and Evaluation Criteria. Catalysts, 13(6), 974. https://doi.org/10.3390/catal13060974