Enzyme–Iron Oxide Nanoassemblies: A Review of Immobilization and Biocatalytic Applications
Abstract
:1. Introduction
2. Iron Oxide Magnetic Nanoplatforms
2.1. Stability and Coating Strategies
2.2. Coated versus Non-Coated Magnetic Nanoparticles and Their Comparative Performance in Biocatalytic Applications
3. Enzyme Immobilization Process: A Thermodynamic and Kinetic Viewpoint
3.1. Enzyme Immobilization Strategies
3.2. Thermodynamic Considerations in the Enzyme Adsorption Process
- Only a monolayer is formed, i.e., only one molecule is bound per binding site.
- The surface is homogeneous, so all binding centers are identical.
- The binding sites are independent, i.e., the adsorption of one molecule does not affect the adsorption of the next molecule.
- There is no competition for binding sites.
- Adsorption is reversible.
3.3. Kinetic and Thermodynamic Parameters of Immobilized Enzymes
4. Enzyme–Magnetite Nanohybrids for Catalytic Biotechnology
5. Enzyme–Magnetite Nanohybrids for Cancer Therapy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, S.; Wu, C.; Ye, Z.; Ying, Y. Designed Inorganic Nanomaterials for Intrinsic Peroxidase Mimics: A Review. Sens. Actuators B Chem. 2019, 283, 18–34. [Google Scholar] [CrossRef]
- Del Arco, J.; Alcántara, A.R.; Fernández-Lafuente, R.; Fernández-Lucas, J. Magnetic Micro-Macro Biocatalysts Applied to Industrial Bioprocesses. Bioresour. Technol. 2021, 322, 124547. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.R.C.; Lima, P.J.M.; Pinheiro, B.B.; Freire, T.M.; Dutra, L.M.U.; Fechine, P.B.A.; Gonçalves, L.R.B.; de Souza, M.C.M.; Dos Santos, J.C.S.; Fernandez-Lafuente, R. Immobilization of Lipase A from Candida Antarctica onto Chitosan-Coated Magnetic Nanoparticles. Int. J. Mol. Sci. 2019, 20, 4018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzyme Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Valério, A.; Henriques, R.O.; Moritz, D.E.; Ninow, J.L.; Freire, D.M.G.; Manoel, E.A.; Fernandez-Lafuente, R.; De Oliveira, D. Nanomaterials for Biocatalyst Immobilization—State of the Art and Future Trends. RSC Adv. 2016, 6, 104675–104692. [Google Scholar] [CrossRef]
- Singh, M.; Ishfaq, N.; Salman, S.; Bashir, M.H.; Ashfaq, B. Enzyme Immobilization and Applications of Magnetic Nanoparticles in Smart Enzyme Immobilization. Sci. Technol. 2017, 3, 387–396. [Google Scholar]
- Nisha, S.; Karthick, A.; Gobi, N. A Review on Methods, Application and Properties of Immobilized Enzyme. Chem. Sci. Rev. Lett. 2012, 1, 148–155. [Google Scholar]
- Wu, W.; Pu, Y.; Shi, J. Nanomedicine-Enabled Chemotherapy-Based Synergetic Cancer Treatments. J. Nanobiotechnol. 2022, 20, 1–21. [Google Scholar] [CrossRef]
- Bonet-Aleta, J.; Hueso, J.L.; Sanchez-Uriel, L.; Encinas-Gimenez, M.; Irusta, S.; Martin-Duque, P.; Martinez, G.; Santamaria, J. Synergistic Assembly of Gold and Copper-Iron Oxide Nanocatalysts to Promote the Simultaneous Depletion of Glucose and Glutathione. Mater. Today Chem. 2023, 29, 101404. [Google Scholar] [CrossRef]
- Bonet-Aleta, J.; Calzada-Funes, J.; Hueso, J.L. Manganese Oxide Nano-Platforms in Cancer Therapy: Recent Advances on the Development of Synergistic Strategies Targeting the Tumor Microenvironment. Appl. Mater. Today 2022, 29, 101628. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Y.; Shi, J. Nanocatalytic Medicine. Adv. Mater. 2019, 31, 1901778. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Peiro, J.I.; Bonet-Aleta, J.; Santamaria, J.; Hueso, J.L. Platinum Nanoplatforms: Classic Catalysts Claiming a Prominent Role in Cancer Therapy. Chem. Soc. Rev. 2022, 51, 7662–7681. [Google Scholar] [CrossRef] [PubMed]
- Imam, H.T.; Marr, P.C.; Marr, A.C. Enzyme Entrapment, Biocatalyst Immobilization without Covalent Attachment. Green Chem. 2021, 23, 4980–5005. [Google Scholar] [CrossRef]
- Santos, J.C.S.D.; Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Rodrigues, R.C.; Fernandez-Lafuente, R. Importance of the Support Properties for Immobilization or Purification of Enzymes. ChemCatChem 2015, 7, 2413–2432. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Bonet-Aleta, J.; Calzada-Funes, J.; Hueso, J.L. Recent Developments of Iron-Based Nanosystems as Enzyme-Mimicking Surrogates of Interest in Tumor Microenvironment Treatment. In Nanomaterials for Biocatalysis; Elsevier: Amsterdam, The Netherlands, 2022; pp. 237–265. ISBN 9780128244364. [Google Scholar]
- Chen, Q.; Ma, X.; Xie, L.; Chen, W.; Xu, Z.; Song, E.; Zhu, X.; Song, Y. Iron-Based Nanoparticles for MR Imaging-Guided Ferroptosis in Combination with Photodynamic Therapy to Enhance Cancer Treatment. Nanoscale 2021, 13, 4855–4870. [Google Scholar] [CrossRef]
- Bae, C.; Kim, H.; Kook, Y.M.; Lee, C.; Kim, C.; Yang, C.; Park, M.H.; Piao, Y.; Koh, W.G.; Lee, K. Induction of Ferroptosis Using Functionalized Iron-Based Nanoparticles for Anti-Cancer Therapy. Mater. Today Bio 2022, 17, 100457. [Google Scholar] [CrossRef]
- Wang, L.L.; Fan, M.; Xing, X.; Liu, Y.; Sun, S. Immobilization of Glyceraldehyde-3-Phosphate Dehydrogenase on Fe3O4 Magnetic Nanoparticles and Its Application in Histamine Removal. Colloids Surf. B Biointerfaces 2021, 205, 111917. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; Neto, D.M.A.; Fechine, P.B.A.; Lopes, A.A.S.; Gonçalves, L.R.B.; Dos Santos, J.C.S.; de Souza, M.C.M.; Fernandez-Lafuente, R. Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from Candida Antarctica Immobilized onto Magnetic Nanoparticles. Improvement of Biocatalysts’ Performance under Ultrasonic Irradiation. Int. J. Mol. Sci. 2019, 20, 5807. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.R. Immobilized Enzymes: A Comprehensive Review. Bull. Natl. Res. Cent. 2021, 45, 1–13. [Google Scholar] [CrossRef]
- Hlady, V.; Buijs, J. Protein Adsorption on Solid Surfaces. Curr. Opin. Biotechnol. 1996, 7, 72–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabe, M.; Verdes, D.; Seeger, S. Understanding Protein Adsorption Phenomena at Solid Surfaces. Adv. Colloid Interface Sci. 2011, 162, 87–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakanishi, K.; Sakiyama, T.; Imamura, K. On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon. J. Biosci. Bioeng. 2001, 91, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying Enzyme Activity and Selectivity by Immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Berenguer-Murcia, Á.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of Enzymes via Immobilization: Multipoint Covalent Attachment and Other Stabilization Strategies. Biotechnol. Adv. 2021, 52, 107821. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Strategies for the One-Step Immobilization–Purification of Enzymes as Industrial Biocatalysts. Biotechnol. Adv. 2015, 33, 435–456. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, C.S.; Angelotti, J.A.F.; Fernandez-Lafuente, R.; Hirata, D.B. Lipase Immobilization via Cross-Linked Enzyme Aggregates: Problems and Prospects—A Review. Int. J. Biol. Macromol. 2022, 215, 434–449. [Google Scholar] [CrossRef]
- Batool, I.; Iqbal, A.; Imran, M.; Ramzan, M.; Anwar, A. Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-Catalysis. Top. Catal. 2023, 66, 649–675. [Google Scholar] [CrossRef]
- Tsumoto, K.; Ejima, D.; Senczuk, A.M.; Kita, Y.; Arakawa, T. Effects of Salts on Protein–Surface Interactions: Applications for Column Chromatography. J. Pharm. Sci. 2007, 96, 1677–1690. [Google Scholar] [CrossRef]
- Hall, J.B.; Dobrovolskaia, M.A.; Patri, A.K.; McNeil, S.E. Characterization of Nanoparticles for Therapeutics. Nanomedicine 2007, 2, 789–803. [Google Scholar] [CrossRef]
- Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.W.; Lin, V.S.Y. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Bohunicky, B.; Mousa, S.A. Biosensors: The New Wave in Cancer Diagnosis. Nanotechnol. Sci. Appl. 2011, 4, 1–10. [Google Scholar]
- Chen, H.; Yuan, L.; Song, W.; Wu, Z.; Li, D. Biocompatible Polymer Materials: Role of Protein-Surface Interactions. Prog. Polym. Sci. 2008, 33, 1059–1087. [Google Scholar] [CrossRef]
- Zhou, H.; Mayorga-Martinez, C.C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121, 4999–5041. [Google Scholar] [CrossRef]
- Wang, L.; Meng, Z.; Chen, Y.; Zheng, Y. Engineering Magnetic Micro/Nanorobots for Versatile Biomedical Applications. Adv. Intell. Syst. 2021, 3, 2000267. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, H.; Chen, Z.; Yin, T.; Zheng, M.; Cai, L. Twin-Bioengine Self-Adaptive Micro/Nanorobots Using Enzyme Actuation and Macrophage Relay for Gastrointestinal Inflammation Therapy. Sci. Adv. 2023, 9, eadc8978. [Google Scholar] [CrossRef]
- Walker, D.; Käsdorf, B.T.; Jeong, H.H.; Lieleg, O.; Fischer, P. Biomolecules: Enzymatically Active Biomimetic Micropropellers for the Penetration of Mucin Gels. Sci. Adv. 2015, 1, e1500501. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Qin, M.; Meng, W.; Cao, Y.; Wang, W. How Do Proteins Unfold upon Adsorption on Nanoparticle Surfaces? Langmuir 2012, 28, 12779–12787. [Google Scholar] [CrossRef]
- Larsericsdotter, H.; Oscarsson, S.; Buijs, J. Structure, Stability, and Orientation of BSA Adsorbed to Silica. J. Colloid Interface Sci. 2005, 289, 26–35. [Google Scholar] [CrossRef]
- Vertegel, A.A.; Richard, W.; Siegel, A.; Dordick, J.S. Silica Nanoparticle Size Influences the Structure and Enzymatic Activity of Adsorbed Lysozyme. Langmuir 2004, 20, 6800–6807. [Google Scholar] [CrossRef]
- Wei, Y.; Thyparambil, A.A.; Wu, Y.; Latour, R.A. Adsorption-Induced Changes in Ribonuclease A Structure and Enzymatic Activity on Solid Surfaces. Langmuir 2014, 30, 14849–14858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsericsdotter, H.; Oscarsson, S.; Buijs, J. Thermodynamic Analysis of Proteins Adsorbed on Silica Particles: Electrostatic Effects. J. Colloid Interface Sci. 2001, 237, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Felsovalyi, F.; Mangiagalli, P.; Bureau, C.; Kumar, S.K.; Banta, S. Reversibility of the Adsorption of Lysozyme on Silica. Langmuir 2011, 27, 11873–11882. [Google Scholar] [CrossRef] [PubMed]
- Linse, S.; Cabaleiro-Lago, C.; Xue, W.-F.; Lynch, I.; Lindman, S.; Thulin, E.; Radford, S.E.; Dawson, K.A. Nucleation of Protein Fibrillation by Nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 8691–8696. [Google Scholar] [CrossRef] [Green Version]
- Daly, S.M.; Przybycien, T.M.; Tilton, R.D. Aggregation of Lysozyme and of Poly(Ethylene Glycol)-Modified Lysozyme after Adsorption to Silica. Colloids Surf. B Biointerfaces 2007, 57, 81–88. [Google Scholar] [CrossRef]
- Liu, D.M.; Dong, C. Recent Advances in Nano-Carrier Immobilized Enzymes and Their Applications. Process Biochem. 2020, 92, 464–475. [Google Scholar] [CrossRef]
- Netto, C.G.C.M.; Toma, H.E.; Andrade, L.H. Superparamagnetic Nanoparticles as Versatile Carriers and Supporting Materials for Enzymes. J. Mol. Catal. B Enzym. 2013, 85–86, 71–92. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Woodley, J.M.; Fernandez-Lafuente, R. Is Enzyme Immobilization a Mature Discipline? Some Critical Considerations to Capitalize on the Benefits of Immobilization. Chem. Soc. Rev. 2022, 51, 6251–6290. [Google Scholar] [CrossRef]
- Bosio, V.E.; Islan, G.A.; Martínez, Y.N.; Durán, N.; Castro, G.R. Nanodevices for the Immobilization of Therapeutic Enzymes. Crit. Rev. Biotechnol. 2016, 36, 447–464. [Google Scholar] [CrossRef]
- Rossi, L.M.; Costa, N.J.S.; Silva, F.P.; Wojcieszak, R. Magnetic Nanomaterials in Catalysis: Advanced Catalysts for Magnetic Separation and Beyond. Green Chem. 2014, 16, 2906–2933. [Google Scholar] [CrossRef]
- Armenia, I.; Grazú Bonavia, M.V.; De Matteis, L.; Ivanchenko, P.; Martra, G.; Gornati, R.; de la Fuente, J.M.; Bernardini, G. Enzyme Activation by Alternating Magnetic Field: Importance of the Bioconjugation Methodology. J. Colloid Interface Sci. 2019, 537, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Ovejero, J.G.; Armenia, I.; Serantes, D.; Veintemillas-Verdaguer, S.; Zeballos, N.; López-Gallego, F.; Grüttner, C.; De La Fuente, J.M.; del Puerto Morales, M.; Grazu, V. Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation. Nano Lett. 2021, 21, 7213–7220. [Google Scholar] [CrossRef] [PubMed]
- Bonet-Aleta, J.; Sancho-Albero, M.; Calzada-Funes, J.; Irusta, S.; Martin-Duque, P.; Hueso, J.L.; Santamaria, J. Glutathione-Triggered Catalytic Response of Copper-Iron Mixed Oxide Nanoparticles. Leveraging Tumor Microenvironment Conditions for Chemodynamic Therapy. J. Colloid Interface Sci. 2022, 617, 704–717. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wang, E. Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection. Anal. Chem. 2008, 80, 2250–2254. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhu, L.; Wang, D.; Wang, M.; Lin, Z.; Tang, H. Sono-Assisted Preparation of Highly-Efficient Peroxidase-like Fe3O4 Magnetic Nanoparticles for Catalytic Removal of Organic Pollutants with H2O2. Ultrason. Sonochem. 2010, 17, 526–533. [Google Scholar] [CrossRef]
- Rocher, V.; Siaugue, J.-M.; Cabuil, V.; Bee, A. Removal of Organic Dyes by Magnetic Alginate Beads. Water Res. 2008, 42, 1290–1298. [Google Scholar] [CrossRef]
- Yoon, T.-J.; Lee, W.; Oh, Y.-S.; Lee, J.-K. Magnetic Nanoparticles as a Catalyst Vehicle for Simple and Easy RecyclingElectronic Supplementary Information (ESI) Available: XRD and FT-IR Data, as Well as the Detailed Experimental Conditions for the Catalytic Hydroformylation Reactions. New J. Chem. 2003, 27, 227–229. [Google Scholar] [CrossRef]
- Estelrich, J.; Sánchez-Martín, M.J.; Busquets, M.A. Nanoparticles in Magnetic Resonance Imaging: From Simple to Dual Contrast Agents. Int. J. Nanomed. 2015, 10, 1727–1741. [Google Scholar] [CrossRef] [Green Version]
- Tartaj, P.; del Puerto Morales, M.; Veintemillas-Verdaguer, S.; González-Carreño, T.; Serna, C.J. The Preparation of Magnetic Nanoparticles for Applications in Biomedicine. J. Phys. D. Appl. Phys. 2003, 36, R182–R197. [Google Scholar] [CrossRef]
- De Jong, W.H.; Borm, P.J.A. Drug Delivery and Nanoparticles:Applications and Hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.-X.; Su, F.-W.; Forsling, W.; Samskog, P.-O. Surface Characteristics of Magnetite in Aqueous Suspension. J. Colloid Interface Sci. 1998, 197, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Derjaguin, B.; Landau, L. Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Prog. Surf. Sci. 1993, 43, 30–59. [Google Scholar] [CrossRef]
- Verwey, E.J.W. Theory of the Stability of Lyophobic Colloids. J. Phys. Colloid Chem. 1947, 51, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadros, T. Electrostatic and Steric Stabilization of Colloidal Dispersions. In Electrical Phenomena at Interfaces and Biointerfaces; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 153–172. ISBN 9781118135440. [Google Scholar]
- Lu, A.-H.; Salabas, E.L.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M.; Martell, A.E. Critical Stability Constants; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Kovář, D.; Malá, A.; Mlčochová, J.; Kalina, M.; Fohlerová, Z.; Hlaváček, A.; Farka, Z.; Skládal, P.; Starčuk, Z.; Jiřík, R.; et al. Preparation and Characterisation of Highly Stable Iron Oxide Nanoparticles for Magnetic Resonance Imaging. J. Nanomater. 2017, 2017, 7859289. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, Y.; Goodarzi, A.; Swihart, M.T.; Ohulchanskyy, T.Y.; Kaur, N.; Furlani, E.P.; Prasad, P.N. Aqueous Ferrofluid of Magnetite Nanoparticles: Fluorescence Labeling and Magnetophoretic Control. J. Phys. Chem. B 2005, 109, 3879–3885. [Google Scholar] [CrossRef]
- Miguel-Sancho, N.; Bomatí-Miguel, O.; Colom, G.; Salvador, J.P.; Marco, M.P.; Santamaría, J. Development of Stable, Water-Dispersible, and Biofunctionalizable Superparamagnetic Iron Oxide Nanoparticles. Chem. Mater. 2011, 23, 2795–2802. [Google Scholar] [CrossRef]
- Gorrepati, E.A.; Wongthahan, P.; Raha, S.; Fogler, H.S. Silica Precipitation in Acidic Solutions: Mechanism, PH Effect, and Salt Effect. Langmuir 2010, 26, 10467–10474. [Google Scholar] [CrossRef]
- Bergna, H.E.; Roberts, W.O. Colloidal Silica: Fundamentals and Applications; CRC Taylor & Francis: Boca Raton, FL, USA, 2006; ISBN 9780824709679. [Google Scholar]
- Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and Characterization of Amino–Silane Modified Superparamagnetic Silica Nanospheres. J. Magn. Magn. Mater. 2004, 270, 1–6. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Nishimura, G.; Hirai, T.K. Separation of Transition Metals Using Inorganic Adsorbents Modified with Chelating Ligands. Ind. Eng. Chem. Res. 2002, 41, 5065–5070. [Google Scholar] [CrossRef]
- Malvindi, M.A.; De Matteis, V.; Galeone, A.; Brunetti, V.; Anyfantis, G.C.; Athanassiou, A.; Cingolani, R.; Pompa, P.P. Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering. PLoS ONE 2014, 9, e85835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Lewandowska, J.; Staszewska, M.; Kepczynski, M.; Szuwarzyński, M.; Łatkiewicz, A.; Olejniczak, Z.; Nowakowska, M. Sol–Gel Synthesis of Iron Oxide–Silica Composite Microstructures. J. Sol Gel Sci. Technol. 2012, 64, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Bolivar, J.M.; Rocha-Martin, J.; Mateo, C.; Cava, F.; Berenguer, J.; Fernandez-Lafuente, R.; Guisan, J.M. Coating of Soluble and Immobilized Enzymes with Ionic Polymers: Full Stabilization of the Quaternary Structure of Multimeric Enzymes. Biomacromolecules 2009, 10, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Li, H.; Luo, Z.; Kong, J.; Wan, Y.; Zheng, L.; Zhang, Q.; Niu, H.; Vermorken, A.; Van de Ven, W.; et al. Dextran-Coated Superparamagnetic Nanoparticles as Potential Cancer Drug Carriers in Vivo. Nanoscale 2015, 7, 11155–11162. [Google Scholar] [CrossRef]
- Kalkan, N.A.; Aksoy, S.; Aksoy, E.A.; Hasirci, N. Preparation of Chitosan-Coated Magnetite Nanoparticles and Application for Immobilization of Laccase. J. Appl. Polym. Sci. 2012, 123, 707–716. [Google Scholar] [CrossRef]
- Castelló, J.; Gallardo, M.; Busquets, M.A.; Estelrich, J. Chitosan (or Alginate)-Coated Iron Oxide Nanoparticles: A Comparative Study. Colloids Surf. A Physicochem. Eng. Asp. 2015, 468, 151–158. [Google Scholar] [CrossRef]
- Chastellain, M.; Petri, A.; Hofmann, H. Particle Size Investigations of a Multistep Synthesis of PVA Coated Superparamagnetic Nanoparticles. J. Colloid Interface Sci. 2004, 278, 353–360. [Google Scholar] [CrossRef]
- Butterworth, M.; Illum, L.; Davis, S. Preparation of Ultrafine Silica- and PEG-Coated Magnetite Particles. Colloids Surf. A Physicochem. Eng. Asp. 2001, 179, 93–102. [Google Scholar] [CrossRef]
- Virgen-Ortíz, J.J.; Dos Santos, J.C.S.; Berenguer-Murcia, Á.; Barbosa, O.; Rodrigues, R.C.; Fernandez-Lafuente, R. Polyethylenimine: A Very Useful Ionic Polymer in the Design of Immobilized Enzyme Biocatalysts. J. Mater. Chem. B 2017, 5, 7461–7490. [Google Scholar] [CrossRef] [Green Version]
- Barrat, J.-L.; Joanny, F. Theory of Polyelectrolyte Solutions; Wiley-Blackwell: Hoboken, NJ, USA, 2007; pp. 1–66. [Google Scholar]
- Manning, G.S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties. J. Chem. Phys. 1969, 51, 924–933. [Google Scholar] [CrossRef]
- Visakh, P.M. Polyelectrolyte: Thermodynamics and Rheology. In Polyelectrolytes. Engineering Materials; Visakh, P.M., Bayraktar, O., Picó, G., Eds.; Springer: Cham, Switzerland, 2014; pp. 1–17. [Google Scholar]
- Drifford, M.; Delsanti, M. Polyelectrolyte Solutions with Multivalent Added Salts: Stability, Structure, and Dynamics. In Physical Chemistry of Polyelectrolytes; Marcel Dekker: New York, NY, USA, 2001; pp. 135–162. ISBN 9780824704636. [Google Scholar]
- Kokufuta, E.; Takahashi, K. Adsorption of Poly(Diallyldimethylammonium Chloride) on Colloid Silica from Water and Salt Solution. Macromolecules 1986, 19, 351–354. [Google Scholar] [CrossRef]
- Zhong, L.; Feng, Y.; Wang, G.; Wang, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and Use of Immobilized Lipases in/on Nanomaterials: A Review from the Waste to Biodiesel Production. Int. J. Biol. Macromol. 2020, 152, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.C.H.T.; Yiu, H.H.P. Enzyme Immobilization on Magnetic Nanoparticle Supports for Enhanced Separation and Recycling of Catalysts. In Nanomaterials for Biocatalysis; Elsevier: Amsterdam, The Netherlands, 2022; pp. 301–321. ISBN 9780128244364. [Google Scholar]
- Roth, H.C.; Schwaminger, S.P.; Peng, F.; Berensmeier, S. Immobilization of Cellulase on Magnetic Nanocarriers. ChemistryOpen 2016, 5, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Lundqvist, M.; Ingmar Sethson, A. Bengt-Harald Jonsson Protein Adsorption onto Silica Nanoparticles: Conformational Changes Depend on the Particles’ Curvature and the Protein Stability. Langmuir 2004, 20, 10639–10647. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.M.; Hatti-Kaul, R. Protein Stabilising Effect of Polyethyleneimine. J. Biotechnol. 1999, 72, 21–31. [Google Scholar] [CrossRef]
- Padilla-Martínez, S.G.; Martínez-Jothar, L.; Sampedro, J.G.; Tristan, F.; Pérez, E. Enhanced Thermal Stability and PH Behavior of Glucose Oxidase on Electrostatic Interaction with Polyethylenimine. Int. J. Biol. Macromol. 2015, 75, 453–459. [Google Scholar] [CrossRef]
- Godbey, W.T.; Wu, K.K.; Mikos, A.G. Poly(Ethylenimine) and Its Role in Gene Delivery. J. Control. Release 1999, 60, 149–160. [Google Scholar] [CrossRef]
- Ó’Fágáin, C. Enzyme Stabilization—Recent Experimental Progress. Enzyme Microb. Technol. 2003, 33, 137–149. [Google Scholar] [CrossRef]
- Costa, S.A.; Tzanov, T.; Filipa Carneiro, A.; Paar, A.; Gübitz, G.M.; Cavaco-Paulo, A. Studies of Stabilization of Native Catalase Using Additives. Enzyme Microb. Technol. 2002, 30, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Kaul, S.; Singla, P.; Kumar, V.; Sandhir, R.; Chung, J.H.; Garg, P.; Singhal, N.K. Xylanase Immobilization on Magnetite and Magnetite Core/Shell Nanocomposites Using Two Different Flexible Alkyl Length Organophosphonates: Linker Length and Shell Effect on Enzyme Catalytic Activity. Int. J. Biol. Macromol. 2018, 115, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Nematian, T.; Shakeri, A.; Salehi, Z.; Saboury, A.A. Lipase Immobilized on Functionalized Superparamagnetic Few-Layer Graphene Oxide as an Efficient Nanobiocatalyst for Biodiesel Production from Chlorella Vulgaris Bio-Oil. Biotechnol. Biofuels 2020, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ansari, S.A.; Husain, Q. Potential Applications of Enzymes Immobilized on/in Nano Materials: A Review. Biotechnol. Adv. 2012, 30, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.M.; Chen, J.; Shi, Y.P. Advances on Methods and Easy Separated Support Materials for Enzymes Immobilization. TrAC Trends Anal. Chem. 2018, 102, 332–342. [Google Scholar] [CrossRef]
- Zucca, P.; Fernandez-Lafuente, R.; Sanjust, E. Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules 2016, 21, 1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, J.; Sun, B.; Lin, T.; Feng, Y.; Jia, S. Enzyme Shielding by Mesoporous Organosilica Shell on Fe3O4@silica Yolk-Shell Nanospheres. Int. J. Biol. Macromol. 2018, 117, 673–682. [Google Scholar] [CrossRef]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme Immobilization: An Update. J. Chem. Biol. 2013, 6, 185. [Google Scholar] [CrossRef] [Green Version]
- Vaghari, H.; Jafarizadeh-Malmiri, H.; Mohammadlou, M.; Berenjian, A.; Anarjan, N.; Jafari, N.; Nasiri, S. Application of Magnetic Nanoparticles in Smart Enzyme Immobilization. Biotechnol. Lett. 2016, 38, 223–233. [Google Scholar] [CrossRef]
- Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; et al. Acidity Generated by the Tumor Microenvironment Drives Local Invasion. Cancer Res. 2013, 73, 1524. [Google Scholar] [CrossRef] [Green Version]
- Hlady, V.; Buijs, J.; Jennissen, H.P. [26] Methods for Studying Protein Adsorption. Methods Enzymol. 1999, 309, 402–429. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Kipling, J.J. Adsorption from Partially Miscible Liquids. In Adsorption from Solutions of Non-Electrolytes; Elsevier: Amsterdam, The Netherlands, 1965; pp. 70–85. ISBN 9781483231068. [Google Scholar]
- Andrade, J.D.; Hlady, V. Protein Adsorption and Materials Biocompatibility: A Tutorial Review and Suggested Hypotheses. In Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 1986; pp. 1–63. [Google Scholar]
- Izquierdo, J.F. Cinética de Las Reacciones Químicas; Edicions Universitat de Barcelona: Barcelona, Spain, 2004; ISBN 8483384795. [Google Scholar]
- Kim, J.-H.; Yoon, J.-Y. Protein Adsorption On Polymer Particles. In Encyclopedia of Surface and Colloid Science; Marcel Dekker, Inc: New York, NY, USA, 2002. [Google Scholar]
- Ding, C.; Ma, X.; Yao, X.; Jia, L. Facile Synthesis of Copper(II)-Decorated Magnetic Particles for Selective Removal of Hemoglobin from Blood Samples. J. Chromatogr. A 2015, 1424, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tan, S.; Liang, Q.; Guan, H.; Han, Q.; Ding, M. Selective Separation of Bovine Hemoglobin Using Magnetic Mesoporous Rare-Earth Silicate Microspheres. Talanta 2019, 204, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Kamran, S.; Absalan, G.; Asadi, M. A Comparative Study for Adsorption of Lysozyme from Aqueous Samples onto Fe3O4 Magnetic Nanoparticles Using Different Ionic Liquids as Modifier. Amino Acids 2015, 47, 2483–2493. [Google Scholar] [CrossRef] [PubMed]
- Arai, K.; Murata, S.; Wang, T.; Yoshimura, W.; Oda-Tokuhisa, M.; Matsunaga, T.; Kisailus, D.; Arakaki, A. Adsorption of Biomineralization Protein Mms6 on Magnetite (Fe3O4) Nanoparticles. Int. J. Mol. Sci. 2022, 23, 5554. [Google Scholar] [CrossRef]
- Carvalho, T.; Pereira, A.d.S.; Bonomo, R.C.F.; Franco, M.; Finotelli, P.V.; Amaral, P.F.F. Simple Physical Adsorption Technique to Immobilize Yarrowia Lipolytica Lipase Purified by Different Methods on Magnetic Nanoparticles: Adsorption Isotherms and Thermodynamic Approach. Int. J. Biol. Macromol. 2020, 160, 889–902. [Google Scholar] [CrossRef]
- Kannan, K.; Mukherjee, J.; Mishra, P.; Gupta, M.N. Nickel Ferrite Nanoparticles as an Adsorbent for Immobilized Metal Affinity Chromatography of Proteins. J. Chromatogr. Sci. 2021, 59, 262–268. [Google Scholar] [CrossRef]
- Chen, J.; Lin, Y.; Jia, L. Preparation of Anionic Polyelectrolyte Modified Magnetic Nanoparticles for Rapid and Efficient Separation of Lysozyme from Egg White. J. Chromatogr. A 2015, 1388, 43–51. [Google Scholar] [CrossRef]
- Namdeo, M.; Bajpai, S.K. Enzymatic Immobilization of a-Amylase onto Cellulose-Coated Magnetite (CCM) Nanoparticles and Preliminary Starch Degradation Study. J. Mol. Catal. B 2009, 59, 134–139. [Google Scholar] [CrossRef]
- Pogorilyi, R.P.; Melnyk, I.V.; Zub, Y.L.; Seisenbaeva, G.A.; Kessler, V.G.; Shcherbatyik, M.M.; Košak, A.; Lobnik, A. Urease Adsorption and Activity on Magnetite Nanoparticles Functionalized with Monofunctional and Bifunctional Surface Layers. J. Sol Gel Sci. Technol. 2013, 68, 447–454. [Google Scholar] [CrossRef]
- Gal, N.; Schroffenegger, M.; Reimhult, E. Stealth Nanoparticles Grafted with Dense Polymer Brushes Display Adsorption of Serum Protein Investigated by Isothermal Titration Calorimetry. J. Phys. Chem. B 2018, 122, 5820–5834. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Chen, K.; Gu, H. Investigations on the Interactions of Proteins with Polyampholyte-Coated Magnetite Nanoparticles. J. Phys. Chem. B 2013, 117, 14129–14135. [Google Scholar] [CrossRef] [PubMed]
- Leitner, N.S.; Schroffenegger, M.; Reimhult, E. Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin. ACS Appl. Bio Mater. 2021, 4, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Tapdiqov, S.Z.; Ambrosio, L.; Raucci, M.G. Adsorption of Trypsin Onto Ph Sensitive Poly-N-Vinylpyyrolidone-Co-Poly-4-Vinylpyridine and Its Magnetic Based Hydrogel: Sorption Isotherms and Thermodynamic Parameters. SSRN Electron. J. 2023, 357, 114371. [Google Scholar] [CrossRef]
- Muley, A.B.; Mulchandani, K.H.; Singhal, R.S. Immobilization of Enzymes on Iron Oxide Magnetic Nanoparticles: Synthesis, Characterization, Kinetics and Thermodynamics. Methods Enzymol. 2020, 630, 39–79. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Saleh, S.A.A.; Abdel-Hameed, S.A.M.; Fayad, A.M. Catalytic, Kinetic and Thermodynamic Properties of Free and Immobilized Caseinase on Mica Glass-Ceramics. Heliyon 2019, 5, e01674. [Google Scholar] [CrossRef] [Green Version]
- Bindu, V.U.; Mohanan, P.V. Thermal Deactivation of α-Amylase Immobilized Magnetic Chitosan and Its Modified Forms: A Kinetic and Thermodynamic Study. Carbohydr. Res. 2020, 498, 108185. [Google Scholar] [CrossRef]
- Wong, W.K.L.; Wahab, R.A.; Onoja, E. Chemically Modified Nanoparticles from Oil Palm Ash Silica-Coated Magnetite as Support for Candida Rugosa Lipase-Catalysed Hydrolysis: Kinetic and Thermodynamic Studies. Chem. Pap. 2020, 74, 1253–1265. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rezaei Mokarram, R.; Ghorbani, M.; Hamishehkar, H. Inulinase Immobilized Gold-Magnetic Nanoparticles as a Magnetically Recyclable Biocatalyst for Facial and Efficient Inulin Biotransformation to High Fructose Syrup. Int. J. Biol. Macromol. 2019, 123, 846–855. [Google Scholar] [CrossRef]
- Desai, R.P.; Dave, D.; Suthar, S.A.; Shah, S.; Ruparelia, N.; Kikani, B.A. Immobilization of α-Amylase on GO-Magnetite Nanoparticles for the Production of High Maltose Containing Syrup. Int. J. Biol. Macromol. 2021, 169, 228–238. [Google Scholar] [CrossRef]
- Verma, M.L.; Chaudhary, R.; Tsuzuki, T.; Barrow, C.J.; Puri, M. Immobilization of β-Glucosidase on a Magnetic Nanoparticle Improves Thermostability: Application in Cellobiose Hydrolysis. Bioresour. Technol. 2013, 135, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Onoja, E.; Chandren, S.; Razak, F.I.A.; Wahab, R.A. Enzymatic Synthesis of Butyl Butyrate by Candida Rugosa Lipase Supported on Magnetized-Nanosilica from Oil Palm Leaves: Process Optimization, Kinetic and Thermodynamic Study. J. Taiwan Inst. Chem. Eng. 2018, 91, 105–118. [Google Scholar] [CrossRef]
- Fortes, C.C.S.; Daniel-da-Silva, A.L.; Xavier, A.M.R.B.; Tavares, A.P.M. Optimization of Enzyme Immobilization on Functionalized Magnetic Nanoparticles for Laccase Biocatalytic Reactions. Chem. Eng. Process. Process Intensif. 2017, 117, 1–8. [Google Scholar] [CrossRef]
- Savitha, D.P.; Bindu, V.U.; Geetha, G.; Mohanan, P. V Improvement in the Properties of α-Amylase Enzyme by Immobilization Using Metal Oxide Nanocomposites as Carriers. Adv. Nanomed. Nanotechnol. Res. 2020, 2, 77–88. [Google Scholar]
- Jacob, A.G.; Wahab, R.A.; Misson, M. Operational Stability, Regenerability, and Thermodynamics Studies on Biogenic Silica/Magnetite/Graphene Oxide Nanocomposite-Activated Candida Rugosa Lipase. Polymer 2021, 13, 3854. [Google Scholar] [CrossRef]
- Barbosa, O.; Torres, R.; Ortiz, C.; Berenguer-Murcia, Á.; Rodrigues, R.C.; Fernandez-Lafuente, R. Heterofunctional Supports in Enzyme Immobilization: From Traditional Immobilization Protocols to Opportunities in Tuning Enzyme Properties. Biomacromolecules 2013, 14, 2433–2462. [Google Scholar] [CrossRef] [Green Version]
- Torres-Salas, P.; Del Monte-Martinez, A.; Cutiño-Avila, B.; Rodriguez-Colinas, B.; Alcalde, M.; Ballesteros, A.O.; Plou, F.J. Immobilized Biocatalysts: Novel Approaches and Tools for Binding Enzymes to Supports. Adv. Mater. 2011, 23, 5275–5282. [Google Scholar] [CrossRef] [Green Version]
- Gkantzou, E.; Chatzikonstantinou, A.V.; Fotiadou, R.; Giannakopoulou, A.; Patila, M.; Stamatis, H. Trends in the Development of Innovative Nanobiocatalysts and Their Application in Biocatalytic Transformations. Biotechnol. Adv. 2021, 51, 107738. [Google Scholar] [CrossRef]
- Mehrasbi, M.R.; Mohammadi, J.; Peyda, M.; Mohammadi, M. Covalent Immobilization of Candida Antarctica Lipase on Core-Shell Magnetic Nanoparticles for Production of Biodiesel from Waste Cooking Oil. Renew. Energy 2017, 101, 593–602. [Google Scholar] [CrossRef]
- Kharazmi, S.; Taheri-Kafrani, A.; Soozanipour, A. Efficient Immobilization of Pectinase on Trichlorotriazine-Functionalized Polyethylene Glycol-Grafted Magnetic Nanoparticles: A Stable and Robust Nanobiocatalyst for Fruit Juice Clarification. Food Chem. 2020, 325, 126890. [Google Scholar] [CrossRef]
- Kempe, H.; Kempe, M. The Use of Magnetite Nanoparticles for Implant-Assisted Magnetic Drug Targeting in Thrombolytic Therapy. Biomaterials 2010, 31, 9499–9510. [Google Scholar] [CrossRef] [PubMed]
- Marques da Silva, M.; Wanderley Duarte Neto, J.M.; Barros Regueira, B.V.; Torres do Couto, M.T.; Vitória da Silva Sobral, R.; Sales Conniff, A.E.; Pedrosa Brandão Costa, R.M.; Cajubá de Britto Lira Nogueira, M.; Pereira da Silva Santos, N.; Pastrana, L.; et al. Immobilization of Fibrinolytic Protease from Mucor Subtilissimus UCP 1262 in Magnetic Nanoparticles. Protein Expr. Purif. 2022, 192, 106044. [Google Scholar] [CrossRef] [PubMed]
- Aber, S.; Mahmoudikia, E.; Karimi, A.; Mahdizadeh, F. Immobilization of Glucose Oxidase on Fe3O4 Magnetic Nanoparticles and Its Application in the Removal of Acid Yellow 12. Water. Air. Soil Pollut. 2016, 227, 93. [Google Scholar] [CrossRef]
- Betancor, L.; Fuentes, M.; Dellamora-Ortiz, G.; López-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Mateo, C.; Guisán, J.M.; Fernández-Lafuente, R. Dextran Aldehyde Coating of Glucose Oxidase Immobilized on Magnetic Nanoparticles Prevents Its Inactivation by Gas Bubbles. J. Mol. Catal. B Enzym. 2005, 32, 97–101. [Google Scholar] [CrossRef]
- Mahmood, I.; Ahmad, I.; Chen, G.; Huizhou, L. A Surfactant-Coated Lipase Immobilized in Magnetic Nanoparticles for Multicycle Ethyl Isovalerate Enzymatic Production. Biochem. Eng. J. 2013, 73, 72–79. [Google Scholar] [CrossRef]
- Wang, J.; Li, K.; He, Y.; Wang, Y.; Han, X.; Yan, Y. Enhanced Performance of Lipase Immobilized onto Co2+-Chelated Magnetic Nanoparticles and Its Application in Biodiesel Production. Fuel 2019, 255, 115794. [Google Scholar] [CrossRef]
- Barkoula, N.M.; Alcock, B.; Cabrera, N.O.; Peijs, T. Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene. Polym. Polym. Compos. 2008, 16, 101–113. [Google Scholar] [CrossRef]
- Chen, S.C.; Sheu, D.C.; Duan, K.J. Production of Fructooligosaccharides Using β-Fructofuranosidase Immobilized onto Chitosan-Coated Magnetic Nanoparticles. J. Taiwan Inst. Chem. Eng. 2014, 45, 1105–1110. [Google Scholar] [CrossRef]
- Atacan, K.; Çakiroǧlu, B.; Özacar, M. Improvement of the Stability and Activity of Immobilized Trypsin on Modified Fe3O4 Magnetic Nanoparticles for Hydrolysis of Bovine Serum Albumin and Its Application in the Bovine Milk. Food Chem. 2016, 212, 460–468. [Google Scholar] [CrossRef]
- Alam, S.; Nagpal, T.; Singhal, R.; Kumar Khare, S. Immobilization of L-Asparaginase on Magnetic Nanoparticles: Kinetics and Functional Characterization and Applications. Bioresour. Technol. 2021, 339, 125599. [Google Scholar] [CrossRef]
- Xiao, Q.; Liu, C.; Ni, H.; Zhu, Y.; Jiang, Z.; Xiao, A. β-Agarase Immobilized on Tannic Acid-Modified Fe3O4 Nanoparticles for Efficient Preparation of Bioactive Neoagaro-Oligosaccharide. Food Chem. 2019, 272, 586–595. [Google Scholar] [CrossRef]
- Xue, K.; Liu, C.L.; Yang, Y.; Liu, X.; Zhan, J.; Bai, Z. Immobilization of D-Allulose 3-Epimerase into Magnetic Metal–Organic Framework Nanoparticles for Efficient Biocatalysis. World J. Microbiol. Biotechnol. 2022, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Abdulaal, W.H.; Almulaiky, Y.Q. Encapsulation of HRP Enzyme onto a Magnetic Fe3O4 Np—PMMA Film via Casting with Sustainable. Biocatal. Act. 2020, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Zanker, A.A.; Ahmad, N.; Son, T.H.; Schwaminger, S.P.; Berensmeier, S. Selective Ene-Reductase Immobilization to Magnetic Nanoparticles through a Novel Affinity Tag. Biotechnol. J. 2021, 16, e2000366. [Google Scholar] [CrossRef] [PubMed]
- Fauser, J.; Savitskiy, S.; Fottner, M.; Trauschke, V.; Gulen, B. Sortase-Mediated Quantifiable Enzyme Immobilization on Magnetic Nanoparticles. Bioconjug. Chem. 2020, 31, 1883–1892. [Google Scholar] [CrossRef]
- Pan, C.; Hu, B.; Li, W.; Sun, Y.; Ye, H.; Zeng, X. Novel and Efficient Method for Immobilization and Stabilization of β-d-Galactosidase by Covalent Attachment onto Magnetic Fe3O4–Chitosan Nanoparticles. J. Mol. Catal. B Enzym. 2009, 61, 208–215. [Google Scholar] [CrossRef]
- Tuncagil, S.; Kayahan, S.K.; Bayramoglu, G.; Arica, M.Y.; Toppare, L. L-Dopa Synthesis Using Tyrosinase Immobilized on Magnetic Beads. J. Mol. Catal. B Enzym. 2009, 58, 187–193. [Google Scholar] [CrossRef]
- Sun, C.; Lee, J.S.H.; Zhang, M. Magnetic Nanoparticles in MR Imaging and Drug Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Yang, L.; Gao, J.; Chen, X. Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Adv. Mater. 2019, 31, 1804567. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics 2020, 10, 3793–3815. [Google Scholar] [CrossRef]
- Mou, X.; Ali, Z.; Li, S.; He, N. Applications of Magnetic Nanoparticles in Targeted Drug Delivery System. J. Nanosci. Nanotechnol. 2015, 15, 54–62. [Google Scholar] [CrossRef] [PubMed]
- El-Boubbou, K. Magnetic Iron Oxide Nanoparticles as Drug Carriers: Preparation, Conjugation and Delivery. Nanomedicine 2018, 13, 929–952. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.X.; Wan, S.S.; Zhang, X.Z. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv. Healthc. Mater. 2022, 11, 2101971. [Google Scholar] [CrossRef] [PubMed]
- Mbakidi, J.P.; Drogat, N.; Granet, R.; Ouk, T.S.; Ratinaud, M.H.; Rivière, E.; Verdier, M.; Sol, V. Hydrophilic Chlorin-Conjugated Magnetic Nanoparticles—Potential Anticancer Agent for the Treatment of Melanoma by PDT. Bioorg. Med. Chem. Lett. 2013, 23, 2486–2490. [Google Scholar] [CrossRef] [PubMed]
- Ni, D.; Ferreira, C.A.; Barnhart, T.E.; Quach, V.; Yu, B.; Jiang, D.; Wei, W.; Liu, H.; Engle, J.W.; Hu, P.; et al. Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy. J. Am. Chem. Soc. 2018, 140, 14971–14979. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, J.; Li, Y.; Hu, T.; Fan, L.; Xi, J.; Han, J.; Guo, R. Yolk-Shell Fe3O4@Carbon@Platinum-Chlorin E6 Nanozyme for MRI-Assisted Synergistic Catalytic-Photodynamic-Photothermal Tumor Therapy. J. Colloid Interface Sci. 2022, 628, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chu, Q.; Li, M.; Han, G.; Li, X. Fe3O4@Pt Nanoparticles to Enable Combinational Electrodynamic/Chemodynamic Therapy. J. Nanobiotechnol. 2021, 19, 1–13. [Google Scholar] [CrossRef]
- Yu, G.T.; Rao, L.; Wu, H.; Yang, L.L.; Bu, L.L.; Deng, W.W.; Wu, L.; Nan, X.; Zhang, W.F.; Zhao, X.Z.; et al. Myeloid-Derived Suppressor Cell Membrane-Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death. Adv. Funct. Mater. 2018, 28, 1801389. [Google Scholar] [CrossRef]
- Cao, W.; Jin, M.; Yang, K.; Chen, B.; Xiong, M.; Li, X.; Cao, G. Fenton/Fenton-like Metal-Based Nanomaterials Combine with Oxidase for Synergistic Tumor Therapy. J. Nanobiotechnol. 2021, 19, 1–35. [Google Scholar] [CrossRef]
- Fu, L.H.; Qi, C.; Lin, J.; Huang, P. Catalytic Chemistry of Glucose Oxidase in Cancer Diagnosis and Treatment. Chem. Soc. Rev. 2018, 47, 6454–6472. [Google Scholar] [CrossRef]
- Huo, M.; Wang, L.; Chen, Y.; Shi, J. Tumor-Selective Catalytic Nanomedicine by Nanocatalyst Delivery. Nat. Commun. 2017, 8, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Ma, S.; Li, M.; Hu, X.; Jiao, N.; Tung, S.; Liu, L. Enzymatic/Magnetic Hybrid Micromotors for Synergistic Anticancer Therapy. ACS Appl. Mater. Interfaces 2021, 13, 31514–31526. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Wu, C.; Niu, D.; Qin, L.; Wang, X.; Wang, Q.; Li, Y. Peroxisome Inspired Hybrid Enzyme Nanogels for Chemodynamic and Photodynamic Therapy. Nat. Commun. 2021, 12, 5243. [Google Scholar] [CrossRef] [PubMed]
- Ashtari, K.; Khajeh, K.; Fasihi, J.; Ashtari, P.; Ramazani, A.; Vali, H. Silica-Encapsulated Magnetic Nanoparticles: Enzyme Immobilization and Cytotoxic Study. Int. J. Biol. Macromol. 2012, 50, 1063–1069. [Google Scholar] [CrossRef]
- Fuentes-Baile, M.; Pérez-Valenciano, E.; García-Morales, P.; de Juan Romero, C.; Bello-Gil, D.; Barberá, V.M.; Rodríguez-Lescure, Á.; Sanz, J.M.; Alenda, C.; Saceda, M. Clyta-Daao Chimeric Enzyme Bound to Magnetic Nanoparticles. A New Therapeutical Approach for Cancer Patients? Int. J. Mol. Sci. 2021, 22, 1477. [Google Scholar] [CrossRef]
- Zhang, F.; Li, H.; Liu, C.; Fang, K.; Jiang, Y.; Wu, M.; Xiao, S.; Zhu, L.; Yu, J.; Li, S.; et al. Lactate Dehydrogenase-Inhibitors Isolated from Ethyl Acetate Extract of Selaginella Doederleinii by Using a Rapid Screening Method with Enzyme-Immobilized Magnetic Nanoparticles. Front. Biosci. Landmark 2022, 27, 229. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.; Gao, W. Enhanced and Selective Delivery of Enzyme Therapy to 9L-Glioma Tumor via Magnetic Targeting of PEG-Modified, β-Glucosidase-Conjugated Iron Oxide Nanoparticles. Int. J. Nanomed. 2014, 9, 2905–2917. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Qiao, J.; Qi, L.; Dong, P.; Ma, H. Poly(2-Vinyl-4,4-Dimethylazlactone)-Functionalized Magnetic Nanoparticles as Carriers for Enzyme Immobilization and Its Application. ACS Appl. Mater. Interfaces 2014, 6, 21346–21354. [Google Scholar] [CrossRef]
- Orhan, H.; Aktaş Uygun, D. Immobilization of L-Asparaginase on Magnetic Nanoparticles for Cancer Treatment. Appl. Biochem. Biotechnol. 2020, 191, 1432–1443. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Hong, W.; Chen, Z.; Peng, P.; Yuan, S.; Qu, J.; Xiao, M.; Xu, L. Glucose Oxidase and Polydopamine Functionalized Iron Oxide Nanoparticles: Combination of the Photothermal Effect and Reactive Oxygen Species Generation for Dual-Modality Selective Cancer Therapy. J. Mater. Chem. B 2019, 7, 2190–2200. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhou, Q.; Chen, X.; Jiao, W.; Li, G.; Peng, M.; Liu, X.; He, Y.; Fan, H. Precise Regulation of Enzyme-Nanozyme Cascade Reaction Kinetics by Magnetic Actuation toward Efficient Tumor Therapy. ACS Appl. Mater. Interfaces 2021, 13, 52395–52405. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Baile, M.; Bello-Gil, D.; Pérez-Valenciano, E.; Sanz, J.M.; García-Morales, P.; Maestro, B.; Ventero, M.P.; Alenda, C.; Barberá, V.M.; Saceda, M. CLytA-DAAO, Free and Immobilized in Magnetic Nanoparticles, Induces Cell Death in Human Cancer Cells. Biomolecules 2020, 10, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Chen, X.; Lin, J.; Huang, P. Lactate-Oxidase-Instructed Cancer Diagnosis and Therapy. Adv. Mater. 2023, 35, 2207951. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Sun, B.; Cui, J.; Ren, S.; Lin, T.; Feng, Y.; Jia, S. Bienzyme Magnetic Nanobiocatalyst with Fe3+-Tannic Acid Film for One-Pot Starch Hydrolysis. J. Agric. Food Chem. 2018, 66, 8753–8760. [Google Scholar] [CrossRef]
Enzyme/Protein | Support | Isotherm Adjust | Kd (µM) | qmax (mg g−1) | Ref. |
---|---|---|---|---|---|
Cellulase | Langmuir | 370 | [92] | ||
430 | |||||
Bovine hemoglobin | Cu2+-EDTA-Fe3O4 | Langmuir and Freundlich (better fit results with Langmuir model) | - | 1277 | [114] |
(BHb) | |||||
Bovine serum albumin (BSA) | 311 | ||||
Lysozyme (Lyz) | 192 | ||||
Bovine hemoglobin | Fe3O4@ytterbium silicate microspheres | Langmuir and Freundlich (better fit results with Langmuir model) | - | 304.4 | [115] |
(BHb) | |||||
β-Lactoglobulin | ~75 | ||||
(β-Lac) | |||||
Lysozyme | ~60 | ||||
(Lyz) | |||||
α-Lactalbumin | ~50 | ||||
(α-Lac) | |||||
Bovine serum albumin (BSA) | ~45 | ||||
Fetuin | ~32 | ||||
Lysozyme | Fe3O4 | Langmuir and Freundlich (better fit results with Langmuir model) | 17.9 | 370.4 | [116] |
[C4MIM]-Fe3O4 | 3.8 | 400.0 | |||
[C6MIM]-Fe3O4 | 3.0 | 500.0 | |||
[C8MIM]-Fe3O4 | 6.0 | 526.3 | |||
Mms6 (magnetosome membrane specific protein) | SP35 (spherical magnetite nanoparticle) | Langmuir | 9.52 | 11.1 | [117] |
Lipase (BSA as standard protein) | Bare Fe3O4 | Langmuir | - | 19.3 | [118] |
Bovine serum albumin (BSA) | Nickel ferrite nanoparticles | Langmuir | - | 916 | [119] |
Lysozyme | Poly(sodium 4-styrenesulfonte) PSS@Fe3O4 | Langmuir and | - | 476.2 | [120] |
Ovalbumin | Freundlich | 4.5 | |||
Conalbumin | (better fit results with Langmuir model) | 1.8 | |||
α-amylase | Cellulose(28 wt.%)@Fe3O4 | Langmuir | - | 18.2 | [121] |
Ureasa | Fe3O4/SiO2/APTES | Langmuir | 0.12 | ~300 | [122] |
Fe3O4/SiO2/APTES/MTES | 0.063 | ~450 | |||
Fe3O4/SiO2/APTES/PTES | 0.08 | ~1000 | |||
Fe3O4/SiO2/TMPED | 5.0 | ~500 |
Enthalpy Contributions | |
---|---|
Electrostatic interaction | ΔH negligible vs. −TΔS |
Hydrophobic interaction | ΔH > 0 (unfavorable to a.p.) |
Entropy Contributions | |
Decrease in the translational, rotational and vibrational entropy | ΔSconfig < 0 (unfavorable to a.p.) |
Reduction in conformational stability of the adsorbed enzyme | ΔSconform > 0 (favorable to a.p.) |
Release of a large number of water molecules solvating both the nanoparticle surface and the residues exposed to the solvent by the enzyme | ΔShydrat > 0 (most favorable factor to a.p.) |
Enzyme/Protein | Support | Method of Determination | Kd (µM) | ΔH (kJ mol−1) | ΔS (kJ K−1 mol−1) | ΔG (kJ mol−1) | N | Ref. |
---|---|---|---|---|---|---|---|---|
Lysozyme | Fe3O4 | From adsorption isotherm at different temperatures | 17.9 | −12.3 | −0.036 | 1.72 | - | [116] |
[C4MIM]-Fe3O4 | 3.8 | 31.0 | 0.129 | −7.38 | ||||
[C6MIM]-Fe3O4 | 3.0 | 11.5 | 0.053 | −4.26 | ||||
[C8MIM]-Fe3O4 | 6.0 | 16.6 | 0.071 | −4.60 | ||||
BSA Lysozyme | DEAPA-Fe3O4 | ITC | - | ~0 | - | - | - | [124] |
PAA-Fe3O4 | - | ~2 kcal mol−1 | - | - | - | |||
DEAPA-Fe3O4 | - | ~0 | - | - | - | |||
PAA-Fe3O4 | 1p: 0.14 | 1p: −2.2 | 1p: 0.12 | 1p: −39.2 | 14.6 | |||
2p: 29.4 | 2p: −27.2 | 2p: −0.004 | 2p: −25.9 | 69.5 | ||||
HSA Human IgG | 5_Fe3O4-PAOZ | ITC | 3.1 | −320 | −1.0 | −31.6 | 2.2 | [125] |
8_Fe3O4-PAOZ | 34 | −240 | −0.7 | −25.6 | 7.0 | |||
5_Fe3O4-PAOZ | 1.6 | −340 | −1.0 | −34.1 | 1.1 | |||
8_Fe3O4-PAOZ | 0.4 | −110 | −0.26 | −36.5 | 0.9 | |||
Trypsin | PVPr-co-P4VP/Fe3O4 hydrogel | From adsorption isotherm at different temperatures | 316.4 (a) | 20.4 | 0.116 | −14.26 | - | [126] |
Enzyme/ Protein | Support | Method Immo. | Ed (kJ mol−1) | ΔH (kJ mol−1) | ΔS (kJ K−1 mol−1) | ΔG (kJ mol−1) | Km (mg/mL) | Vmax (µmol ml−1 min−1) | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f | i | f | i | f | i | f | i | f | i | f | i | ||||
Catalase | Fe3O4/SiO2 | Covalent | - | - | - | - | - | - | - | - | 15.3 (mM) | 16.6 | 4.02 | 3.47 | [104] |
mSiO2@Fe3O4/SiO2 | 21.2 | 2.36 | |||||||||||||
α-amylase | CSM-Fe3O4 | Adsorption | 15.3 | 18.8 | 12.7 | 16.2 | −0.28 | −0.28 | 101.7 | 104.2 | 0.45 | 1.03 | 34.48 * | 15.4 * | [129] |
CSM-GLY-Fe3O4 | Covalent | 35.4 | 32.8 | −0.24 | 106.8 | 0.53 | 25.0 * | ||||||||
CSM-GLA-Fe3O4 | Covalent | 28.3 | 25.7 | −0.26 | 106.4 | 0.57 | 19.6 * | ||||||||
CSM-CSM-Fe3O4 | Covalent | 23.6 | 21.0 | −0.27 | 104.8 | 0.65 | 16.4 * | ||||||||
Candida rugosa lipase (CRL) | AP-SiO2-Fe3O4 | Covalent | 93.3 | 112.9 | 87.7 | 110.3 | 233.7 | 293.2 | 14.6 | 17.0 | 6000 | 583 | 3330 | 833.3 | [130] |
Inulinase | GSH-Au-Fe3O4 | Covalent | - | - | - | - | - | - | - | - | 5.4 | 6.8 | 3.55 | 3.03 | [131] |
α-amylase | GO-Fe3O4 | Covalent | 85.4 | 79.0 | 74.2 | 79.1 | −0.17 | −0.14 | 114.3 | 106.2 | 0.6 | 0.9 | 450 | 333.3 | [132] |
β-Glucosidase | Bare Fe3O4 | Covalent | - | - | - | - | - | - | - | - | 3.5 (mM) | 4.3 (mM) | 0.72 | 0.89 | [133] |
Candida rugosa lipase (CRL) | A-SiO2-Fe3O4 | Covalent | 113.9 (ag.) | 128.5 | 111.2 (ag.) | 122.8 | 0.29 (ag.) | 0.32 | 16.8 (ag.) | 18.3 | 13.8 (mM) | 18.0 (mM) | 0.30 | 0.28 | [134] |
Laccase | Fe3O4-SiO2-AP | Covalent | - | - | - | - | - | - | - | - | 0.0015 (mM) | 0.0062 (mM) | 0.32 | 0.062 | [135] |
α-amylase | ZnO-Fe3O4 | Adsorption | 18.9 | 21.6 | 15.5 | 18.8 | −0.28 | −0.28 | 108.3 | 110.9 | 0.61 | 0.65 | 18.7 mg ml−1 min−1 | 18.2 mg ml−1 min−1 | [136] |
Candida rugosa lipase (CRL) | SiO2/Fe3O4/GO | Covalent | 27.6 | 32.3 | 25.0 | 29.7 | 0.035 | 0.048 | 13.8 | 14.5 | - | - | - | - | [137] |
Enzyme | Coating Reagent | Fe3O4 Preparation Method | Immobilization Method | Application Field | Specific Applications | Ref. |
---|---|---|---|---|---|---|
Lipase A | Chitosan | Co-precipitation | Covalent (Glutaraldehyde) | Industry | Biolubricants production | [3] |
Lipase A Lipase B | APTES | Co-precipitation | Covalent (Glutaraldehyde) | Industry | Ethyl butyrate production | [20] |
Catalase | Silica (TMOS, APTES) | Solvothermal | Covalent (Glutaraldehyde) | Scientific purpose | Enzyme shielding | [104] |
Lipase | Silica magnetic nanoparticles on (3-glycidoxypropyl) trimethoxylsilane (GPTMS) | Co-precipitation | Covalently (Epoxy groups/nucleophilic groups on the surface of enzyme) | Industry | Biodiesel production | [141] |
Pectinase | Polyethilene glycole (PEG) | Co-precipitation | Covalent (trichlorotriazine Cyanuric chloride) | Industry | Fruit juice clarification | [142] |
Tissue plasminogen activator (tPA) | Silica (TEOS, PEG, TREG) | Oxidation-precipitation | Covalent (NHSS-EDC and tresyl chloride) | Medicine | Treatment of thrombosis in coronary arteries | [143] |
Fibrinolytic protease (FP) | Polyaniline | Precipitation | Covalent (Glutaraldehyde) | Medicine | Treatment of cardiovascular diseases (degradation of the γ chain of human fibrinogen) | [144] |
Glucose oxidase (GOx) | - | Co-precipitation | Adsorption | Industry | Removal of acid yellow 12 | [145] |
Glucose oxidase (GOx) | Magnetic nanoparticles (EM1-100/40) | Purchased from Merck Co. | Covalent | Scientific purpose | Study of enzyme inactivation | [146] |
Lipase | Polymer-coating (Gum Arabic) | Co-precipitation | Covalent (Glutaraldehyde) | Industry | Biocatalyst a flavor ester, production | [147] |
Lipase | AGMNP-Co2+ | Co-precipitation | Metal chelate affinity | Industry | Biodiesel production | [148] |
Lipase | Polyaniline (Pani) | Co-precipitation | Adsorption | Scientific purpose | Enzyme adsorption | [149] |
β-fructofuranosidase | Chitosan | Co-precipitation | Adsorption | Industry | Produce fructooligosaccharides (growth of desirable gut microflora) | [150] |
Tripsin | Gallic acid (GA) | Co-precipitation | Adsorption | Industry | Hydrolysis of bovine milk | [151] |
L-Asparaginase | Amine-functionalized silane modifier, APTES | Co-precipitation | Covalent | Industry | Reduce acrylamide content in the food system (carcinogen and neurotoxin) | [152] |
β-agarase | Tannic acid (TA) | Co-precipitation | Adsorption | Industry | Bioactive neogaro-oligosaccharide (varying antioxidant activities) | [153] |
D-allullose-3-epimerase | ZIF67 (MOF) | Solvothermal | Encapsulation into ZIF67 (Chemical bonds Co2+) | Industry | Preparation of D-allulose (rare low-calorie sugar) | [154] |
Horseradish peroxidase (HRP) | Polymethil methacrylate (PMMA) | Purchased from Sigma-Aldrich | Encapsulation | Industry | Removal of wastewater aromatic pollutants | [155] |
Ene-reductase | Non-functionalized MNP (After add (HR)4tag) | Co-precipitation | Adsorption | Scientific purpose | Study enzyme immobilization | [156] |
Sortase A | Peptide | Co-precipitation | Covalent | Scientific purpose | Produce and bioquemically characterize immobilized proteins (single-molecule FRET) | [157] |
β-D-galactosidase (lactase) | Fe3O4–chitosan (Fe3O4–CS) | Co-precipitation | Covalent (Glutaraldehyde) | Industry | Galactooligosaccharides (GOS) production | [158] |
Tyrosinase | Magnetic beads poly(GMA–MMA) | Co-precipitation | Covalent ((Glutaraldehyde) | Industry | L-Dopa (1-3,4-dihydroxy phenylalanine) | [159] |
Enzyme | Coating Reagent | Fe3O4 Preparation Method | Immobilization Method | Specific Applications | Ref. |
---|---|---|---|---|---|
Glucose oxidase (GOx) | Silica (TEOS, EPTES) | Co-precipitation | Covalent (Glutaraldehyde) | Cytotoxic study for biomedical applications | [176] |
Choline-binding domain of N-acetylmuramoyl-L-alanine amidase–D-amino acid oxidase (CLytA-DAAO) | Diethilaminoethanol (DEAE) | Purchased from Chemicell GmbH (Berlin, Germany) | Adsorption (between CLytA domain and DEAE) | Anticancer therapy for pancreatic and colorectal carcinoma and glioblastoma | [177] |
LDHA (isoenzyme of Lactate Dehidrogenase, LDH) | Amino groups (APTES) | Co-precipitation | Covalent (Glutaraldehyde) | Cancer treatment (identification of LDH inhibitors) | [178] |
β-Glucosidase | Polyethylene glycol, PEG (by hydroxysuccinimide chemistry) | Purchased from Chemicell GmbH (Berlin, Germany) | Covalent (Glutaraldehyde) | Enzyme/Prodrug therapy in cancer | [179] |
L-Asparaginase | Poly(2-vinyl-4,4-dimethylazlactone | Co-precipitation | Covalent | Construct an efficient enzyme reactor (potential application in leukemia treatment) | [180] |
L-Asparaginase | Poly(HEMA-GMA) | Purchased from Sigma-Aldrich (St. Louis, MO, USA) | Covalent | Lymphoblastic leukemia (Remove L-Asparagine, an essential factor of protein synthesis) | [181] |
Glucose oxidase (GOx) | Fe3O4@PDA | Purchased from Sigma-Aldrich St. Louis, MO, USA) | Adsorption | Cancer treatment | [182] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valls-Chivas, Á.; Gómez, J.; Garcia-Peiro, J.I.; Hornos, F.; Hueso, J.L. Enzyme–Iron Oxide Nanoassemblies: A Review of Immobilization and Biocatalytic Applications. Catalysts 2023, 13, 980. https://doi.org/10.3390/catal13060980
Valls-Chivas Á, Gómez J, Garcia-Peiro JI, Hornos F, Hueso JL. Enzyme–Iron Oxide Nanoassemblies: A Review of Immobilization and Biocatalytic Applications. Catalysts. 2023; 13(6):980. https://doi.org/10.3390/catal13060980
Chicago/Turabian StyleValls-Chivas, Ángeles, Javier Gómez, Jose I. Garcia-Peiro, Felipe Hornos, and Jose L. Hueso. 2023. "Enzyme–Iron Oxide Nanoassemblies: A Review of Immobilization and Biocatalytic Applications" Catalysts 13, no. 6: 980. https://doi.org/10.3390/catal13060980
APA StyleValls-Chivas, Á., Gómez, J., Garcia-Peiro, J. I., Hornos, F., & Hueso, J. L. (2023). Enzyme–Iron Oxide Nanoassemblies: A Review of Immobilization and Biocatalytic Applications. Catalysts, 13(6), 980. https://doi.org/10.3390/catal13060980