Probing the Roles of Residual Sodium in Physicochemical Properties and Performance of FeAlNa Catalyst for Fischer–Tropsch Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Textural Properties
2.2. Chemical State Analysis
2.3. Reduction Behavior
2.4. Surface Adsorption Behavior
2.5. Catalytic Performance
3. Conclusions
4. Experimental
4.1. Catalyst Preparation
4.1.1. Residual Sodium-Modified FeAl Catalyst
4.1.2. Sodium-Modified FeAl Catalysts
4.2. Characterizations
4.3. Catalytic Performance Tests
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Yan, Q.; Han, J.; Cao, B.; Street, J.; Yu, F. Fischer-Tropsch synthesis of olefin rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. Fuel 2017, 193, 369–384. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.X.; Guo, X.Y.; Liu, B.; Zhang, J.L.; Gao, X.H.; Ma, Q.X.; Fan, S.B.; Zhao, T.S. Cellulose modified iron catalysts for enhanced light olefins and linear C5+ α-olefins from CO hydrogenation. Fuel 2021, 294, 120504. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, M.; Yang, Z.; Zhu, M.; Gao, J.; Han, Y.F. Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear α-olefins. Appl. Catal. B Environ. 2021, 295, 120287. [Google Scholar] [CrossRef]
- Torres Galvis, H.M.; de Jong, K.P. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catal. 2013, 3, 2130–2149. [Google Scholar] [CrossRef]
- Wang, K.; Fan, S.; Zhang, J.; Ma, Q.; Zhang, W.; Zhao, T.S. Effects of synergy between Cr2O3 and hierarchical HZSM-5 on transformation of LPG toward propylene and ethylene. Fuel Process. Technol. 2018, 179, 53–59. [Google Scholar] [CrossRef]
- Liu, B.; Liang, J.; Gao, X.H.; Ma, Q.X.; Zhang, J.L.; Zhao, T.S. Highly selective formation of linear α-olefins over layered and hydrophilic Fe3O4/MAG catalysts in CO hydrogenation. Fuel 2022, 326, 125054. [Google Scholar] [CrossRef]
- Zheng, J.; Cai, J.; Jiang, F.; Xu, Y.; Liu, X. Investigation of the highly tunable selectivity to linear α-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization–reduction pretreatment. Catal. Sci. Technol. 2017, 7, 4736–4755. [Google Scholar] [CrossRef]
- Al-Dossary, M.; Fierro, J.L.G.; Spivey, J.J. Cu-promoted Fe2O3/MgO-based Fischer-Tropsch catalysts of biomass-derived syngas. Ind. Eng. Chem. Res. 2015, 54, 911–921. [Google Scholar] [CrossRef]
- Cheng, K.; Ordomsky, V.V.; Legras, B.; Virginie, M.; Paul, S.; Wang, Y.; Khodakov, A.Y. Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2015, 502, 204–214. [Google Scholar] [CrossRef]
- De Smit, E.; Beale, A.M.; Nikitenko, S.; Weckhuysen, B.M. Local and long range order in promoted iron-based Fischer-Tropsch catalysts: A combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study. J. Catal. 2009, 262, 244–256. [Google Scholar] [CrossRef]
- Herranz, T.; Rojas, S.; Pérez-Alonso, F.J.; Ojeda, M.; Terreros, P.; Fierro, J.L.G. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J. Catal. 2006, 243, 199–211. [Google Scholar] [CrossRef]
- Sari, A. Investigation of the supercritical conditions for Fischer-Tropsch reaction over an industrial Co-Ru/γ-Al2O3 catalyst. Chem. Eng. J. 2014, 244, 317–326. [Google Scholar] [CrossRef]
- Chun, D.H.; Rhim, G.B.; Youn, M.H.; Deviana, D.; Lee, J.E.; Park, J.C.; Jeong, H. Brief review of precipitated iron-based catalysts for low-temperature Fischer-Tropsch synthesis. Top. Catal. 2020, 63, 793–809. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jun, K.W.; Kang, S.C.; Zhang, C.; Kwak, G.; Park, J.M.; Kim, H.S. Fe-Co/alumina catalysts for production of high calorific synthetic natural gas: Effect of Fe/Co ratio. J. Ind. Eng. Chem. 2018, 66, 396–403. [Google Scholar] [CrossRef]
- Yang, Y.; Xiang, H.W.; Xu, Y.Y.; Bai, L.; Li, Y.W. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2004, 266, 181–194. [Google Scholar] [CrossRef]
- Guo, X.; Liu, B.; Gao, X.; He, F.; Ma, Q.; Fan, S.; Zhao, T.; Tian, J.; Reubroycharoen, P.; Zhang, J. Improved olefin selectivity during CO hydrogenation on hydrophilic Fe/HAP catalysts. Catal. Today 2023, 410, 193–204. [Google Scholar] [CrossRef]
- Feyzi, M.; Irandoust, M.; Mirzaei, A.A. Effects of promoters and calcination conditions on the catalytic performance of iron-manganese catalysts for Fischer-Tropsch synthesis. Fuel Process. Technol. 2011, 92, 1136–1143. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, M.; Liu, B.; Xu, Y.; Liu, X. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer-Tropsch synthesis: Understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation. Catal. Sci. Technol. 2017, 7, 1245–1265. [Google Scholar] [CrossRef]
- Xiong, H.; Motchelaho, M.A.; Moyo, M.; Jewell, L.L.; Coville, N.J. Effect of Group I alkali metal promoters on Fe/CNT catalysts in Fischer-Tropsch synthesis. Fuel 2015, 150, 687–696. [Google Scholar] [CrossRef]
- Jun, K.W.; Shen, W.J.; Rao, K.R.; Lee, K.W. Residual sodium effect on the catalytic activity of Cu/ZnO/Al2O3 in methanol synthesis from CO2 hydrogenation. Appl. Catal. A Gen. 1998, 174, 231–238. [Google Scholar] [CrossRef]
- An, X.; Wu, B.; Hou, W.; Wan, H.; Tao, Z.; Li, T.; Zhang, Z.; Xiang, H.; Li, Y.; Xu, B.; et al. The negative effect of residual sodium on iron-based catalyst for Fischer-Tropsch synthesis. J. Mol. Catal. A Chem. 2007, 263, 266–272. [Google Scholar] [CrossRef]
- Zhai, P.; Xu, C.; Gao, R.; Liu, X.; Li, M.; Li, W.; Fu, X.; Jia, C.; Xie, J.; Zhao, M.; et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew. Chem. 2016, 128, 10056–10061. [Google Scholar] [CrossRef]
- Botes, G.F.; Bromfield, T.C.; Coetzer, R.L.J.; Crous, R.; Gibson, P.; Ferreira, A.C. Development of a Chemical Selective Iron Fischer Tropsch Catalyst. Catal. Today 2016, 275, 40–48. [Google Scholar] [CrossRef]
- Wang, X.; Wu, D.; Zhang, J.; Gao, X.; Ma, Q.; Fan, S.; Zhao, T.S. Highly selective conversion of CO2 to light olefins via Fischer-Tropsch synthesis over stable layered K-Fe-Ti catalysts. Appl. Catal. A Gen. 2019, 573, 32–40. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Qian, W.; Wu, X.; Ma, H.; Sun, Q.; Ying, W. Sodium modified Fe-Mn microsphere catalyst for Fischer-Tropsch synthesis of light olefins. Catal. Today 2022, 388–389, 199–207. [Google Scholar] [CrossRef]
- Wang, K.; Gao, W.; Chen, F.; Liu, G.; Wu, J.; Liu, N.; Kawabata, Y.; Guo, X.; He, Y.; Zhang, P.; et al. Hierarchical nano-sized ZnZr-Silicalite-1 multifunctional catalyst for selective conversion of ethanol to butadiene. Appl. Catal. B Environ. 2022, 301, 120822. [Google Scholar] [CrossRef]
- Li, J.B.; Ma, H.F.; Zhang, H.T.; Sun, Q.W.; Ying, W.Y.; Fang, D.Y. Sodium promoter on iron-based catalyst for direct catalytic synthesis of light alkenes from syngas. Fuel Process. Technol. 2014, 125, 119–124. [Google Scholar] [CrossRef]
- Wan, H.J.; Wu, B.S.; Zhang, C.H.; Xiang, H.W.; Li, Y.W.; Xu, B.F.; Yi, F. Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis. Catal. Commun. 2007, 8, 1538–1545. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, J.; Qian, W.; Zhang, H.; Ma, H.; Ying, W. Effect of Lanthanum on Zr-Co/γ-Al2O3 Catalysts for Fischer-Tropsch Synthesis. Catal. Lett. 2018, 148, 2789–2798. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, C.; Xu, J.; Yang, Y.; Xiang, H.; Li, Y. Fe-Mo interactions and their influence on Fischer-Tropsch synthesis performance. Appl. Catal. A Gen. 2011, 392, 118–126. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Jacobs, G.; Pendyala, R.; Davis, B.H.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L. Fischer-Tropsch synthesis: Influence of Mn on the carburization rates and activities of Fe-based catalysts by TPR-EXAFS/XANES and catalyst testing. J. Phys. Chem. C 2011, 115, 4783–4792. [Google Scholar] [CrossRef]
- Ma, Z.; Ma, H.; Zhang, H.; Wu, X.; Qian, W.; Sun, Q.; Ying, W. Direct conversion of syngas to light olefins through Fischer-Tropsch synthesis over Fe-Zr catalysts modified with sodium. ACS Omega 2021, 6, 4968–4976. [Google Scholar] [CrossRef]
- Darezereshki, E. One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite. Mater. Lett. 2011, 65, 642–645. [Google Scholar] [CrossRef]
- Seki, T.; Onaka, M. Elucidation of basic properties of mesoporous alumina through the temperature-programmed desorption of carbon dioxide and heterogeneous basic catalysis of mesoporous alumina for the Knoevenagel reaction in supercritical CO2. J. Mol. Catal. A Chem. 2007, 263, 115–120. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Ma, H.; Qian, W.; Sun, Q.; Ying, W. Effect of Alkalis (Li, Na, and K) on Precipitated Iron-Based Catalysts for High-Temperature Fischer-Tropsch Synthesis. Fuel 2022, 326, 125090. [Google Scholar] [CrossRef]
- Motjope, T.R.; Dlamini, H.T.; Hearne, G.R.; Coville, N.J. Application of in situ Mössbauer spectroscopy to investigate the effect of precipitating agents on precipitated iron Fischer-Tropsch catalysts. Catal. Today 2002, 71, 335–341. [Google Scholar] [CrossRef]
- Li, J.; Cheng, X.; Zhang, C.; Wang, J.; Dong, W.; Yang, Y.; Li, Y. Alkalis in iron-based Fischer-Tropsch synthesis catalysts: Distribution, migration and promotion. J. Chem. Technol. Biotechnol. 2016, 92, 1472–1480. [Google Scholar] [CrossRef]
- Murkute, A.D.; Jackson, J.E.; Miller, D.J. Supported mesoporous solid base catalysts for condensation of carboxylic acids. J. Catal. 2011, 278, 189–199. [Google Scholar] [CrossRef]
- Dry, M.E.; Oosthuizen, G.J. The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer-Tropsch synthesis. J. Catal. 1968, 11, 18–24. [Google Scholar] [CrossRef]
- Torres Galvis, H.M.; Bitter, J.H.; Khare, C.B.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012, 335, 835–838. [Google Scholar] [CrossRef] [Green Version]
Samples | BET Surface Area (m2/g) a | Pore Size (nm) b | Pore Volume (cm3/g) a | Crystallite Size (nm) c |
---|---|---|---|---|
FeAl | 60.7 | 0.23 | 15.29 | 23.1 |
FeAl-30Na | 53.1 | 0.25 | 9.55 | 24.6 |
FeAl-20Na | 50.1 | 0.31 | 12.46 | 26.5 |
FeAl-10Na | 44.7 | 0.25 | 11.19 | 25.1 |
FeAlNa | 76.6 | 0.17 | 9.00 | 14.5 |
Catalysts | CO Conv. (%) | CO2 Sel. (%) | O/P b | CH4 c (%) | C2–C4= (%) | C2–C40 (%) | C5+ (%) | Olefins (%) | Olefins Yield (%) |
---|---|---|---|---|---|---|---|---|---|
FeAl | 23.8 | 21.9 | 0.7 | 26.5 | 17.8 | 26.1 | 29.6 | 14.0 | 3.3 |
FeAlNa | 98.7 | 33.1 | 6.2 | 12.8 | 37.1 | 6.0 | 44.1 | 57.0 | 56.3 |
FeAl-10Na | 48.0 | 51.3 | 4.1 | 13.2 | 35.0 | 8.5 | 43.3 | 56.2 | 27.0 |
FeAl-20Na | 91.3 | 38.3 | 2.4 | 18.7 | 32.5 | 13.3 | 35.5 | 40.8 | 37.3 |
FeAl-30Na | 96.5 | 41.5 | 2.1 | 21.1 | 33.1 | 15.8 | 30.0 | 37.1 | 35.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Zhu, Q.; Wang, K.; Zhu, R.; Ma, Q.; Zhao, T.; Guo, Q.; Gao, X.; Zhang, J. Probing the Roles of Residual Sodium in Physicochemical Properties and Performance of FeAlNa Catalyst for Fischer–Tropsch Synthesis. Catalysts 2023, 13, 1081. https://doi.org/10.3390/catal13071081
Song W, Zhu Q, Wang K, Zhu R, Ma Q, Zhao T, Guo Q, Gao X, Zhang J. Probing the Roles of Residual Sodium in Physicochemical Properties and Performance of FeAlNa Catalyst for Fischer–Tropsch Synthesis. Catalysts. 2023; 13(7):1081. https://doi.org/10.3390/catal13071081
Chicago/Turabian StyleSong, Wenlong, Qiqi Zhu, Kangzhou Wang, Rui Zhu, Qingxiang Ma, Tiansheng Zhao, Qingjie Guo, Xinhua Gao, and Jianli Zhang. 2023. "Probing the Roles of Residual Sodium in Physicochemical Properties and Performance of FeAlNa Catalyst for Fischer–Tropsch Synthesis" Catalysts 13, no. 7: 1081. https://doi.org/10.3390/catal13071081
APA StyleSong, W., Zhu, Q., Wang, K., Zhu, R., Ma, Q., Zhao, T., Guo, Q., Gao, X., & Zhang, J. (2023). Probing the Roles of Residual Sodium in Physicochemical Properties and Performance of FeAlNa Catalyst for Fischer–Tropsch Synthesis. Catalysts, 13(7), 1081. https://doi.org/10.3390/catal13071081