Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation
Abstract
:1. Introduction
2. Fundamentals of the Photocatalysis
2.1. Thermodynamics and Kinetics of the Photocatalytic Process
2.1.1. Thermodynamics Aspects
2.1.2. Kinetics Aspects
2.2. Mechanism of the Photocatalytic Process
2.3. Band Gap Determination
2.4. Efficiency Evaluation in a Photocatalytic Process
3. Factors Affecting the Photocatalytic Activity
3.1. Photocatalyst Structural Modification Strategies
3.1.1. Morphology Regulation
3.1.2. Co-Catalysts Decoration
3.1.3. Doping
3.1.4. Defect Engineering
3.1.5. Surface Sensitization
3.1.6. Heterojunction Construction
Conventional Heterojunctions
Z-Scheme Heterojunctions
Dual Z-Scheme Heterojunctions
S-Scheme Heterojunction
3.2. Reaction Conditions
3.2.1. Photocatalyst Concentration
3.2.2. Initial Contaminant Concentration
3.2.3. pH
3.2.4. Reaction Temperature
3.2.5. Light Intensity
3.2.6. Charge-Carrier Scavengers
4. Photoelectrochemical H2 Production from Water Splitting
5. Photocatalytic CO2 Reduction
6. Photocatalytic Dye/Drug Degradation
7. Simultaneous Photocatalysis
8. Industrial Photocatalyst Application
9. AI-Assisted Photocatalyst Design
10. Conclusions and Future Research Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brindha, K.; Mohanraj, S.; Rajaguru, P.; Pugalenthi, V. Simultaneous Production of Renewable Biohydrogen, Biobutanol and Biopolymer from Phytogenic CoNPs-Assisted Clostridial Fermentation for Sustainable Energy and Environment. Sci. Total Environ. 2023, 859, 160002. [Google Scholar] [CrossRef] [PubMed]
- U.S. EIA. International Energy Outlook 2013 with Projections to 2040; U.S. EIA: Washington, DC, USA, 2019. [Google Scholar]
- Fareza, A.R.; Nugroho, F.A.A.; Abdi, F.; Fauzia, V. Nanoscale Metal Oxides–2D Materials Heterostructures for Photoelectrochemical Water Splitting—A Review. J. Mater. Chem. A 2022, 10, 8656–8686. [Google Scholar] [CrossRef]
- Ostovan, A.; Papior, N.; Zahedi, M.; Moshfegh, A.Z. Towards Developing Efficient Metalloporphyrin-Based Hybrid Photocatalysts for CO2 Reduction; an Ab Initio Study. Phys. Chem. Chem. Phys. 2020, 22, 23128–23140. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Tasleem, S.; Tahir, B. Recent Development in Band Engineering of Binary Semiconductor Materials for Solar Driven Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 15985–16038. [Google Scholar] [CrossRef]
- Naseri, A.; Samadi, M.; Pourjavadi, A.; Moshfegh, A.Z.; Ramakrishna, S. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Solar Hydrogen Generation: Recent Advances and Future Development Directions. J. Mater. Chem. A 2017, 5, 23406–23433. [Google Scholar] [CrossRef]
- Kannan, N.; Vakeesan, D. Solar Energy for Future World: A Review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Christoforidis, K.C.; Fornasiero, P. Photocatalysis for Hydrogen Production and CO2 Reduction: The Case of Copper-catalysts. ChemCatChem 2019, 11, 368–382. [Google Scholar] [CrossRef]
- Shandilya, P.; Sambyal, S.; Sharma, R.; Mandyal, P.; Fang, B. Properties, Optimized Morphologies, and Advanced Strategies for Photocatalytic Applications of WO3 Based Photocatalysts. J. Hazard. Mater. 2022, 428, 128218. [Google Scholar] [CrossRef]
- Kumar, P.; Devi, P. Photoelectrochemical Hydrogen Generation; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 9811672849. [Google Scholar]
- Riffat, M.; Ali, H.; Qayyum, H.A.; Bilal, M.; Hussain, T. Enhanced Solar-Driven Water Splitting by ZnO/CdTe Heterostructure Thin Films-Based Photocatalysts. Int. J. Hydrogen Energy 2023, 48, 22069–22078. [Google Scholar] [CrossRef]
- He, J.; Yang, Z.; Wang, Z.; Fang, R.; Gu, L.; Yan, Y.; Ran, J. Systematic Study of H2 Production from Photothermal Reforming of α-Cellulose over Atomically Thin Bi2MoO6. Energy Convers. Manag. 2023, 277, 116605. [Google Scholar] [CrossRef]
- Grimm, A.; Sainte-Marie, A.; Kramer, G.J.; Gazzani, M. Modeling Photovoltaic-Electrochemical Water Splitting Devices for the Production of Hydrogen under Real Working Conditions. Int. J. Hydrogen Energy 2022, 47, 11764–11777. [Google Scholar] [CrossRef]
- Faraji, M.; Yousefi, M.; Yousefzadeh, S.; Zirak, M.; Naseri, N.; Jeon, T.H.; Choi, W.; Moshfegh, A.Z. Two-Dimensional Materials in Semiconductor Photoelectrocatalytic Systems for Water Splitting. Energy Environ. Sci. 2019, 12, 59–95. [Google Scholar] [CrossRef]
- Nagy, V.; Podmaniczki, A.; Vidal-Meireles, A.; Tengölics, R.; Kovács, L.; Rákhely, G.; Scoma, A.; Tóth, S.Z. Water-Splitting-Based, Sustainable and Efficient H2 Production in Green Algae as Achieved by Substrate Limitation of the Calvin–Benson–Bassham Cycle. Biotechnol. Biofuels 2018, 11, 69. [Google Scholar] [CrossRef]
- Lourenço, A.C.; Reis-Machado, A.S.; Fortunato, E.; Martins, R.; Mendes, M.J. Sunlight-Driven CO2-to-Fuel Conversion: Exploring Thermal and Electrical Coupling between Photovoltaic and Electrochemical Systems for Optimum Solar-Methane Production. Mater. Today Energy 2020, 17, 100425. [Google Scholar] [CrossRef]
- Guo, S.-T.; Tang, Z.-Y.; Du, Y.-W.; Liu, T.; Ouyang, T.; Liu, Z.-Q. Chlorine Anion Stabilized Cu2O/ZnO Photocathode for Selective CO2 Reduction to CH4. Appl. Catal. B Environ. 2023, 321, 122035. [Google Scholar] [CrossRef]
- Wu, L.; Zheng, S.; Lin, H.; Zhou, S.; Idris, A.M.; Wang, J.; Li, S.; Li, Z. In-Situ Assembling 0D/2D Z-Scheme Heterojunction of Lead-Free Cs2AgBiBr6/Bi2WO6 for Enhanced Photocatalytic CO2 Reduction. J. Colloid Interface Sci. 2023, 629, 233–242. [Google Scholar] [CrossRef]
- Kumar, A.; Khosla, A.; Sharma, S.K.; Dhiman, P.; Sharma, G.; Gnanasekaran, L.; Naushad, M.; Stadler, F.J. A Review on S-Scheme and Dual S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution, Water Detoxification and CO2 Reduction. Fuel 2023, 333, 126267. [Google Scholar] [CrossRef]
- Bockris, J.O.M. The Hydrogen Economy: Its History. Int. J. Hydrog. Energy 2013, 38, 2579–2588. [Google Scholar] [CrossRef]
- Kaur, I.; Batra, V.; Bogireddy, N.K.R.; Torres, S.; Agarwal, V. Detection of Organic Pollutants, Food Additives and Antibiotics Using Sustainable Carbon Dots. Food Chem. 2022, 406, 135029. [Google Scholar] [CrossRef]
- Sudhaik, A.; Raizada, P.; Ahamad, T.; Alshehri, S.M.; Nguyen, V.-H.; Van Le, Q.; Thakur, S.; Thakur, V.K.; Selvasembian, R.; Singh, P. Recent Advances in Cellulose Supported Photocatalysis for Pollutant Mitigation: A Review. Int. J. Biol. Macromol. 2022, 226, 1284–1308. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A State-of-the-Art Review on Wastewater Treatment Techniques: The Effectiveness of Adsorption Method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef]
- AlJaberi, F.Y.; Ahmed, S.A.; Makki, H.F.; Naje, A.S.; Zwain, H.M.; Salman, A.D.; Juzsakova, T.; Viktor, S.; Van, B.; Le, P.-C. Recent Advances and Applicable Flexibility Potential of Electrochemical Processes for Wastewater Treatment. Sci. Total Environ. 2023, 867, 161361. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Villar-Rodil, S.; Paredes, J.I.; Moshfegh, A.Z. Oxidized Graphitic Carbon Nitride Nanosheets as an Effective Adsorbent for Organic Dyes and Tetracycline for Water Remediation. J. Alloys Compd. 2019, 809, 151783. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, W.; Zhu, H.; Chen, H.; Yan, S.; Zhao, M.; Sun, H.; Zhang, J.; Zhang, S. A Review on N-Doped Biochar for Oxidative Degradation of Organic Contaminants in Wastewater by Persulfate Activation. Int. J. Environ. Res. Public Health 2022, 19, 14805. [Google Scholar] [CrossRef]
- Jallouli, S.; Buonerba, A.; Borea, L.; Hasan, S.W.; Belgiorno, V.; Ksibi, M.; Naddeo, V. Living Membrane Bioreactor for Highly Effective and Eco-Friendly Treatment of Textile Wastewater. Sci. Total Environ. 2023, 871, 161963. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Boczkaj, G.; Fernandes, A. Wastewater Treatment by Means of Advanced Oxidation Processes at Basic pH Conditions: A Review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar]
- Glaze, W.H.; Kang, J.-W.; Chapin, D.H. The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. J. Int. Ozone Assoc. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef]
- Xie, Z.-H.; He, C.-S.; Pei, D.-N.; Dong, Y.; Yang, S.-R.; Xiong, Z.; Zhou, P.; Pan, Z.-C.; Yao, G.; Lai, B. Review of Characteristics, Generation Pathways and Detection Methods of Singlet Oxygen Generated in Advanced Oxidation Processes (AOPs). Chem. Eng. J. 2023, 468, 143778. [Google Scholar] [CrossRef]
- Xu, L.; Li, L.; Yu, L.; Jimmy, C.Y. Efficient Generation of Singlet Oxygen on Modified g-C3N4 Photocatalyst for Preferential Oxidation of Targeted Organic Pollutants. Chem. Eng. J. 2022, 431, 134241. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Liu, D.; Yi, M.; Chang, F.; Li, H.; Du, Y. A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects. Catalysts 2022, 12, 1092. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Reactive Species in Advanced Oxidation Processes: Formation, Identification and Reaction Mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar] [CrossRef]
- Kumar, V.; Shah, M.P. Advanced Oxidation Processes for Complex Wastewater Treatment. In Advanced Oxidation Processes for Effluent Treatment Plants; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–31. [Google Scholar]
- Pandis, P.K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering 2022, 6, 8. [Google Scholar] [CrossRef]
- Kheirabadi, M.; Samadi, M.; Asadian, E.; Zhou, Y.; Dong, C.; Zhang, J.; Moshfegh, A.Z. Well-Designed Ag/ZnO/3D Graphene Structure for Dye Removal: Adsorption, Photocatalysis and Physical Separation Capabilities. J. Colloid Interface Sci. 2019, 537, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sha, J.; Lu, Z.; Shao, S.; Sun, P.; Hu, Q.; Zhang, X. Implementation of UV-Based Advanced Oxidation Processes in Algal Medium Recycling. Sci. Total Environ. 2018, 634, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Bai, Y.; Si, W.; Mao, W.; Gao, Y.; Liu, S. Heterogeneous Photo-Fenton System of Novel Ternary Bi2WO6/BiFeO3/g-C3N4 Heterojunctions for Highly Efficient Degrading Persistent Organic Pollutants in Wastewater. J. Photochem. Photobiol. A Chem. 2021, 404, 112856. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, J.; Lu, X.; Ma, J.; Liu, Y. Production of Sulfate Radical and Hydroxyl Radical by Reaction of Ozone with Peroxymonosulfate: A Novel Advanced Oxidation Process. Environ. Sci. Technol. 2015, 49, 7330–7339. [Google Scholar] [CrossRef]
- Hassan, M.; Olvera-Vargas, H.; Zhu, X.; Zhang, B.; He, Y. Microbial Electro-Fenton: An Emerging and Energy-Efficient Platform for Environmental Remediation. J. Power Sources 2019, 424, 220–244. [Google Scholar] [CrossRef]
- Matafonova, G.; Batoev, V. Review on Low-and High-Frequency Sonolytic, Sonophotolytic and Sonophotochemical Processes for Inactivating Pathogenic Microorganisms in Aqueous Media. Water Res. 2019, 166, 115085. [Google Scholar] [CrossRef]
- Baaloudj, O.; Kenfoud, H.; Badawi, A.K.; Assadi, A.A.; El Jery, A.; Assadi, A.A.; Amrane, A. Bismuth Sillenite Crystals as Recent Photocatalysts for Water Treatment and Energy Generation: A Critical Review. Catalysts 2022, 12, 500. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous Photodegradation of Industrial Dyes: An Insight to Different Mechanisms and Rate Affecting Parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Lewis, N.S. Developing a Scalable Artificial Photosynthesis Technology through Nanomaterials by Design. Nat. Nanotechnol. 2016, 11, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Boddy, P.J. Oxygen Evolution on Semiconducting TiO2. J. Electrochem. Soc. 1968, 115, 199. [Google Scholar] [CrossRef]
- Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical Development and Prospects of Photocatalysts for Pollutant Removal in Water. J. Hazard. Mater. 2020, 395, 122599. [Google Scholar] [CrossRef]
- Yang, W.; Prabhakar, R.R.; Tan, J.; Tilley, S.D.; Moon, J. Strategies for Enhancing the Photocurrent, Photovoltage, and Stability of Photoelectrodes for Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2019, 48, 4979–5015. [Google Scholar] [CrossRef]
- Naseri, A.; Asghari Sarabi, G.; Samadi, M.; Yousefi, M.; Ebrahimi, M.; Moshfegh, A.Z. Recent Advances on Dual-Functional Photocatalytic Systems for Combined Removal of Hazardous Water Pollutants and Energy Generation. Res. Chem. Intermed. 2022, 48, 911–933. [Google Scholar] [CrossRef]
- Gao, J.; Xue, J.; Shen, Q.; Liu, T.; Zhang, X.; Liu, X.; Jia, H.; Li, Q.; Wu, Y. A Promoted Photocatalysis System Trade-off between Thermodynamic and Kinetic via Hierarchical Distribution Dual-Defects for Efficient H2 Evolution. Chem. Eng. J. 2022, 431, 133281. [Google Scholar] [CrossRef]
- Li, X.; Garlisi, C.; Guan, Q.; Anwer, S.; Al-Ali, K.; Palmisano, G.; Zheng, L. A Review of Material Aspects in Developing Direct Z-Scheme Photocatalysts. Mater. Today 2021, 47, 75–107. [Google Scholar] [CrossRef]
- Samadi, M.; Zirak, M.; Naseri, A.; Kheirabadi, M.; Ebrahimi, M.; Moshfegh, A.Z. Design and Tailoring of One-Dimensional ZnO Nanomaterials for Photocatalytic Degradation of Organic Dyes: A Review. Res. Chem. Intermed. 2019, 45, 2197–2254. [Google Scholar]
- Samadi, M.; Zirak, M.; Naseri, A.; Khorashadizade, E.; Moshfegh, A.Z. Recent Progress on Doped ZnO Nanostructures for Visible-Light Photocatalysis. Thin Solid Films 2016, 605, 2–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Matras-Postolek, K.; Yang, P. Z-Scheme WOx/Cu-g-C3N4 Heterojunction Nanoarchitectonics with Promoted Charge Separation and Transfer towards Efficient Full Solar-Spectrum Photocatalysis. J. Colloid Interface Sci. 2023, 636, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Wang, T.; Gong, J. CO2 Photo-Reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Huang, H. Metal-Enhanced Strategies for Photocatalytic and Photoelectrochemical CO2 Reduction. Chem. Eng. J. 2023, 457, 141179. [Google Scholar] [CrossRef]
- Li, D.; Kassymova, M.; Cai, X.; Zang, S.-Q.; Jiang, H.-L. Photocatalytic CO2 Reduction over Metal-Organic Framework-Based Materials. Coord. Chem. Rev. 2020, 412, 213262. [Google Scholar] [CrossRef]
- Gulati, S.; Vijayan, S.; Kumar, S.; Harikumar, B.; Trivedi, M.; Varma, R.S. Recent Advances in the Application of Metal-Organic Frameworks (MOFs)-Based Nanocatalysts for Direct Conversion of Carbon Dioxide (CO2) to Value-Added Chemicals. Coord. Chem. Rev. 2023, 474, 214853. [Google Scholar] [CrossRef]
- Nwosu, U.; Wang, A.; Palma, B.; Zhao, H.; Khan, M.A.; Kibria, M.; Hu, J. Selective Biomass Photoreforming for Valuable Chemicals and Fuels: A Critical Review. Renew. Sustain. Energy Rev. 2021, 148, 111266. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Y.; Heo, Y.-J.; Park, S.-J. Advanced Design and Synthesis of Composite Photocatalysts for the Remediation of Wastewater: A Review. Catalysts 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Jabbar, Z.H.; Ebrahim, S.E. Recent Advances in Nano-Semiconductors Photocatalysis for Degrading Organic Contaminants and Microbial Disinfection in Wastewater: A Comprehensive Review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100666. [Google Scholar] [CrossRef]
- Qin, K.; Zhao, Q.; Yu, H.; Xia, X.; Li, J.; He, S.; Wei, L.; An, T. A Review of Bismuth-Based Photocatalysts for Antibiotic Degradation: Insight into the Photocatalytic Degradation Performance, Pathways and Relevant Mechanisms. Environ. Res. 2021, 199, 111360. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Kubelka, P. The Kubelka-Munk Theory of Reflectance. Tech. Phys. 1931, 12, 539. [Google Scholar]
- Ohtani, B. Photocatalysis A to Z—What We Know and What We Do Not Know in a Scientific Sense. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Altaf, C.T.; Abdullayeva, N.; Sankir, N.D.; Sankir, N.D. Copper-Based Chalcopyrite and Kesterite Materials for Solar Hydrogen Generation. In Photoelectrochemical Solar Cells; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 251–303. [Google Scholar]
- Wu, H.; Zhang, L.; Du, A.; Irani, R.; van de Krol, R.; Abdi, F.F.; Ng, Y.H. Low-Bias Photoelectrochemical Water Splitting via Mediating Trap States and Small Polaron Hopping. Nat. Commun. 2022, 13, 6231. [Google Scholar] [CrossRef] [PubMed]
- Akhundi, A.; Badiei, A.; Ziarani, G.M.; Habibi-Yangjeh, A.; Munoz-Batista, M.J.; Luque, R. Graphitic Carbon Nitride-Based Photocatalysts: Toward Efficient Organic Transformation for Value-Added Chemicals Production. Mol. Catal. 2020, 488, 110902. [Google Scholar] [CrossRef]
- Sinha, R.; Ghosal, P.S. A Comprehensive Appraisal on Status and Management of Remediation of DBPs by TiO2 Based-Photocatalysts: Insights of Technology, Performance and Energy Efficiency. J. Environ. Manag. 2023, 328, 117011. [Google Scholar] [CrossRef]
- Gao, J.; Shen, J.; Maouche, C.; Ali, R.N.; Yang, J.; Liu, Q. Enhanced Antibacterial Performance in Water over the Nanostructured Heterojunction Photocatalysts: A Review. J. Clean. Prod. 2022, 372, 133770. [Google Scholar] [CrossRef]
- Lin, J.; Tian, W.; Zhang, H.; Duan, X.; Sun, H.; Wang, H.; Fang, Y.; Huang, Y.; Wang, S. Carbon Nitride-Based Z-Scheme Heterojunctions for Solar-Driven Advanced Oxidation Processes. J. Hazard. Mater. 2022, 434, 128866. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Li, B.; Sun, H.; Wang, S.; Duan, X. Morphology-Dependent Photocatalysis of Graphitic Carbon Nitride for Sustainable Remediation of Aqueous Pollutants: A Mini Review. J. Environ. Chem. Eng. 2022, 10, 107438. [Google Scholar] [CrossRef]
- Deng, A.; Sun, Y.; Gao, Z.; Yang, S.; Liu, Y.; He, H.; Zhang, J.; Liu, S.; Sun, H.; Wang, S. Internal Electric Field in Carbon Nitride-Based Heterojunctions for Photocatalysis. Nano Energy 2023, 108, 108228. [Google Scholar] [CrossRef]
- Zhao, F.; Li, X.; Zuo, M.; Liang, Y.; Qin, P.; Wang, H.; Wu, Z.; Luo, L.; Liu, C.; Leng, L. Preparation of Photocatalysts Decorated by Carbon Quantum Dots (CQDs) and Their Applications: A Review. J. Environ. Chem. Eng. 2023, 11, 109487. [Google Scholar] [CrossRef]
- Chen, L.; Wang, C.; Liu, G.; Su, G.; Ye, K.; He, W.; Li, H.; Wei, H.; Dang, L. Anchoring Black Phosphorous Quantum Dots on Bi2WO6 Porous Hollow Spheres: A Novel 0D/3D S-Scheme Photocatalyst for Efficient Degradation of Amoxicillin under Visible Light. J. Hazard. Mater. 2023, 443, 130326. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shen, X.; Liu, A.; Lu, Z.; Xie, J.; Hao, A.; Jiang, X.; Wang, J.; Cao, Y. Highly Dispersed Cu2O Quantum Dots (about 2 nm) Constructed by a Simple Functional Group Anchoring Strategy Boost the Photocatalytic Water Splitting Ability by 72 Times. J. Mater. Chem. A 2023, 11, 1290–1300. [Google Scholar] [CrossRef]
- Cao, Y.; Yuan, X.; Chen, H.; Wang, H.; Chen, Y.; Chen, J.; Huang, H.; Mou, Y.; Shangguan, Z.; Li, X. Rapid Concurrent Photocatalysis-Persulfate Activation for Ciprofloxacin Degradation by Bi2S3 Quantum Dots-Decorated MIL-53(Fe) Composites. Chem. Eng. J. 2023, 456, 140971. [Google Scholar] [CrossRef]
- Qorbani, M.; Naseri, N.; Moradlou, O.; Azimirad, R.; Moshfegh, A.Z. How CdS Nanoparticles Can Influence TiO2 Nanotube Arrays in Solar Energy Applications? Appl. Catal. B Environ. 2015, 162, 210–216. [Google Scholar] [CrossRef]
- Mansur, A.A.P.; Custódio, D.A.C.; Dorneles, E.M.S.; Coura, F.M.; Carvalho, I.C.; Lage, A.P.; Mansur, H.S. Nanoplexes of ZnS Quantum Dot-Poly-l-Lysine/Iron Oxide Nanoparticle-Carboxymethylcellulose for Photocatalytic Degradation of Dyes and Antibacterial Activity in Wastewater Treatment. Int. J. Biol. Macromol. 2023, 231, 123363. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Li, L.; Li, D.; Jiang, T.; Huang, H.; Jiang, D.; Kang, Z.; Mao, B. Cu5FeS4 Quantum Dots as a Single-Component Photo-Assisted Electrocatalyst for Efficient Hydrogen Evolution. J. Mater. Chem. A 2023, 11, 1927–1936. [Google Scholar] [CrossRef]
- Naseri, N.; Sangpour, P.; Moshfegh, A.Z. Visible Light Active Au: TiO2 Nanocomposite Photoanodes for Water Splitting: Sol–Gel vs. Sputtering. Electrochim. Acta 2011, 56, 1150–1158. [Google Scholar] [CrossRef]
- Li, Z.; Hou, Y.; Ma, Y.; Zhai, F.; Joshi, M.K. Recent Advances in One-Dimensional Electrospun Semiconductor Nanostructures for UV Photodetector Applications: A Review. J. Alloys Compd. 2023, 948, 169718. [Google Scholar] [CrossRef]
- Samadi, M.; Shivaee, H.A.; Pourjavadi, A.; Moshfegh, A.Z. Synergism of Oxygen Vacancy and Carbonaceous Species on Enhanced Photocatalytic Activity of Electrospun ZnO-Carbon Nanofibers: Charge Carrier Scavengers Mechanism. Appl. Catal. A Gen. 2013, 466, 153–160. [Google Scholar] [CrossRef]
- Naseri, A.; Samadi, M.; Mahmoodi, N.M.; Pourjavadi, A.; Mehdipour, H.; Moshfegh, A.Z. Tuning Composition of Electrospun ZnO/CuO Nanofibers: Toward Controllable and Efficient Solar Photocatalytic Degradation of Organic Pollutants. J. Phys. Chem. C 2017, 121, 3327–3338. [Google Scholar] [CrossRef]
- Samadi, M.; Pourjavadi, A.; Moshfegh, A.Z. Role of CdO Addition on the Growth and Photocatalytic Activity of Electrospun ZnO Nanofibers: UV vs. Visible Light. Appl. Surf. Sci. 2014, 298, 147–154. [Google Scholar] [CrossRef]
- Naseri, A.; Samadi, M.; Pourjavadi, A.; Ramakrishna, S.; Moshfegh, A.Z. Enhanced Photocatalytic Activity of ZnO/g-C3N4 Nanofibers Constituting Carbonaceous Species under Simulated Sunlight for Organic Dye Removal. Ceram. Int. 2021, 47, 26185–26196. [Google Scholar] [CrossRef]
- Zirak, M.; Moradlou, O.; Bayati, M.R.; Nien, Y.T.; Moshfegh, A.Z. On the Growth and Photocatalytic Activity of the Vertically Aligned ZnO Nanorods Grafted by CdS Shells. Appl. Surf. Sci. 2013, 273, 391–398. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Yousefzadeh, S.; Samadi, M.; Dong, C.; Zhang, J.; Moshfegh, A.Z. Facile Preparation of Branched Hierarchical ZnO Nanowire Arrays with Enhanced Photocatalytic Activity: A Photodegradation Kinetic Model. Appl. Surf. Sci. 2018, 435, 108–116. [Google Scholar] [CrossRef]
- Nourmohammadi, A.; Rahighi, R.; Akhavan, O.; Moshfegh, A. Graphene Oxide Sheets Involved in Vertically Aligned Zinc Oxide Nanowires for Visible Light Photoinactivation of Bacteria. J. Alloys Compd. 2014, 612, 380–385. [Google Scholar] [CrossRef]
- Qin, M.-Z.; Fu, W.-X.; Guo, H.; Niu, C.-G.; Huang, D.-W.; Liang, C.; Yang, Y.-Y.; Liu, H.-Y.; Tang, N.; Fan, Q.-Q. 2D/2D Heterojunction Systems for the Removal of Organic Pollutants: A Review. Adv. Colloid Interface Sci. 2021, 297, 102540. [Google Scholar]
- Liu, C.; Liu, Y.; Ma, R.; Sasaki, T.; Wang, X.; Xiong, P.; Zhu, J. Atomic Cation-Vacancy Engineering of Two-Dimensional Nanosheets for Energy-Related Applications. Mater. Chem. Front. 2023, 7, 1004–1024. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Q.; Li, X.; Ji, H.; Shen, Z. Two-Dimensional g-C3N4 Nanosheets-Based Photo-Catalysts for Typical Sustainable Processes. Chin. Chem. Lett. 2023, 108306. [Google Scholar] [CrossRef]
- Mohanty, U.A.; Sahoo, D.; Paramanik, L.; Parida, K. A Critical Review on Layered Double Hydroxide (LDH) Derived Functional Nanomaterials as Potential and Sustainable Photocatalyst. Sustain. Energy Fuels 2023, 7, 1145–1186. [Google Scholar] [CrossRef]
- Ali, Z.; Ma, J.; Hong, M.; Sun, R. Applications of the Functional Photocatalysts BiOX (X = Cl, Br, I) for Clean Energy, the Environment, and Future Photobiorefineries. J. Mater. Chem. A 2023, 11, 3297–3314. [Google Scholar] [CrossRef]
- Song, L.; Zhang, S.; Sun, S.; Wei, J.; Liu, E. Performance and Mechanism on Hydrogen Evolution of Two-Dimensional Boron Nitride under Mechanical Vibration. Fuel 2023, 331, 125765. [Google Scholar] [CrossRef]
- Solangi, N.H.; Karri, R.R.; Mazari, S.A.; Mubarak, N.M.; Jatoi, A.S.; Malafaia, G.; Azad, A.K. MXene as Emerging Material for Photocatalytic Degradation of Environmental Pollutants. Coord. Chem. Rev. 2023, 477, 214965. [Google Scholar] [CrossRef]
- Bai, J.; Cui, K.; Xie, X.; Fang, B.; Wang, F. Sepiolite-Supported WS2 Nanosheets for Synergistically Promoting Photocatalytic Rhodamine B Degradation. Catalysts 2022, 12, 1400. [Google Scholar] [CrossRef]
- Naseri, N.; Kim, H.; Choi, W.; Moshfegh, A.Z. Implementation of Ag Nanoparticle Incorporated WO3 Thin Film Photoanode for Hydrogen Production. Int. J. Hydrogen Energy 2013, 38, 2117–2125. [Google Scholar] [CrossRef]
- Wang, N.; Li, Y.; Wang, L.; Yu, X. Photocatalytic Applications of ReS2-Based Heterostructures. Molecules 2023, 28, 2627. [Google Scholar] [CrossRef] [PubMed]
- Oad, N.P.; Chandra, P.; Mohammad, A.; Tripathi, B.; Yoon, T. MoS2-Based Hetero-Nanostructures for Photocatalytic, Photoelectrocatalytic and Piezocatalytic Remediation of Hazardous Pharmaceuticals. J. Environ. Chem. Eng. 2023, 11, 109604. [Google Scholar] [CrossRef]
- Liu, Y.; Naseri, A.; Li, T.; Ostovan, A.; Asadian, E.; Jia, R.; Shi, L.; Huang, L.; Moshfegh, A.Z. Shape-Controlled Photochemical Synthesis of Noble Metal Nanocrystals Based on Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 2022, 14, 16527–16537. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Zou, J.; Bullock, J.; Wallace, G.G. Emerging Approach in Semiconductor Photocatalysis: Towards 3D Architectures for Efficient Solar Fuels Generation in Semi-Artificial Photosynthetic Systems. J. Photochem. Photobiol. C Photochem. Rev. 2019, 39, 142–160. [Google Scholar] [CrossRef]
- Jiang, W.; Zhu, Y.; Zhu, G.; Zhang, Z.; Chen, X.; Yao, W. Three-Dimensional Photocatalysts with a Network Structure. J. Mater. Chem. A 2017, 5, 5661–5679. [Google Scholar] [CrossRef]
- Wen, F.; Liu, W. Three-Dimensional Ordered Macroporous Materials for Photocatalysis: Design and Applications. J. Mater. Chem. A 2021, 9, 18129–18147. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, X.; Zhang, W.; Liu, Z.; Zeng, G.; Shao, B.; Liang, Q.; He, Q.; Yuan, X.; Huang, D. Advances in Photocatalysis Based on Fullerene C60 and Its Derivatives: Properties, Mechanism, Synthesis, and Applications. Appl. Catal. B Environ. 2020, 265, 118579. [Google Scholar] [CrossRef]
- Abdollahi, N.; Ostovan, A.; Rahimi, K.; Zahedi, M.; Moshfegh, A.Z. Magnetically Recyclable Fe3O4@TMU-32 Metal–Organic Framework Photocatalyst for Tetracycline Degradation Under Visible Light. Inorg. Chem. 2021, 60, 17997–18005. [Google Scholar] [CrossRef]
- Gong, Y.-N.; Guan, X.; Jiang, H.-L. Covalent Organic Frameworks for Photocatalysis: Synthesis, Structural Features, Fundamentals and Performance. Coord. Chem. Rev. 2023, 475, 214889. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Wang, L.; Yu, W.; Zhang, S.; Li, X.; Zhai, S. Engineering the Electronic Structure of Two-Dimensional MoS2 by Ni Dopants for Pollutant Degradation. Sep. Purif. Technol. 2023, 314, 123637. [Google Scholar] [CrossRef]
- Khan, S.; Poliukhova, V.; Tamir, N.; Park, J.; Suzuki, N.; Terashima, C.; Katsumata, K.-I.; Cho, S.-H. Dual Function of Rhodium Photodeposition on ZnO/ZnS: Enhanced H2 Production and Photocorrosion Suppression in Water. Int. J. Hydrog. Energy 2023, 48, 9713–9722. [Google Scholar] [CrossRef]
- Tanaka, A.; Teramura, K.; Hosokawa, S.; Kominami, H.; Tanaka, T. Visible Light-Induced Water Splitting in an Aqueous Suspension of a Plasmonic Au/TiO2 Photocatalyst with Metal Co-Catalysts. Chem. Sci. 2017, 8, 2574–2580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneva, N.; Bojinova, A.; Papazova, K. Enhanced Removal of Organic Dyes Using Co-Catalytic Ag-Modified ZnO and TiO2 Sol-Gel Photocatalysts. Catalysts 2023, 13, 245. [Google Scholar] [CrossRef]
- Le-Duy, N.; Hoang, L.-A.T.; Nguyen, T.D.; Lee, T. Pd Nanoparticles Decorated BiVO4 Pine Architectures for Photocatalytic Degradation of Sulfamethoxazole. Chemosphere 2023, 321, 138118. [Google Scholar] [CrossRef]
- Chen, X.; Qin, S.; Denisov, N.; Kure-Chu, S.-Z.; Schmuki, P. Pt-Single Atom Decorated TiO2: Tuning Anodic TiO2 Nanotube Structure and Geometry toward a High-Performance Photocatalytic H2 Production. Electrochim. Acta 2023, 446, 142081. [Google Scholar] [CrossRef]
- Lei, W.; Zhou, T.; Pang, X.; Xue, S.; Xu, Q. Low-Dimensional MXenes as Noble Metal-Free Co-Catalyst for Solar-to-Fuel Production: Progress and Prospects. J. Mater. Sci. Technol. 2022, 114, 143–164. [Google Scholar]
- Ramírez-Ortega, D.; Guerrero-Araque, D.; Sierra-Uribe, J.H.; Camposeco, R.; Gómez, R.; Zanella, R. Accelerated Transfer and Separation of Charge Carriers during the Photocatalytic Production of Hydrogen over Au/ZrO2–TiO2 Structures by Interfacial Energy States. Int. J. Hydrog. Energy 2023, 48, 15956–15966. [Google Scholar]
- Gu, D.; Liu, Y.; Li, X.; Zhu, H.; Cui, Y.; Yang, W.; Hao, J. Porphyrin-Based Metal–Organic Frameworks Loaded with Ag Nanoparticles and Their Nanofibrous Filters for the Photocatalytic Reduction of Cr (VI). Appl. Surf. Sci. 2023, 614, 156192. [Google Scholar] [CrossRef]
- Al-Naggar, A.H.; Shinde, N.M.; Kim, J.-S.; Mane, R.S. Water Splitting Performance of Metal and Non-Metal-Doped Transition Metal Oxide Electrocatalysts. Coord. Chem. Rev. 2023, 474, 214864. [Google Scholar]
- Liu, X.; Zhang, Y.; Matsushima, S.; Sugiyama, T.; Hojo, H.; Einaga, H. Rational Design of Cu-Doped ZnS Nanospheres for Photocatalytic Evolution of H2 with Visible Light. ACS Appl. Energy Mater. 2022, 5, 1849–1857. [Google Scholar] [CrossRef]
- Yang, G.; Chen, T.; Liu, H.; Xing, C.; Yu, G.; Li, X. Bi-Doped Twin Crystal Zn0. 5Cd0. 5S Photocatalyst for Highly Efficient Photocatalytic Hydrogen Production from Water. Appl. Surf. Sci. 2023, 616, 156393. [Google Scholar] [CrossRef]
- Singh, K.; Kaur, H.; Sharma, P.K.; Singh, G.; Singh, J. ZnO and Cobalt Decorated ZnO NPs: Synthesis, Photocatalysis and Antimicrobial Applications. Chemosphere 2023, 313, 137322. [Google Scholar]
- Cui, Y.; Guo, P.; Dang, P.; Sun, H.; Jing, P.; Tao, X. Improved Photodegradation Efficiency in Fe3+-Doped Bi3TiNbO9 Nanosheets through Oxygen Vacancies Introduction and Ferroelectric Polarization Enhancement Simultaneously. Appl. Surf. Sci. 2022, 575, 151749. [Google Scholar]
- Sonsupap, S.; Waehayee, A.; Siritanon, T.; Saenrang, W.; Chanlek, N.; Nakajima, H.; Rattanachata, A.; Maensiri, S. Structural, Optical, and Photocatalytic Properties of La3+ Doped CeO2 Nanospheres for Enhanced Photodegradation of Tetracycline. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130650. [Google Scholar]
- Wang, J.; Wang, J.; Shi, R.; Zhou, C.; Zhang, T. Facile Fabrication of N-Doped K2Nb2O6 Nanocrystals with Defective Pyrochlore Structure for Improved Visible-Light Photocatalytic Hydrogen Production. Small Struct. 2023, 4, 2200105. [Google Scholar]
- Wu, X.; Li, D.; Luo, B.; Chen, B.; Huang, Y.; Yu, T.; Shen, N.; Li, L.; Shi, W. Molecular-Level Insights on NIR-Driven Photocatalytic H2 Generation with Ultrathin Porous S-Doped g-C3N4 Nanosheets. Appl. Catal. B Environ. 2023, 325, 122292. [Google Scholar] [CrossRef]
- Yin, X.; Sun, X.; Mao, Y.; Wang, R.; Li, D.; Xie, W.; Liu, Z.; Liu, Z. Synergistically Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride by Z-Scheme Heterojunction MT-BiVO4 Microsphere/P-Doped g-C3N4 Nanosheet Composite. J. Environ. Chem. Eng. 2023, 11, 109412. [Google Scholar] [CrossRef]
- Sun, X.; Pan, Y.; Song, Y.; Liu, W.; Nghiem, L.D.; Wang, Q.; Cai, Z. Ceftriaxone Sodium Degradation by Carbon Quantum Dots (CQDs)-Decorated C-Doped α-Bi2O3 Nanorods. Environ. Sci. Ecotechnol. 2023, 13, 100219. [Google Scholar] [PubMed]
- Shanmugam, P.; Smith, S.M.; Boonyuen, S.; Luengnaruemitchai, A. In-Situ Development of Boron Doped g-C3N4 Supported SBA-15 Nanocomposites for Photocatalytic Degradation of Tetracycline. Environ. Res. 2023, 224, 115496. [Google Scholar] [CrossRef]
- Han, Q.; Han, Z.; Wang, Y.; Zhang, S.; Fang, J.; Li, H.; Fang, P. Enhanced Photocatalytic Hydrogen Evolution by Piezoelectric Effects Based on MoSe2/Se-Decorated CdS Nanowire Edge-on Heterostructure. J. Colloid Interface Sci. 2023, 630, 460–472. [Google Scholar]
- Bayati, M.R.; Moshfegh, A.Z.; Golestani-Fard, F. On the Photocatalytic Activity of the Sulfur Doped Titania Nano-Porous Films Derived via Micro-Arc Oxidation. Appl. Catal. A Gen. 2010, 389, 60–67. [Google Scholar] [CrossRef]
- Samadi, M.; Shivaee, H.A.; Zanetti, M.; Pourjavadi, A.; Moshfegh, A. Visible Light Photocatalytic Activity of Novel MWCNT-Doped ZnO Electrospun Nanofibers. J. Mol. Catal. A Chem. 2012, 359, 42–48. [Google Scholar] [CrossRef]
- Yousefi, M.; Amiri, M.; Azimirad, R.; Moshfegh, A.Z. Enhanced Photoelectrochemical Activity of Ce Doped ZnO Nanocomposite Thin Films under Visible Light. J. Electroanal. Chem. 2011, 661, 106–112. [Google Scholar] [CrossRef]
- Khorashadizade, E.; Mohajernia, S.; Hejazi, S.; Mehdipour, H.; Naseri, N.; Moradlou, O.; Moshfegh, A.Z.; Schmuki, P. Intrinsically Ru-Doped Suboxide TiO2 Nanotubes for Enhanced Photoelectrocatalytic H2 Generation. J. Phys. Chem. C 2021, 125, 6116–6127. [Google Scholar] [CrossRef]
- Mohazzab, B.F.; Akhundi, A.; Rahimi, K.; Jaleh, B.; Moshfegh, A.Z. P-Doped g-C3N4 Nanosheet-Modified BiVO4 Hybrid Nanostructure as an Efficient Visible Light-Driven Water Splitting Photoanode. ACS Appl. Energy Mater. 2022, 5, 12283–12296. [Google Scholar]
- Chen, M.; Wei, S.; Wu, J.; Li, J.; Fu, B.; Zhu, X. Sulfur Doped Bi-MOF with Adjustable Band Gap for Tetracycline Removal under Visible Light. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131186. [Google Scholar]
- Raizada, P.; Soni, V.; Kumar, A.; Singh, P.; Khan, A.A.P.; Asiri, A.M.; Thakur, V.K.; Nguyen, V.-H. Surface Defect Engineering of Metal Oxides Photocatalyst for Energy Application and Water Treatment. J. Mater. 2021, 7, 388–418. [Google Scholar]
- Ding, Y.; Maitra, S.; Wang, C.; Halder, S.; Zheng, R.; Barakat, T.; Roy, S.; Chen, L.; Su, B. Vacancy Defect Engineering in Semiconductors for Solar Light-driven Environmental Remediation and Sustainable Energy Production. Interdiscip. Mater. 2022, 1, 213–255. [Google Scholar]
- Zhao, Y.; Linghu, X.; Shu, Y.; Zhang, J.; Chen, Z.; Wu, Y.; Shan, D.; Wang, B. Classification and Catalytic Mechanisms of Heterojunction Photocatalysts and the Application of Titanium Dioxide (TiO2)-Based Heterojunctions in Environmental Remediation. J. Environ. Chem. Eng. 2022, 10, 108077. [Google Scholar]
- Feng, C.; Wu, Z.; Huang, K.; Ye, J.; Zhang, H. Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Adv. Mater. 2022, 34, 2200180. [Google Scholar] [CrossRef]
- Li, X.; Li, K.; Ding, D.; Yan, J.; Wang, C.; Carabineiro, S.A.C.; Liu, Y.; Lv, K. Effect of Oxygen Vacancies on the Photocatalytic Activity of Flower-like BiOBr Microspheres towards NO Oxidation and CO2 Reduction. Sep. Purif. Technol. 2023, 309, 123054. [Google Scholar] [CrossRef]
- Peng, H.; Du, Y.; Yong, J.; Huang, C.; Zheng, X.; Wen, J. ZnInGaS4 Heterojunction with Sulfide Vacancies for Efficient Solar-Light Photocatalytic Water Splitting and Cr (VI) Reduction. Chem. Eng. J. 2023, 452, 139386. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, X.; Jin, H.; Du, R.; Wang, Y.; Zhou, Y.; Chong, R.; Liu, X.; Huang, Q. Integrating Carbon Vacancy Modified Carbon Quantum Dots with Carbon Nitride for Efficient Photocatalytic CO2 Reduction to Syngas with Tunable Hydrogen to Carbon Monoxide Ratio. Carbon 2023, 203, 671–685. [Google Scholar] [CrossRef]
- Lin, F.; Wang, T.; Ren, Z.; Cai, X.; Wang, Y.; Chen, J.; Wang, J.; Zang, S.; Mao, F.; Lv, L. Central Nitrogen Vacancies in Polymeric Carbon Nitride for Boosted Photocatalytic H2O2 Production. J. Colloid Interface Sci. 2023, 636, 223–229. [Google Scholar] [CrossRef]
- Gong, X.; Tang, L.; Zou, J.; Guo, Z.; Li, Y.; Lei, J.; Liu, H.; Liu, M.; Zhou, L.; Huang, P. Introduction of Cation Vacancies and Iron Doping into TiO2 Enabling Efficient Uranium Photoreduction. J. Hazard. Mater. 2022, 423, 126935. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Wan, Y.; Nazir, A.; Song, X.; Huo, P.; Wang, H. Fabrication of Zn Vacancies-Tunable Ultrathin-g-C3N4@ZnIn2S4/SWNTs Composites for Enhancing Photocatalytic CO2 Reduction. Appl. Surf. Sci. 2023, 613, 155989. [Google Scholar] [CrossRef]
- Li, S.; Chen, F.; Chu, S.; Zhang, Z.; Huang, J.; Wang, S.; Feng, Y.; Wang, C.; Huang, H. Synergy-Compensation Effect of Ferroelectric Polarization and Cationic Vacancy Collaboratively Promoting CO2 Photoreduction. Small 2023, 19, 2203559. [Google Scholar] [CrossRef]
- Xiong, J.; Di, J.; Xia, J.; Zhu, W.; Li, H. Surface Defect Engineering in 2D Nanomaterials for Photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983. [Google Scholar] [CrossRef]
- Han, Z.; Fei, J.; Li, J.; Deng, Y.; Lv, M.; Zhao, J.; Wang, C.; Zhao, X. Enhanced Dye-Sensitized Photocatalysis for Water Purification by an Alveoli-like Bilayer Janus Membrane. Chem. Eng. J. 2021, 407, 127214. [Google Scholar]
- Gholami, M.; Qorbani, M.; Moradlou, O.; Naseri, N.; Moshfegh, A.Z. Optimal Ag2S Nanoparticle Incorporated TiO2 Nanotube Array for Visible Water Splitting. RSC Adv. 2014, 4, 7838–7844. [Google Scholar]
- Yousefzadeh, S.; Faraji, M.; Nien, Y.T.; Moshfegh, A.Z. CdS Nanoparticle Sensitized Titanium Dioxide Decorated Graphene for Enhancing Visible Light Induced Photoanode. Appl. Surf. Sci. 2014, 320, 772–779. [Google Scholar] [CrossRef]
- Dinda, D.; Park, H.; Park, S.Y. Ultra-Stable Dye-Sensitized Graphene Quantum Dot as a Robust Metal-Free Photocatalyst for Hydrogen Production. J. Catal. 2021, 404, 273–282. [Google Scholar] [CrossRef]
- Wei, S.; Fan, S.; Zhang, M.; Ren, J.; Jia, B.; Wang, Y.; Wu, R.; Fang, Z.; Liang, Q. Dye-Sensitized Bi2MoO6 for Highly Efficient Photocatalytic Degradation of Levofloxacin under LED Light Irradiation. Mater. Today Sustain. 2023, 21, 100311. [Google Scholar]
- Malefane, M.E.; Mafa, P.J.; Managa, M.; Nkambule, T.T.I.; Kuvarega, A.T. Understanding the Principles and Applications of Dual Z-Scheme Heterojunctions: How Far Can We Go? J. Phys. Chem. Lett. 2023, 14, 1029–1045. [Google Scholar] [CrossRef]
- Kumar, Y.; Kumar, R.; Raizada, P.; Khan, A.A.P.; Van Le, Q.; Singh, P.; Nguyen, V.-H. Novel Z-Scheme ZnIn2S4-Based Photocatalysts for Solar-Driven Environmental and Energy Applications: Progress and Perspectives. J. Mater. Sci. Technol. 2021, 87, 234–257. [Google Scholar]
- Chatterjee, A.; Wang, L.; Van Der Voort, P. Metal-Organic Frameworks in Photocatalytic Z-Scheme Heterojunctions: An Emerging Technology. Chem. Commun. 2023, 59, 3627–3654. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Huang, N.-Y.; Xu, Q. Metal Halide Perovskite Materials in Photocatalysis: Design Strategies and Applications. Coord. Chem. Rev. 2023, 481, 215031. [Google Scholar]
- Krishnan, A.; Yoosuf, M.; Archana, K.; Arsha, A.S.; Viswam, A. Metal Derivative (MD)/g-C3N4 Association in Hydrogen Production; A Study on the Fascinating Chemistry behind, Current Trend & Future Direction. J. Energy Chem. 2023, 80, 562–583. [Google Scholar]
- Sharma, K.; Raizada, P.; Hasija, V.; Singh, P.; Bajpai, A.; Nguyen, V.-H.; Rangabhashiyam, S.; Kumar, P.; Nadda, A.K.; Kim, S.Y. ZnS-Based Quantum Dots as Photocatalysts for Water Purification. J. Water Process Eng. 2021, 43, 102217. [Google Scholar]
- Kumar, R.; Sudhaik, A.; Khan, A.A.P.; Raizada, P.; Asiri, A.M.; Mohapatra, S.; Thakur, S.; Thakur, V.K.; Singh, P. Current Status on Designing of Dual Z-Scheme Photocatalysts for Energy and Environmental Applications. J. Ind. Eng. Chem. 2022, 106, 340–355. [Google Scholar] [CrossRef]
- Ahmad, I.; Muneer, M.; Khder, A.S.; Ahmed, S.A. Novel Type-II Heterojunction Binary Composite (CdS/AgI) with Outstanding Visible Light-Driven Photocatalytic Performances toward Methyl Orange and Tetracycline Hydrochloride. ACS Omega 2023, 8, 22708–22720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Mohamed, A.R.; Ong, W. Z-scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? Angew. Chem. Int. Ed. 2020, 59, 22894–22915. [Google Scholar] [CrossRef]
- Li, J.; Yuan, H.; Zhang, W.; Jin, B.; Feng, Q.; Huang, J.; Jiao, Z. Advances in Z-scheme Semiconductor Photocatalysts for the Photoelectrochemical Applications: A Review. Carbon Energy 2022, 4, 294–331. [Google Scholar]
- Bard, A.J. Photoelectrochemistry and Heterogeneous Photo-Catalysis at Semiconductors. J. Photochem. 1979, 10, 59–75. [Google Scholar] [CrossRef]
- Abdullah, H.; Shuwanto, H.; Lie, J.; Silanpää, M. Critical Parameters and Essential Strategies in Designing Photoanodes to Overcome the Sluggish Water Oxidation Reaction. J. Environ. Chem. Eng. 2023, 11, 109356. [Google Scholar]
- Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-Solid-State Z-Scheme in CdS–Au–TiO2 Three-Component Nanojunction System. Nat. Mater. 2006, 5, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Guo, R.; Hong, L.; Ji, X.; Lin, Z.; Li, Z.; Pan, W. A Review of Metal Oxide-Based Z-Scheme Heterojunction Photocatalysts: Actualities and Developments. Mater. Today Energy 2021, 21, 100829. [Google Scholar]
- Yu, J.; Wang, S.; Low, J.; Xiao, W. Enhanced Photocatalytic Performance of Direct Z-Scheme GC3N4–TiO2 Photocatalysts for the Decomposition of Formaldehyde in Air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-Scheme Photocatalysts: Principles, Synthesis, and Applications. Mater. Today 2018, 21, 1042–1063. [Google Scholar]
- Raizada, P.; Kumar, A.; Hasija, V.; Singh, P.; Thakur, V.K.; Khan, A.A.P. An Overview of Converting Reductive Photocatalyst into All Solid-State and Direct Z-Scheme System for Water Splitting and CO2 Reduction. J. Ind. Eng. Chem. 2021, 93, 1–27. [Google Scholar]
- Wang, Y.-Q.; Yang, C.; Gan, L.-H. Preparation of Direct Z-Scheme Bi2WO6/TiO2 Heterojunction by One-Step Solvothermal Method and Enhancement Mechanism of Photocatalytic H2 Production. Int. J. Hydrogen Energy 2023, 48, 19372–19384. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Samadi, M.; Yousefzadeh, S.; Soltani, M.; Rahimi, A.; Chou, T.; Chen, L.-C.; Chen, K.-H.; Moshfegh, A.Z. Improved Solar-Driven Photocatalytic Activity of Hybrid Graphene Quantum Dots/ZnO Nanowires: A Direct Z-Scheme Mechanism. ACS Sustain. Chem. Eng. 2017, 5, 367–375. [Google Scholar] [CrossRef]
- Li, X.; Sun, H.; Xie, Y.; Liang, Y.; Gong, X.; Qin, P.; Jiang, L.; Guo, J.; Liu, C.; Wu, Z. Principles, Synthesis and Applications of Dual Z-Scheme Photocatalysts. Coord. Chem. Rev. 2022, 467, 214596. [Google Scholar]
- Jia, J.; Zhang, Q.; Li, K.; Zhang, Y.; Liu, E.; Li, X. Recent Advances on g–C3N4–Based Z-Scheme Photocatalysts: Structural Design and Photocatalytic Applications. Int. J. Hydrog. Energy 2022, 48, 196–231. [Google Scholar]
- Wang, W.; Li, Z.; Wu, K.; Dai, G.; Chen, Q.; Zhou, L.; Zheng, J.; Ma, L.; Li, G.; Wang, W. Novel Ag-Bridged Dual Z-Scheme g-C3N4/BiOI/AgI Plasmonic Heterojunction: Exceptional Photocatalytic Activity towards Tetracycline and the Mechanism Insight. J. Environ. Sci. 2023, 131, 123–140. [Google Scholar]
- Fu, J.; Cao, S.; Yu, J. Dual Z-Scheme Charge Transfer in TiO2–Ag–Cu2O Composite for Enhanced Photocatalytic Hydrogen Generation. J. Mater. 2015, 1, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Yuan, C.; Lv, H.; Zhang, K.; Chen, X.; Zhang, Y. The Interface Design of (0D/2D/1D) AgI/BiOI/C3N5 Dual Z-Scheme Heterostructures with Efficient Visible-Light-Driven Photocatalytic Activity. Sep. Purif. Technol. 2023, 308, 122815. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 Step-Scheme H2-Production Photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565. [Google Scholar] [CrossRef]
- Bie, C.; Yu, J. Application of S-Scheme Heterojunction Photocatalyst. In UV-Visible Photocatalysis for Clean Energy Production and Pollution Remediation: Materials, Reaction Mechanisms, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 41–58. [Google Scholar]
- Cai, M.; Liu, Y.; Wang, C.; Lin, W.; Li, S. Novel Cd0.5Zn0.5S/Bi2MoO6 S-Scheme Heterojunction for Boosting the Photodegradation of Antibiotic Enrofloxacin: Degradation Pathway, Mechanism and Toxicity Assessment. Sep. Purif. Technol. 2023, 304, 122401. [Google Scholar] [CrossRef]
- Krishnan, A.; Swarnalal, A.; Das, D.; Krishnan, M.; Saji, V.S.; Shibli, S.M.A. A Review on Transition Metal Oxides Based Photocatalysts for Degradation of Synthetic Organic Pollutants. J. Environ. Sci. 2023, 139, 389–417. [Google Scholar]
- Rodríguez-Chueca, J.; Carbajo, J.; García-Muñoz, P. Intensification of Photo-Assisted Advanced Oxidation Processes for Water Treatment: A Critical Review. Catalysts 2023, 13, 401. [Google Scholar]
- Hu, F.; Luo, W.; Liu, C.; Dai, H.; Xu, X.; Yue, Q.; Xu, L.; Xu, G.; Jian, Y.; Peng, X. Fabrication of Graphitic Carbon Nitride Functionalized P–CoFe2O4 for the Removal of Tetracycline under Visible Light: Optimization, Degradation Pathways and Mechanism Evaluation. Chemosphere 2021, 274, 129783. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mohamed, A.A. Recent Progress in Semiconductor/Graphene Photocatalysts: Synthesis, Photocatalytic Applications, and Challenges. RSC Adv. 2023, 13, 421–439. [Google Scholar]
- Jabbar, Z.H.; Graimed, B.H. Recent Developments in Industrial Organic Degradation via Semiconductor Heterojunctions and the Parameters Affecting the Photocatalytic Process: A Review Study. J. Water Process Eng. 2022, 47, 102671. [Google Scholar]
- Nguyen, N.T.T.; Nguyen, L.M.; Nguyen, T.T.T.; Nguyen, N.H.; Nguyen, D.H.; Nguyen, D.T.C.; Van Tran, T. Green Synthesis of ZnFe2O4@ZnO Nanocomposites Using Chrysanthemum Spp. Floral Waste for Photocatalytic Dye Degradation. J. Environ. Manag. 2023, 326, 116746. [Google Scholar] [CrossRef]
- Zhu, T.; Yang, J.; Liang, J.; Li, Z.; Shen, Y.; Yu, Z.; Wang, S.; Hou, Y. Sn (IV)-Doping Induced Higher Lattice Strain and Activated More Lattice Oxygen in the Bi2O2CO3 for Boosting Photocatalytic Activity: Experimental and Theoratical Calculation Study. Sep. Purif. Technol. 2023, 309, 122963. [Google Scholar]
- Haleem, A.; Shafiq, A.; Chen, S.-Q.; Nazar, M. A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023, 28, 1081. [Google Scholar]
- Ahmad, H.A.; Ahmed, S.S.; Amiri, O. Simple Synthesis of CeFeO3 Nanostructures as an Efficient Visible-Light-Driven Photocatalyst in Degradation of Congo Red Dye: Mechanism Investigation. Int. J. Hydrog. Energy 2023, 48, 3878–3892. [Google Scholar] [CrossRef]
- Naseri, A.; Samadi, M.; Moshfegh, A.Z. Visible-Light Active Photocatalysts in Pollutant Degradation/Conversion with Simultaneous Hydrogen Production. In UV-Visible Photocatalysis for Clean Energy Production and Pollution Remediation: Materials, Reaction Mechanisms, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 9–26. [Google Scholar]
- Som, I.; Roy, M.; Saha, R. Advances in Nanomaterial-based Water Treatment Approaches for Photocatalytic Degradation of Water Pollutants. ChemCatChem 2020, 12, 3409–3433. [Google Scholar] [CrossRef]
- Wang, M.; Xu, S.; Ge, Z.; Li, Y.; Zhou, Z.; Chen, Y. All-Solid-State C3N4/NixP/Red Phosphorus Z-Scheme Heterostructure for Wide-Spectrum Photocatalytic Pure Water Splitting. Ind. Eng. Chem. Res. 2023, 62, 961–970. [Google Scholar] [CrossRef]
- Lais, A.; Gondal, M.A.; Dastageer, M.A.; Al-Adel, F.F. Experimental Parameters Affecting the Photocatalytic Reduction Performance of CO2 to Methanol: A Review. Int. J. Energy Res. 2018, 42, 2031–2049. [Google Scholar]
- Rahmani, H.; Mahjoub, A.R.; Khazaee, Z. Bimetallic CuAg Alloyed Nanoparticles Anchored on CdS Nanorods for the Photocatalytic Degradation of Enrofloxacin. ACS Appl. Nano Mater. 2023, 6, 4554–4566. [Google Scholar] [CrossRef]
- Ahmad, N.; Anae, J.; Khan, M.Z.; Sabir, S.; Yang, X.J.; Thakur, V.K.; Campo, P.; Coulon, F. Visible Light-Conducting Polymer Nanocomposites as Efficient Photocatalysts for the Treatment of Organic Pollutants in Wastewater. J. Environ. Manag. 2021, 295, 113362. [Google Scholar]
- Zirak, M.; Zhao, M.; Moradlou, O.; Samadi, M.; Sarikhani, N.; Wang, Q.; Zhang, H.-L.; Moshfegh, A.Z. Controlled Engineering of WS2 Nanosheets–CdS Nanoparticle Heterojunction with Enhanced Photoelectrochemical Activity. Sol. Energy Mater. Sol. Cells 2015, 141, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Naseri, N.; Kim, H.; Choi, W.; Moshfegh, A.Z. Optimal Ag Concentration for H2 Production via Ag: TiO2 Nanocomposite Thin Film Photoanode. Int. J. Hydrog. Energy 2012, 37, 3056–3065. [Google Scholar]
- Pan, L.; Wu, J.; Xu, X.; Lv, F.; Chen, Y.; Guo, L. Photoelectrochemical Performance of Bismuth Vanadate Photoanode for Water Splitting under Concentrated Light Irradiation. Int. J. Hydrog. Energy 2023, 48, 13479–13488. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Wu, Y.; Fu, Y.; Zhang, H.; Zhou, M.; Wang, Y. Thinnest Npn Homojunction for Inspired Photoelectrochemical Water Splitting. Appl. Catal. B Environ. 2023, 323, 122182. [Google Scholar] [CrossRef]
- Wang, J.; Ni, G.; Liao, W.; Liu, K.; Chen, J.; Liu, F.; Zhang, Z.; Jia, M.; Li, J.; Fu, J. Subsurface Engineering Induced Fermi Level De-pinning in Metal Oxide Semiconductors for Photoelectrochemical Water Splitting. Angew. Chem. Int. Ed. 2023, 62, e202217026. [Google Scholar] [CrossRef]
- Zheng, Y.; Ruan, Q.; Ren, J.; Guo, X.; Zhou, Y.; Zhou, B.; Xu, Q.; Fu, Q.; Wang, S.; Huang, Y. Plasma-Assisted Liquid-Based Growth of g-C3N4/Mn2O3 Pn Heterojunction with Tunable Valence Band for Photoelectrochemical Application. Appl. Catal. B Environ. 2023, 323, 122170. [Google Scholar] [CrossRef]
- Zabelina, A.; Miliutina, E.; Zabelin, D.; Burtsev, V.; Buravets, V.; Elashnikov, R.; Neubertova, V.; Šťastný, M.; Popelková, D.; Lancok, J. Plasmon Coupling inside 2D-like TiB2 Flakes for Water Splitting Half Reactions Enhancement in Acidic and Alkaline Conditions. Chem. Eng. J. 2023, 454, 140441. [Google Scholar] [CrossRef]
- Wen, P.; Lei, R.; Cao, X.; Ma, Q.; Zhang, G.; Guo, C.; Wang, X.; Qiu, Y. Anchored Ni Nanocrystals Boosting BiVO4 Photoanode for Highly Efficient Water Oxidation via In-Situ Generation of Ni@NiOOH Co-Catalyst. Chem. Eng. J. 2023, 454, 139983. [Google Scholar] [CrossRef]
- Lei, Y.; Si, W.; Wang, Y.; Tan, H.; Di, L.; Wang, L.; Liang, J.; Hou, F. Robust Carbon Nitride Homojunction Photoelectrode for Solar-Driven Water Splitting. ACS Appl. Mater. Interfaces 2023, 15, 6726–6734. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Izquierdo, L.; Spera, E.L.; Durán, B.; Marotti, R.E.; Dalchiele, E.A.; Del Rio, R.; Hevia, S.A. CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties. Molecules 2023, 28, 1954. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.E.; Kim, Y.-H.; Kim, J.; Cheon, W.S.; Choi, S.; Yang, J.; Park, H.; Lee, H.; Park, S.H.; Kwon, K.C. Atomically Dispersed Iridium Catalysts on Silicon Photoanode for Efficient Photoelectrochemical Water Splitting. Nat. Commun. 2023, 14, 609. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, X.; Zhao, J.; Zhang, Y.; Wang, L.; Huang, J.; She, H.; Wang, Q. Electronegative Cl− Modified BiVO4 Photoanode Synergized with Nickel Hydroxide Cocatalyst for High-Performance Photoelectrochemical Water Splitting. Chem. Eng. J. 2023, 454, 140081. [Google Scholar] [CrossRef]
- Moon, S.; Park, J.; Lee, H.; Yang, J.W.; Yun, J.; Park, Y.S.; Lee, J.; Im, H.; Jang, H.W.; Yang, W. Bi2S3-Cu3BiS3 Mixed Phase Interlayer for High-Performance Cu3BiS3-Photocathode for 2.33% Unassisted Solar Water Splitting Efficiency. Adv. Sci. 2023, 10, 2206286. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, X.; Zhang, Y.; Xu, L.; Wang, T.; Xiao, X.; Wang, S.; Wang, L.; Huang, W. A BiVO4 Photoanode with a VOx Layer Bearing Oxygen Vacancies Offers Improved Charge Transfer and Oxygen Evolution Kinetics in Photoelectrochemical Water Splitting. Angew. Chem. Int. Ed. 2023, 62, e202217346. [Google Scholar]
- Tafreshi, S.S.; Moshfegh, A.Z.; de Leeuw, N.H. Mechanism of Photocatalytic Reduction of CO2 by Ag3PO4 (111)/g-C3N4 Nanocomposite: A First-Principles Study. J. Phys. Chem. C 2019, 123, 22191–22201. [Google Scholar] [CrossRef]
- Bao, X.; Lu, D.; Wang, Z.; Yin, H.; Zhu, B.; Chen, B.; Shi, M.; Zhang, Y.; Xu, Q.; Qin, Y. Significantly Enhanced Photothermal Catalytic CO2 Reduction over TiO2/g-C3N4 Composite with Full Spectrum Solar Light. J. Colloid Interface Sci. 2023, 638, 63–75. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, S.; Guo, Y.; Wang, H.; Wei, J.; Su, X.; Zhang, H.; Liu, Z.; Wang, J. Designing Covalent Organic Frameworks with Co-O4 Atomic Sites for Efficient CO2 Photoreduction. Nat. Commun. 2023, 14, 1147. [Google Scholar] [CrossRef]
- Shindell, D.; Smith, C.J. Climate and Air-Quality Benefits of a Realistic Phase-out of Fossil Fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef] [Green Version]
- Bian, H.; Liu, T.; Li, D.; Xu, Z.; Lian, J.; Chen, M.; Yan, J.; Liu, S.F. Unveiling the Effect of Interstitial Dopants on CO2 Activation over CsPbBr3 Catalyst for Efficient Photothermal CO2 Reduction. Chem. Eng. J. 2022, 435, 135071. [Google Scholar] [CrossRef]
- Liang, J.; Yu, H.; Shi, J.; Li, B.; Wu, L.; Wang, M. Dislocated Bilayer MOF Enables High-selectivity Photocatalytic Reduction of CO2 to CO. Adv. Mater. 2023, 35, 2209814. [Google Scholar] [CrossRef]
- Hu, K.; Huang, Z.; Li, X.; Cheng, Y.; Kong, X.; Mei, L.; Zeng, L.; Zhang, Z.; Yu, J.; Gibson, J.K. Tailored Persistent Radical-containing Heterotrimetal-Organic Framework for Boosting Efficiency of Visible/NIR Light-driven Photocatalytic CO2 Reduction. Adv. Funct. Mater. 2023, 33, 2213039. [Google Scholar] [CrossRef]
- Du, Z.; Cai, H.; Zhao, Z.; Guo, Z.; Lin, J.; Huang, Y.; Tang, C.; Chen, G.; Fang, Y. Facile Synthesis of Graphene Quantum Dots and C-Doping Porous BN Nanoribbon Heterojunctions for Boosting CO2 Photoreduction. Sep. Purif. Technol. 2023, 311, 123321. [Google Scholar] [CrossRef]
- Han, B.; Lin, Y.; Luo, Y.; Liu, W.; Liu, X.; Weng, Z.; Ou, X.; Lin, Z. Low-Crystalline Ni(OH)2 Ultrathin Nanosheets Upcycled from Solid Wastes for Efficient Photoconversion of Low-Concentration CO2. Chem. Eng. J. 2023, 460, 140507. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zheng, S.; Liu, X.; Yao, S.; Jing, F.; Chen, G. Interfacial Intimacy and Internal Electric Field Modulated S-Scheme Sv-ZnS/ZnIn2S4 Photocatalyst for Efficient H2 Evolution and CO2 Reduction. J. Colloid Interface Sci. 2023, 635, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, J.; Song, Q.; Li, Y.; Zhang, Z.; Zhou, M.; Wei, W.; Xu, H.; Lee, C.-S.; Li, H. Construction Atomic-Level NP Charge Transfer Channel for Boosted CO2 Photoreduction. Appl. Catal. B Environ. 2023, 328, 122472. [Google Scholar] [CrossRef]
- Tang, J.; Li, X.; Ma, Y.; Wang, K.; Liu, Z.; Zhang, Q. Boosting Exciton Dissociation and Charge Transfer by Regulating Dielectric Constant in Polymer Carbon Nitride for CO2 Photoreduction. Appl. Catal. B Environ. 2023, 327, 122417. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Yu, S.; Yang, K.; Shao, Y.; Zou, L.; Zhao, B.; Wang, Z.; Ling, Y.; Chen, Y. Ni Doping in Unit Cell of BiOBr to Increase Dipole Moment and Induce Spin Polarization for Promoting CO2 Photoreduction via Enhanced Build-in Electric Field. Appl. Catal. B Environ. 2023, 327, 122420. [Google Scholar] [CrossRef]
- Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic Degradation of Dyes Using Semiconductor Photocatalysts to Clean Industrial Water Pollution. J. Ind. Eng. Chem. 2021, 97, 111–128. [Google Scholar] [CrossRef]
- Solayman, H.M.; Hossen, M.A.; Abd Aziz, A.; Yahya, N.Y.; Hon, L.K.; Ching, S.L.; Monir, M.U.; Zoh, K.-D. Performance Evaluation Of Dye Wastewater Treatment Technologies: A Review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Zaoui, A.; Sekkal, W.; Zheng, Y.-Y. Interlayer Adsorption of Cationic Dye on Cationic Surfactant-Modified and Unmodified Montmorillonite. J. Hazard. Mater. 2023, 442, 130107. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, R.; Tan, S.; Zhang, K.; Yin, Q.; Zhao, Z.; Gao, P. Nitrogen-Doped Hydrochar Prepared by Biomass and Nitrogen-Containing Wastewater for Dye Adsorption: Effect of Nitrogen Source in Wastewater on the Adsorption Performance of Hydrochar. J. Environ. Manag. 2023, 334, 117503. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Chang, T.-F.M.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Silori, R.; Shrivastava, V.; Singh, A.; Sharma, P.; Aouad, M.; Mahlknecht, J.; Kumar, M. Global Groundwater Vulnerability for Pharmaceutical and Personal Care Products (PPCPs): The Scenario of Second Decade of 21st Century. J. Environ. Manag. 2022, 320, 115703. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Sridharan, S.; Sawarkar, A.D.; Shakeel, A.; Anerao, P.; Mannina, G.; Sharma, P.; Pandey, A. Current Research Trends on Emerging Contaminants Pharmaceutical and Personal Care Products (PPCPs): A Comprehensive Review. Sci. Total Environ. 2023, 859, 160031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, Y.; Chen, S.; Guan, X.; Zhong, Y.; Yang, Q. Occurrence, Risk Assessment, and in Vitro and in Vivo Toxicity of Antibiotics in Surface Water in China. Ecotoxicol. Environ. Saf. 2023, 255, 114817. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lei, L.; Liu, S.; Han, J.; Li, R.; Men, J.; Li, L.; Wei, L.; Sheng, Y.; Yang, L. Occurrence and Risk Assessment of Pharmaceuticals and Personal Care Products (PPCPs) against COVID-19 in Lakes and WWTP-River-Estuary System in Wuhan, China. Sci. Total Environ. 2021, 792, 148352. [Google Scholar] [CrossRef]
- Rapti, I.; Boti, V.; Albanis, T.; Konstantinou, I. Photocatalytic Degradation of Psychiatric Pharmaceuticals in Hospital WWTP Secondary Effluents Using G-C3N4 and g-C3N4/MoS2 Catalysts in Laboratory-Scale Pilot. Catalysts 2023, 13, 252. [Google Scholar] [CrossRef]
- Abdurahman, M.H.; Abdullah, A.Z.; Da Oh, W.; Shopware, N.F.; Gasim, M.F.; Okoye, P.; Ul-Hamid, A.; Mohamed, A.R. Tunable Band Structure of Synthesized Carbon Dots Modified Graphitic Carbon Nitride/Bismuth Oxychlorobromide Heterojunction for Photocatalytic Degradation of Tetracycline in Water. J. Colloid Interface Sci. 2023, 629, 189–205. [Google Scholar] [CrossRef]
- Rasouli, K.; Alamdari, A.; Sabbaghi, S. Ultrasonic-Assisted Synthesis of α-Fe2O3@TiO2 Photocatalyst: Optimization of Effective Factors in the Fabrication of Photocatalyst and Removal of Non-Biodegradable Cefixime via Response Surface Methodology-Central Composite Design. Sep. Purif. Technol. 2023, 307, 122799. [Google Scholar] [CrossRef]
- Sun, P.; Liu, Y.; Mo, F.; Wu, M.; Xiao, Y.; Xiao, X.; Wang, W.; Dong, X. Efficient Photocatalytic Degradation of High-Concentration Moxifloxacin over Dodecyl Benzene Sulfonate Modified Graphitic Carbon Nitride: Enhanced Photogenerated Charge Separation and Pollutant Enrichment. J. Clean. Prod. 2023, 393, 136320. [Google Scholar] [CrossRef]
- Krishnan, S.; Shriwastav, A. Chlorophyll Sensitized and Salicylic Acid Functionalized TiO2 Nanoparticles as a Stable and Efficient Catalyst for the Photocatalytic Degradation of Ciprofloxacin with Visible Light. Environ. Res. 2023, 216, 114568. [Google Scholar] [CrossRef]
- Yang, J.; Fang, L.; Li, Z.; Meng, G.; Jia, Y.; Jiang, Y.; Lian, J.; Gan, X. Insights into the Formation of Environmentally Persistent Free Radicals during Photocatalytic Degradation Processes of Ceftriaxone Sodium by ZnO/ZnIn2S4. Chemosphere 2023, 314, 137618. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Yun, K.; Maheskumar, V.; Yea, Y.; Jagan, G.; Park, C.M. Construction of Novel In2S3/Ti3C2 MXene Quantum Dots/SmFeO3 Z-Scheme Heterojunctions for Efficient Photocatalytic Removal of Sulfamethoxazole and 4-Chlorophenol: Degradation Pathways and Mechanism Insights. Chem. Eng. J. 2023, 451, 138933. [Google Scholar] [CrossRef]
- Nayak, S.; Das, K.K.; Parida, K. Indulgent of the Physiochemical Features of MgCr-LDH Nanosheets towards Photodegradation Process of Methylene Blue. J. Colloid Interface Sci. 2023, 634, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Fatima, B.; Siddiqui, S.I.; Rajor, H.K.; Malik, M.A.; Narasimharao, K.; Ahmad, R.; Vikrant, K.; Kim, T.; Kim, K.-H. Photocatalytic Removal of Organic Dye Using Green Synthesized Zinc Oxide Coupled Cadmium Tungstate Nanocomposite under Natural Solar Light Irradiation. Environ. Res. 2023, 216, 114534. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Z.; Chen, J.; Yao, L.; Xie, W.; He, J.; Li, N.; Li, J.; Xu, S.; Zhu, Y. Continuous Surface Z-Scheme and Schottky Heterojunction Au/La2Ti2O7/Ag3PO4 Catalyst with Boosted Charge Separation through Dual Channels for Excellent Photocatalysis: Highlight Influence Factors Regulation and Catalytic System Applicability. Sep. Purif. Technol. 2023, 312, 123414. [Google Scholar] [CrossRef]
- Lin, Z.; Wu, Y.; Jin, X.; Liang, D.; Jin, Y.; Huang, S.; Wang, Z.; Liu, H.; Chen, P.; Lv, W. Facile Synthesis of Direct Z-Scheme UiO-66-NH2/PhC2Cu Heterojunction with Ultrahigh Redox Potential for Enhanced Photocatalytic Cr (VI) Reduction and NOR Degradation. J. Hazard. Mater. 2023, 443, 130195. [Google Scholar] [CrossRef]
- Sun, H.; Lee, S.-Y.; Park, S.-J. Bimetallic CuPd Alloy Nanoparticles Decorated ZnO Nanosheets with Enhanced Photocatalytic Degradation of Methyl Orange Dye. J. Colloid Interface Sci. 2023, 629, 87–96. [Google Scholar] [CrossRef]
- Mukherjee, A.; Dhak, P.; Hazra, V.; Goswami, N.; Dhak, D. Synthesis of Mesoporous Fe/Al/La Trimetallic Oxide for Photodegradation of Various Water-Soluble Dyes: Kinetic, Mechanistic, and PH Studies. Environ. Res. 2023, 217, 114862. [Google Scholar] [CrossRef]
- Alamgholiloo, H.; Pesyan, N.N.; Marjani, A.P. Visible-Light-Responsive Z-Scheme α-Fe2O3/SWCNT/NH2-MIL-125 Heterojunction for Boosted Photodegradation of Ofloxacin. Sep. Purif. Technol. 2023, 305, 122442. [Google Scholar] [CrossRef]
- Ray, S.K.; Reddy, P.A.K.; Yoon, S.; Shin, J.; Chon, K.; Bae, S. A Magnetically Separable α-NiMoO4/ZnFe2O4/Coffee Biochar Heterojunction Photocatalyst for Efficient Ketoprofen Degradation. Chem. Eng. J. 2023, 452, 139546. [Google Scholar]
- Zhang, F.; Xiao, X.; Xiao, Y.; Cheng, X. Construction of Novel 0D/2D AgI/CAU-17 Heterojunction with Excellent Photocatalytic Performance by in Situ Deposition-Precipitation. J. Environ. Chem. Eng. 2023, 11, 109641. [Google Scholar] [CrossRef]
- Kim, J.; Choi, W. Hydrogen Producing Water Treatment through Solar Photocatalysis. Energy Environ. Sci. 2010, 3, 1042–1045. [Google Scholar] [CrossRef] [Green Version]
- Nugmanova, A.G.; Safonova, E.A.; Baranchikov, A.E.; Tameev, A.R.; Shkolin, A.V.; Mitrofanov, A.A.; Eliseev, A.A.; Meshkov, I.N.; Kalinina, M.A. Interfacial Self-Assembly of Porphyrin-Based SURMOF/Graphene Oxide Hybrids with Tunable Pore Size: An Approach toward Size-Selective Ambivalent Heterogeneous Photocatalysts. Appl. Surf. Sci. 2022, 579, 152080. [Google Scholar] [CrossRef]
- Nikoloudakis, E.; Alsaleh, A.Z.; Charalambidis, G.; Coutsolelos, A.G.; D’Souza, F. A Covalently Linked Nickel (Ii) Porphyrin–Ruthenium (Ii) Tris (Bipyridyl) Dyad for Efficient Photocatalytic Water Oxidation. Chem. Commun. 2022, 58, 12078–12081. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tao, Y.; Zhang, C.; Zhu, Q.; Zhang, D.; Li, G. Activation of Chloride by Oxygen Vacancies-Enriched TiO2 Photoanode for Efficient Photoelectrochemical Treatment of Persistent Organic Pollutants and Simultaneous H2 Generation. J. Hazard. Mater. 2023, 443, 130363. [Google Scholar] [CrossRef] [PubMed]
- Akhundi, A.; Zaker Moshfegh, A.; Habibi-Yangjeh, A.; Sillanpää, M. Simultaneous Dual-Functional Photocatalysis by g-C3N4-Based Nanostructures. ACS ES T Eng. 2022, 2, 564–585. [Google Scholar] [CrossRef]
- Xu, F.; Mo, Z.; Yan, J.; Fu, J.; Song, Y.; El-Alami, W.; Wu, X.; Li, H.; Xu, H. Nitrogen-Rich Graphitic Carbon Nitride Nanotubes for Photocatalytic Hydrogen Evolution with Simultaneous Contaminant Degradation. J. Colloid Interface Sci. 2020, 560, 555–564. [Google Scholar] [CrossRef]
- Zhu, C.; Lu, L.; Xu, J.; Song, S.; Fang, Q.; Liu, R.; Shen, Y.; Zhao, J.; Dong, W.; Shen, Y. Metal Monovacancy-Induced Spin Polarization for Simultaneous Energy Recovery and Wastewater Purification. Chem. Eng. J. 2023, 451, 138537. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Wan, L.; Yang, W.; Ding, H.; Lu, C.; Zhang, W.; Xing, Z. Double Z-Scheme g-C3N4/BiOI/CdS Heterojunction with I3−/I− Pairs for Enhanced Visible Light Photocatalytic Performance. Green Energy Environ. 2022, 7, 1377–1389. [Google Scholar] [CrossRef]
- Mateen, M.; Cheong, W.-C.; Zheng, C.; Talib, S.H.; Zhang, J.; Zhang, X.; Liu, S.; Chen, C.; Li, Y. Molybdenum Atomic Sites Embedded 1D Carbon Nitride Nanotubes as Highly Efficient Bifunctional Photocatalyst for Tetracycline Degradation and Hydrogen Evolution. Chem. Eng. J. 2023, 451, 138305. [Google Scholar] [CrossRef]
- Sun, F.; Xie, Y.; Xu, D.; Liu, F.; Qi, H.; Ma, Q.; Yang, Y.; Yu, H.; Yu, W.; Dong, X. Electrospun Self-Supporting Double Z-Scheme Tricolor-Typed Microfiber Oriented-Heterostructure Photocatalyst with Highly Effective Hydrogen Evolution and Organic Pollutants Degradation. J. Environ. Chem. Eng. 2023, 11, 109169. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, Z.; Xia, Y.; Yin, W.; Hou, J.; Zhu, X.; Yi, J.; Wang, S.; Ning, X.; Wang, X. Synchronous Synthesis of S-Doped Carbon Nitride/Nickel Sulfide Photocatalysts for Efficient Dye Degradation and Hydrogen Evolution. Appl. Surf. Sci. 2023, 608, 154974. [Google Scholar] [CrossRef]
- Bi, L.; Liu, J.; Du, M.; Huang, B.; Song, M.; Jiang, G. In-Situ Upcycling of Cadmium from Wastewater into Core–Shell ZnS@ Zn0. 58Cd0. 42S Heterojunction Photocatalyst for Environmental Purification and H2 Evolution. Chem. Eng. J. 2023, 454, 140258. [Google Scholar] [CrossRef]
- Hamzad, S.; Kumar, K.-Y.; Prashanth, M.K.; Radhika, D.; Parashuram, L.; Alharti, F.-A.; Jeon, B.-H.; Raghu, M.S. Boron Doped RGO from Discharged Dry Cells Decorated Niobium Pentoxide for Enhanced Visible Light-Induced Hydrogen Evolution and Water Decontamination. Surf. Interfaces 2023, 36, 102544. [Google Scholar]
- Wang, L.; Zhou, H.; Zhang, H.; Song, Y.; Zhang, H.; Qian, X. SiO2@TiO2 Core@Shell Nanoparticles Deposited on 2D-Layered ZnIn2S4 to Form a Ternary Heterostructure for Simultaneous Photocatalytic Hydrogen Production and Organic Pollutant Degradation. Inorg. Chem. 2020, 59, 2278–2287. [Google Scholar] [CrossRef] [PubMed]
- Machín, A.; Fontánez, K.; García, D.; Sampayo, P.; Colón-Cruz, C.; Claudio-Serrano, G.J.; Soto-Vázquez, L.; Resto, E.; Petrescu, F.I.; Morant, C. Hydrogen Production and Degradation of Ciprofloxacin by Ag@TiO2-MoS2 Photocatalysts. Catalysts 2022, 12, 267. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.-W.; Lim, S.J.; Kim, H. Visible Light Activated MoS2/ZnO Composites for Photocatalytic Degradation of Ciprofloxacin Antibiotic and Hydrogen Production. J. Photochem. Photobiol. A Chem. 2023, 434, 114250. [Google Scholar]
- Li, J.; Ren, J.; Li, S.; Li, G.; Li, M.M.-J.; Li, R.; Kang, Y.S.; Zou, X.; Luo, Y.; Liu, B. Potential Industrial Applications of Photo/Electrocatalysis: Recent Progress and Future Challenges. Green Energy Environ. 2023, in press. [Google Scholar]
- Lee, W.H.; Lee, C.W.; Cha, G.D.; Lee, B.-H.; Jeong, J.H.; Park, H.; Heo, J.; Bootharaju, M.S.; Sunwoo, S.-H.; Kim, J.H. Floatable Photocatalytic Hydrogel Nanocomposites for Large-Scale Solar Hydrogen Production. Nat. Nanotechnol. 2023, 18, 1–9. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Zondag, S.D.A.; Schuurmans, J.H.A.; van der Schaaf, J.; Noël, T. Scale-Up of a Heterogeneous Photocatalytic Degradation Using a Photochemical Rotor–Stator Spinning Disk Reactor. Org. Process Res. Dev. 2022, 26, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhou, M.; Yang, K.; Yu, C.; Mu, P.; Yu, Z.; Lu, K.; Huang, W.; Dai, W. Photocatalytic H2O2 Production and Removal of Cr (VI) via a Novel Lu3NbO7:Yb, Ho/CQDs/AgInS2/In2S3 Heterostructure with Broad Spectral Response. J. Hazard. Mater. 2022, 423, 127172. [Google Scholar]
- Murali, G.; Vattikuti, S.V.P.; Kshetri, Y.K.; Lee, H.; Modigunta, J.K.R.; Reddy, C.S.; Park, S.; Lee, S.; Poornaprakash, B.; Lee, H. Near-Infrared-Activated Z-Scheme NaYF4:Yb/Tm@Ag3PO4/Ag@g-C3N4 Photocatalyst for Enhanced H2 Evolution under Simulated Solar Light Irradiation. Chem. Eng. J. 2021, 421, 129687. [Google Scholar]
- You, D.T.; Liu, L.; Yang, Z.Y.; Xing, X.X.; Li, K.W.; Mai, W.J.; Guo, T.; Xiao, G.Z.; Xu, C.X. Polarization-Induced Internal Electric Field to Manipulate Piezo-Photocatalytic and Ferro-Photoelectrochemical Performance in Bismuth Ferrite Nanofibers. Nano Energy 2022, 93, 106852. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Yu, C.; Lu, K.; Huang, W.; Xu, L.; Zou, L.; Wang, S.; Chen, Z.; Hu, J. Steering Unit Cell Dipole and Internal Electric Field by Highly Dispersed Er Atoms Embedded into NiO for Efficient CO2 Photoreduction. Adv. Funct. Mater. 2022, 32, 2111999. [Google Scholar] [CrossRef]
- Global Photocatalyst Market. Available online: https://market.us/report/photocatalyst-market (accessed on 4 July 2023).
- Kim, M.; Kim, Y.; Ha, M.Y.; Shin, E.; Kwak, S.J.; Park, M.; Kim, I.; Jung, W.; Lee, W.B.; Kim, Y. Exploring Optimal Water Splitting Bifunctional Alloy Catalyst by Pareto Active Learning. Adv. Mater. 2023, 35, 2211497. [Google Scholar] [CrossRef] [PubMed]
- Masood, H.; Toe, C.Y.; Teoh, W.Y.; Sethu, V.; Amal, R. Machine Learning for Accelerated Discovery of Solar Photocatalysts. Acs. Catal. 2019, 9, 11774–11787. [Google Scholar] [CrossRef]
- Oral, B.; Can, E.; Yildirim, R. Analysis of Photoelectrochemical Water Splitting Using Machine Learning. Int. J. Hydrog. Energy 2022, 47, 19633–19654. [Google Scholar]
- Wang, Z.; Gu, Y.; Zheng, L.; Hou, J.; Zheng, H.; Sun, S.; Wang, L. Machine Learning Guided Dopant Selection for Metal Oxide-Based Photoelectrochemical Water Splitting: The Case Study of Fe2O3 and CuO. Adv. Mater. 2022, 34, 2106776. [Google Scholar] [CrossRef]
- Gheytanzadeh, M.; Baghban, A.; Habibzadeh, S.; Jabbour, K.; Esmaeili, A.; Mohaddespour, A.; Abida, O. An Insight into Tetracycline Photocatalytic Degradation by MOFs Using the Artificial Intelligence Technique. Sci. Rep. 2022, 12, 6615. [Google Scholar]
- Mai, H.; Le, T.C.; Chen, D.; Winkler, D.A.; Caruso, R.A. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chem. Rev. 2022, 122, 13478–13515. [Google Scholar] [CrossRef]
Entry | Photocatalyst | Synthesis Method | Preparation Condition | Photocatalytic Test Condition | Photocurrent Density, Efficiency | Ref. |
---|---|---|---|---|---|---|
1 | Sb-SnS | hydrothermal | 180 ◦C for 16 h. | Simulated solar, AM 1.5 G, 100 mW cm−2, 0.5 M Na2SO4 | 3.3 mA cm−2 | [198] |
2 | BiVO4, Bi2O3, TiO2 | spin-coating and calcination | sol-gel-based spin coating method | Na2SO4 solution without hole scavengers | 5.1, 3.4, and 2.1 mA cm−2 | [199] |
3 | CN/Mn2O3 | plasma-assisted liquid-based | melamine and C3H3N3O3 | 0.1 M Na2SO4, pH = 6.5 | 25 μA cm−2 | [200] |
4 | TiB2@AuNPs | spin-coating deposition | Ultrasonic assisted liquid-phase exfoliation | sunlight simulator (1 Sun), 0.1 M KOH | 10 mA cm−2 | [201] |
5 | NiO/BiVO4 | dip-coating | Ink: Ni nanocrystals | 1 M KBi, hole scavenger: 0.2 M Na2SO3 | 4.41 mA cm−2 | [202] |
6 | β-FeOOH/CN | particle-to-substrate contacts | precursor: DCDA and TCY | AM 1.5G illumination, 0.1 M NaOH | 320 μA cm−2 | [203] |
7 | Fe2O3 (Hematite) | CVD | precursor: ferrocene organometallic compound | Simulator solar AM 1.5 G filter, 1 M NaOH | 2.5 mA cm−2 | [204] |
8 | Ir SAs/NiO/Ni/ ZrO2/n-Si | ALD process | precursor: TICP | simulated solar AM 1.5 G, 1 M NaOH | 27.7 mA cm−2 | [205] |
9 | Ni(OH)2/Cl-BiVO4 | impregnation method | precursor: 0.5 M NH4Cl | AM1.5 G filter, 100 mW cm− 2, 0.5 M K3BO3, pH = 9.5 | 4.33 mA cm− 2 | [206] |
10 | Bi2S3-Cu3BiS3 | in-situ decoration | precursor: Cu:Bi 3:1 ink | simulated solar light (AM 1.5G), K–Pi buffer | 7.8 mA cm−2 | [207] |
11 | BiVO4/Vox | electrodeposition | precursor: BiOI | simulated solar light (AM 1.5G), 1 M borate buffer | 6.29 mA cm−2 | [208] |
Entry | photocatalyst | Synthesis Method | Preparation Condition | Photocatalytic Conditions | Photocatalytic Activity (Product Yield) | Ref. |
---|---|---|---|---|---|---|
1 | MOF [Cu3Th6(µ3-O)4(µ3-OH)4(cpb•)12] [FeIII(CN)6]6 | mixed, stirred and centrifuged | precursors: Th(NO3)4, formic acid, | 300 W Xe lamp, 420 or 800 nm filter | CO production rate: 570.3 µmol g−1h−1 | [215] |
2 | Porphyrin-based MOFs | solvothermal | precursor: TPP and MnCl2 | 300 W Xe lamp, 1 sun (AM1.5 G) | CO production rate: 46.148 µmol g−1h−1 | [214] |
3 | boron-doped g-C3N4/TiO2−x | thermal reduction process | precursor: mixture of urea and NaBH4 | 300 W Xe lamp | CO production rate: 265.2 µmol g−1h−1 | [210] |
4 | Co-COF: | mix and sonication | precursor: TAPT, 120 °C, 96 h | 300 W Xe lamp (Microsolar 300, cut-off 420 nm), (λ ≥ 420 nm) | CO production rate: 18,000 µmol g−1h−1 H2 production rate: 800 µmol g−1h−1 | [211] |
5 | GQDs/C-BN | hydrothermal | precursors: boric acid, melamine and glucose | 300 W Xe lamp (λ = 200–420 nm or λ > 700 nm) | CO production rate: 33.47 μmol g−1h−1 | [216] |
6 | Ni(OH)2 | hydrolyzation of CaO | stirring for 24 h at 298.15 K. | LED lamps (5 W, λ ≥ 420 nm) | CO production rate: 9.2 μmol g−1h−1 | [217] |
7 | S-ZnS/ZnIn2S4 | hydrothermal | precursor: Methylimidazole | 300 W Xe lamp cut-off filter (λ > 420 nm) | CO production: 2075.7 ± 63.0 μmol g−1h−1 H2 production: 2912.3 ± 185.9 μmol g−1h−1 | [218] |
8 | BP-CN | mix and sonication | Precursor: [NH3OH]+Cl− and melamine | 300 W Xe lamp | CO production rate: 44.6 μmol g−1h−1 | [219] |
9 | P-doped PCN | thermal polymerization method | precursor: Melamine and NaH2PO2⋅H2O | 300 W Xe lamp, cut-off filter 420 nm | CH4 production rate: 1.1 μmol g−1 h−1 | [220] |
10 | Ni-BiOBr | hydrothermal | precursor: Bi(NO3)3⋅5H2O | 300 W xenon lamp cut-off 380 nm filter (λ ≥ 380 nm) | CO production rate: 378.7 μmol g−1h−1 | [221] |
Entry | Photocatalyst | Synthesis Method | Preparation Condition | Pollutant Type | Light Condition | Efficiency (%) | Time (min) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | CN/CQD/BiOCl0.75Br0.25 | hydrothermal | pH = 5.8 [TC] = 100 mg·L−1 Catalyst dose = 0.1 g·L−1 | Tetracycline (TC) | 500 W Xe lamp (λ > 400 nm) | 83.4 | 30 | [232] |
2 | α-Fe2O3@TiO2 | sonication and wet impregnation | pH = 4.76 [CFX] = 20.5 mg·L−1 Catalyst dose = 0.012 g·L−1 | Cefixime (CFX) | 500 W halogen visible light (>400 nm) | 98.8 | 103 | [233] |
3 | DBS/CNNS | calcination | pH = 5.5 [MOX] = 50 mg·L−1 Catalyst dose = 1 g·L−1 | moxifloxacin (MOX) | 300 W xenon lamp (λ > 420 nm) | ~100.0% | 30 | [234] |
4 | 0.1 chl/0.1 SA-TiO2 | incipient wetness impregnation | pH = 6 [CPX] = 10 mg·L−1 Catalyst dose = 0.75 g·L−1 | Ciprofloxacin (CPX) | Blue LED light (λ = 457 nm) | ∼75% | 120 | [235] |
5 | ZnO/ZnIn2S4 (ZnO/ZIS) | hydrothermal | pH = 3 [CS] = 10 mg·L−1 Catalyst dose = 0.40 g·L−1 | ceftriaxone sodium (CS) | 500 W xenon lamp. | 85.3% | 150 | [236] |
6 | In2S3/MQDs/SmFeO3 (IMS) | sonication | [SMX] = 10 mg·L−1, catalyst dose = 0.6 g·L−1 pH = 5.3 | sulfamethoxazole (SMX) | 300 W Xe lamp | 98.0% and 95.4% of SMX | 120 and 90 min, | [237] |
7 | MgCr-LDH | formamide-assisted co-precipitation and mild hydrothermal | pH = 7 [MB] = 20 mg·L−1 Catalyst dose = 30 mg | methylene blue (MB) | solar light | 90.6 | 120 | [238] |
8 | ZnO-CT | a green synthesis route using lemon leaf extract | pH = 7 [CR] = 20 mg·L−1 Catalyst dose = 0.4 g·L−1 | Congo red (CR) | Natural sunlight, (λ = 408 nm) | 97 | 90 | [239] |
9 | Au/La2Ti2O7/Ag3PO4 | The in-situ precipitation | pH = 9.6 [RhB] = 10 mg·L−1 Catalyst dose = 1 g·L−1 | Rhodamine (BRhB) | Natural sunlight | 100 | 6 | [240] |
10 | UiO-66-NH2/PhC2Cu | hydrothermal | pH = 9 [NOR] = 10 mg·L−1 Catalyst dose = 0.2 g·L−1 | norfloxacin (NOR) | 9 W LED lamp (455 nm) | 97.9 | 60 | [241] |
11 | CuPd/ZnO | hydrothermal and chemical reduction | pH = 2 [OM] = 40 mg·L−1 Catalyst dose = 0.5 wt.% | methyl orange(MO) | solar simulator (λ = 440 nm) | 95.3 | 45 | [242] |
12 | mesoporous Fe/Al/La trimetallic nano-oxide(FAL) | chemical route | pH = 7 [dyes] = 10−5 M Catalyst dose = 0.30 g/100 mL | black 5 (RB5) methylene blue (MB) direct blue 71 (DB71) and | Sunlight | 93.85 ± 2 90.51 ± 2 91.16 ± 2 | 90 45 60 | [243] |
13 | Fe2O3/CNT/MIL | hydrothermal | pH = 7 [OFX] = 20 mg·L−1, Catalyst dose = 100 mg·L−1 | ofloxacin (OFX) | 300 W Xe lamp (λ > 420 nm) | 99.3 | 60 | [244] |
14 | α-NiMoO4/ZnFe2O4/BC | Pyrolysis and hydrothermal | pH = 10 [KP] = 10 mg·L−1, Catalyst dose = 100 mg·L−1 | ketoprofen (KP) | visible light (UV cutoff 150 W LS xenon arc lamp) | 98.65 | 180 | [245] |
15 | 0D/2D AgI/CAU-17 | deposition-precipitation | pH(for RhB degradation) = 3 [RhB] = 10 mg·L−1, [KP] = 10 mg·L−1, [MO] = 5 mg·L−1, Catalyst dose = 0.25 mg·L−1 | Rhodamine B (RhB) Tetracycline (TC) methyl orange (MO) | 500 W Xe lamp | 96.7 81.3 50.3 | 90 | [246] |
Entry | Photocatalyst | Synthesis Method | Photocatalytic Test Condition | H2 Activity (μmol h−1 g−1) | Pollutant: Photodegradation Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
1 | 0.5 wt.% Pt/Zn-V-20 | Calcination, hydrothermal | 300 W Xe lamp AM 1.5 G filter 0.5 M Na2SO4, 15% CH3OH | 5230.4 | 2,2′,4,4′- tetrahydroxybenzophenone (BP-2): (99.6), methylene blue (MB): (99.4), acetaminophen (AAP): (92.0) | [253] |
2 | g-C3N4/BiOI/CdS | calcination, solvothermal, and solution chemical deposition | 300-W Xe lamp with a λ > 420 nm cutoff filter | 863.44 | bisphenol A: (98.62) | [254] |
3 | Mo1@CNNTs | template free polymerization | 300 W xenon lamp coupled with λ = 420 nm cutoff filter. | 4861 | tetracycline hydrochloride: (97.3) | [255] |
4 | [g-C3N4/polymethylmethacrylate (PMMA)]// [TiO2/polyaniline (PANI)/PMMA]// [self-assembled 3, 4, 9, 10-perylene tetraformyl diimide (PDI)/PMMA] (TMOP) | tri-axial parallel electrospinning | simulated sunlight | 536.7 | Ciprofloxacin: (88.99), tetracycline hydrochloride: (91.15), chlortetracycline hydrochloride: (77.55), levofloxacin: (69.51), and colored dye methylene blue: (92.50) | [256] |
5 | SCN/NiS-1 | hydrothermal | visible light (400 nm filter) irradiation | 700.9 | Rhodamine B (RhB): (98.5) | [257] |
6 | ZnS@Zn0.58Cd0.42S | hydrothermal | Xe lamp (CEL-PF300-T9, CEAU) with an AM1.5G filter | 36000 | Helianthine: (94.2) | [258] |
7 | NbO-BRGO | hydrothermal | 300 W Xe > 400 nm | 1742 | crystal violet (CV): (97.6) | [259] |
8 | ZnIn2S4@SiO2@TiO2 | sol–gel and solvothermal | 300 W xenon lamp | 618.3 | methylene blue: (99.7) | [260] |
9 | Ag@TiO2-P25-5%MoS2 | Combination of photocatalysts | solar simulator composed of two white light bulbs (60 watts) | 1792 | Ciprofloxacin: (75) | [261] |
10 | MoS2/ZnO | hydrothermal | 250 W metal halide lamp | 235 | Ciprofloxacin: (89) | [262] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goodarzi, N.; Ashrafi-Peyman, Z.; Khani, E.; Moshfegh, A.Z. Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation. Catalysts 2023, 13, 1102. https://doi.org/10.3390/catal13071102
Goodarzi N, Ashrafi-Peyman Z, Khani E, Moshfegh AZ. Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation. Catalysts. 2023; 13(7):1102. https://doi.org/10.3390/catal13071102
Chicago/Turabian StyleGoodarzi, Nahal, Zahra Ashrafi-Peyman, Elahe Khani, and Alireza Z. Moshfegh. 2023. "Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation" Catalysts 13, no. 7: 1102. https://doi.org/10.3390/catal13071102
APA StyleGoodarzi, N., Ashrafi-Peyman, Z., Khani, E., & Moshfegh, A. Z. (2023). Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation. Catalysts, 13(7), 1102. https://doi.org/10.3390/catal13071102