Rhodium-Catalyzed Alkylation of Aromatic Ketones with Allylic Alcohols and α,β-Unsaturated Ketones
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Remarks
3.2. General Process for Instigating the Reactions between Aromatic Ketones and Allylic Alcohols
3.3. General Process for Instigating the Reactions between Aromatic Ketones and α,β-Unsaturated Ketones
3.4. Characterization Data of Products
3.4.1. 1-(2-Pivaloylphenyl)pentan-3-one, 3a
3.4.2. 1-(5-Methyl-2-pivaloylphenyl)pentan-3-one, 3b
3.4.3. 1-(5-(Tert-butyl)-2-pivaloylphenyl)pentan-3-one, 3c
3.4.4. 1-(5-Methoxy-2-pivaloylphenyl)pentan-3-one, 3d
3.4.5. 1-(4-Methyl-2-pivaloylphenyl)pentan-3-one, 3e
3.4.6. 1-(2-Isobutyrylphenyl)pentan-3-one, 3f
3.4.7. 1-(2-(Cyclohexanecarbonyl)phenyl)pentan-3-one, 3g
3.4.8. 8-(3-Oxopentyl)-3,4-dihydronaphthalen-1(2H)-one, 3h
3.4.9. 6-Methoxy-8-(3-oxopentyl)-3,4-dihydronaphthalen-1(2H)-one, 3i
3.4.10. 4-Methyl-8-(3-oxopentyl)-3,4-dihydronaphthalen-1(2H)-one, 3j
3.4.11. 4-(2-Pivaloylphenyl)butan-2-one, 3k
3.4.12. 1-(2-Pivaloylthiophen-3-yl)pentan-3-one, 3l
3.4.13. 1-(2-Pivaloylthiophen-3-yl)hexan-3-one, 3m
3.4.14. 1-(2-Pivaloylthiophen-3-yl)heptan-3-one, 3n
3.4.15. 1-(2-Pivaloylthiophen-3-yl)octan-3-one, 3o
3.4.16. 2,2-Dimethyl-1-(3-(3-oxo-3-phenylpropyl)thiophen-2-yl)propan-1-one, 3p
3.4.17. 1-(4-Methoxy-2-pivaloylphenyl)pentan-3-one, 3s
3.4.18. 1-(2-(Cyclopentanecarbonyl)phenyl)pentan-3-one, 3t
3.4.19. 1-(2-(Cyclopropanecarbonyl)-5-methoxyphenyl)pentan-3-one, 3u
3.4.20. 1-(2-Pivaloylphenyl)octan-3-one, 3v
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hummel, J.R.; Boerth, J.A.; Ellman, J.A. Transition-Metal-Catalyzed C-H Bond Addition to Carbonyls, Imines, and Related Polarized π Bonds. Chem. Rev. 2017, 117, 9163–9227. [Google Scholar] [CrossRef] [PubMed]
- Jardim, G.A.M.; de Carvalho, R.L.; Nunes, M.P.; Machado, L.A.; Almeida, L.D.; Bahou, K.A.; Bower, J.F.; da Silva Junior, E.N. Looking deep into C-H functionalization: The synthesis and application of cyclopentadienyl and related metal catalysts. Chem. Commun. 2022, 58, 3101–3121. [Google Scholar]
- Dias, G.G.; Rogge, T.; Kuniyil, R.; Jacob, C.; Menna-Barreto, R.F.S.; da Silva Junior, E.N.; Ackermann, L. Ruthenium-catalyzed C-H oxygenation of quinones by weak O-coordination for potent trypanocidal agents. Chem. Commun. 2018, 54, 12840–12843. [Google Scholar]
- Yang, L.; Huang, H. Transition-Metal-Catalyzed Direct Addition of Unactivated C-H Bonds to Polar Unsaturated Bonds. Chem. Rev. 2015, 115, 3468–3517. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.-Z.; Wang, Y.-J.; Zhao, Q.-Y.; Zhao, L.-M. Selective Synthesis of 5-Alkylated and 5-Alkenylated Chromones via Catalytic C-H Coupling of Chromones with Allyl Alcohols. Eur. J. Org. Chem. 2021, 2021, 2411–2420. [Google Scholar]
- Liu, B.; Hu, P.; Zhou, X.; Bai, D.; Chang, J.; Li, X. Cp*Rh(III)-Catalyzed Mild Addition of C (sp3)-H Bonds to α,β-Unsaturated Aldehydes and Ketones. Org. Lett. 2017, 19, 2086–2089. [Google Scholar] [CrossRef]
- Kumar, G.S.; Chand, T.; Singh, D.; Kapur, M. Ruthenium-Catalyzed C-H Functionalization of Benzoic Acids with Allyl Alcohols: A Controlled Reactivity Switch between C-H Alkenylation and C-H Alkylation Pathways. Org. Lett. 2018, 20, 4934–4937. [Google Scholar]
- Ramakrishna, K.; Biswas, J.P.; Jana, S.; Achar, T.K.; Porey, S.; Maiti, D. Coordination Assisted Distal C-H Alkylation of Fused Heterocycles. Angew. Chem. Int. Ed. 2019, 58, 13808–13812. [Google Scholar] [CrossRef]
- Liu, H.; Chi, W.; Lin, M.-L.; Dong, L. Iridium(III)-Catalyzed Two-Fold C-H Alkylation of BINOLs with Allyl Alcohols. Org. Chem. Front. 2022, 9, 471–475. [Google Scholar] [CrossRef]
- Kalsi, D.; Laskar, R.A.; Barsu, N.; Premkumar, J.R.; Sundararaju, B. C-8-Selective Allylation of Quinoline: A Case Study of β-Hydride vs β-Hydroxy Elimination. Org. Lett. 2016, 18, 4198–4201. [Google Scholar]
- Sun, J.-S.; Wang, Y.-Y.; Liu, M.; Zhang, J.; Liu, C.-F.; Xu, Y.-J.; Dong, L. Construction of Pyrazolone Analogues via Rhodium-Catalyzed C-H Activation from Pyrazolones and Non-activated Free Allyl Alcohols. Org. Chem. Front. 2019, 6, 2713–2717. [Google Scholar] [CrossRef]
- Han, S.H.; Choi, M.; Jeong, T.; Sharma, S.; Mishra, N.K.; Park, J.; Oh, J.S.; Kim, W.J.; Lee, J.S.; Kim, I.S. Rhodium-Catalyzed C-H Alkylation of Indolines with Allylic Alcohols: Direct Access to β-Aryl Carbonyl Compounds. J. Org. Chem. 2015, 80, 11092–11099. [Google Scholar]
- Khake, S.M.; Chatani, N. Rhodium(III)-Catalyzed Oxidative C-H Alkylation of Aniline Derivatives with Allylic Alcohols To Produce β-Aryl Ketones. Acs Catal. 2022, 12, 4394–4401. [Google Scholar] [CrossRef]
- Yang, J.; Chen, C.; Zhao, H.; Li, B.; He, Z.; Xu, L.; Shi, Q. Rhodium(III)-Catalyzed C8-Selective C-H Alkenylation and Alkylation of 1,2,3,4-Tetrahydroquinolines with Styrenes and Allylic Alcohols. Adv. Synth. Catal. 2023, 365, 1027–1035. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Q.; Qi, J.; Wu, X.; Huang, K.; Jiang, H. Rh(III)-Catalyzed ortho-Oxidative Alkylation of Unactivated Arenes with Allylic Alcohols. Chem. Sci. 2013, 4, 2665–2669. [Google Scholar] [CrossRef]
- Qi, J.; Huang, L.; Wang, Z.; Jiang, H. Ruthenium- and Rhodium-Catalyzed Oxidative Alkylation of C-H Bonds: Efficient Access to β-Aryl Ketones. Org. Biomol. Chem. 2013, 11, 8009–8013. [Google Scholar]
- Shibata, K.; Chatani, N. Rhodium-Catalyzed Regioselective Addition of the ortho C-H Bond in Aromatic Amides to the C-C Double Bond in α,β-Unsaturated Gamma-Lactones and Dihydrofurans. Chem. Sci. 2016, 7, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Rouquet, G.; Chatani, N. Ruthenium-Catalyzed ortho-C-H Bond Alkylation of Aromatic Amides with α,β-unsaturated Ketones via Bidentate-Chelation Assistance. Chem. Sci. 2013, 4, 2201–2208. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, Y.; Yang, Y.; Zhou, B. A Rh(III)-Catalyzed Redox-neutral C-H Alkylation Reaction with Allylic Alcohols by Using a Traceless Oxidizing Directing Group. Org. Chem. Front. 2018, 5, 1844–1847. [Google Scholar] [CrossRef]
- Shi, Z.; Boultadakis-Arapinis, M.; Glorius, F. Rh(III)-Catalyzed Dehydrogenative Alkylation of (Hetero)arenes with Allylic Alcohols, Allowing Aldol Condensation to Indenes. Chem. Commun. 2013, 49, 6489–6491. [Google Scholar] [CrossRef]
- Yan, R.; Wang, Z.-X. Rhodium-Catalyzed Alkenyl C-H Activation and Oxidative Coupling with Allylic Alcohols. Asian J. Org. Chem. 2018, 7, 240–247. [Google Scholar] [CrossRef]
- Yang, L.; Qian, B.; Huang, H. Bronsted Acid Enhanced Rhodium-Catalyzed Conjugate Addition of Aryl C-H Bonds to α,β-Unsaturated Ketones under Mild Conditions. Chem. Eur. J. 2012, 18, 9511–9515. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Ma, W.; Zhang, Z.; Liu, L.; Tang, M.; Li, J. Mild C (sp3)-H Alkylation of 8-Methylquinolines with α,β-Unsaturated Carbonyl Compounds by Rhodium(III) Catalysis. Asian J. Org. Chem. 2017, 6, 1014–1018. [Google Scholar] [CrossRef]
- Kim, S.; Han, S.; Park, J.; Sharma, S.; Mishra, N.K.; Oh, H.; Kwak, J.H.; Kim, I.S. Cp*Rh(III)-Catalyzed C (sp3)-H Alkylation of 8-Methylquinolines in Aqueous Media. Chem. Commun. 2017, 53, 3006–3009. [Google Scholar] [CrossRef]
- Bag, S.; Jayarajan, R.; Mondal, R.; Maiti, D. Template-Assisted meta-C-H Alkylation and Alkenylation of Arenes. Angew. Chem. Int. Ed. 2017, 56, 3182–3186. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, M.; Han, S.; Ackermann, L.; Li, J. Carboxylate-Enhanced Rhodium(III)-Catalyzed Aryl C-H Alkylation with Conjugated Alkenes under Mild Conditions. J. Org. Chem. 2017, 82, 664–672. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, P.; Wu, W.; Jiang, H. Palladium-Catalyzed Heck-type Reaction of Oximes with Allylic Alcohols: Synthesis of Pyridines and Azafluorenones. Chem. Commun. 2016, 52, 84–87. [Google Scholar]
- Jayarajan, R.; Das, J.; Bag, S.; Chowdhury, R.; Maiti, D. Diverse meta-C-H Functionalization of Arenes across Different Linker Lengths. Angew. Chem. Int. Ed. 2018, 57, 7659–7663. [Google Scholar] [CrossRef]
- Gholap, A.; Bag, S.; Pradhan, S.; Kapdi, A.R.; Maiti, D. Diverse meta-C-H Functionalization of Amides. ACS Catal. 2020, 10, 5347–5352. [Google Scholar] [CrossRef]
- Jayarajan, R.; Chandrashekar, H.B.; Dalvi, A.K.; Maiti, D. Ultrasound-Facilitated Direct meta-C-H Functionalization of Arenes: A Time-Economical Strategy under Ambient Temperature with Improved Yield and Selectivity. Chem. Eur. J. 2020, 26, 11426–11430. [Google Scholar]
- Zheng, Q.-Z.; Jiao, N. Transition-Metal-Catalyzed Ketone-Directed ortho-C-H Functionalization Reactions. Tetrahedron Lett. 2014, 55, 1121–1126. [Google Scholar] [CrossRef]
- Huang, Z.; Lim, H.N.; Mo, F.; Young, M.C.; Dong, G. Transition Metal-Catalyzed Ketone-Directed or Mediated C-H Functionalization. Chem. Soc. Rev. 2015, 44, 7764–7786. [Google Scholar] [CrossRef] [Green Version]
- Martinez, R.; Genet, J.-P.; Darses, S. Anti-Markovnikov Hydroarylation of Styrenes Catalyzed by an in situ Generated Ruthenium Complex. Chem. Commun. 2008, 33, 3855–3857. [Google Scholar] [CrossRef]
- Bettadapur, K.R.; Lanke, V.; Prabhu, K.R. Ru (II)-Catalyzed C-H Activation: Ketone-Directed Novel 1,4-Addition of Ortho C-H Bond to Maleimides. Org. Lett. 2015, 17, 4658–4661. [Google Scholar] [CrossRef]
- Sherikar, M.S.; Kapanaiah, R.; Lanke, V.; Prabhu, K.R. Rhodium(III)-Catalyzed C-H Activation at the C4-Position of Indole: Switchable Hydroarylation and Oxidative Heck-type Reactions of Maleimides. Chem. Commun. 2018, 54, 11200–11203. [Google Scholar] [CrossRef]
- Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Efficient Catalytic Addition of Aromatic Carbon-Hydrogen Bonds to Olefins. Nature 1993, 366, 529–531. [Google Scholar] [CrossRef]
- Martinez, R.; Chevalier, R.; Darses, S.; Genet, J.-P. A Versatile Ruthenium Catalyst for C-C Bond Formation by C-H Bond Activation. Angew. Chem. Int. Ed. 2006, 45, 8232–8235. [Google Scholar] [CrossRef]
- Tian, X.; Qin, B.; Wu, Z.; Wang, X.; Lu, H.; Morris-Natschke, S.L.; Chen, C.H.; Jiang, S.; Lee, K.-H.; Xie, L. Design, Synthesis, and Evaluation of Diarylpyridines and Diarylanilines as Potent Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. J. Med. Chem. 2010, 53, 8287–8297. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Huang, G.; Shan, Y.; Li, Y.; Yu, J.-T. Rh(III)-Catalyzed Regioselective C4 Alkylation of Indoles with Allylic Alcohols: Direct Access to β-Indolyl Ketones. Org. Biomol. Chem. 2020, 18, 3038–3042. [Google Scholar] [CrossRef]
- Pradhan, S.; Mishra, M.; De, P.B.; Banerjee, S.; Punniyamurthy, T. Weak Coordination Enabled Switchable C4-Alkenylation and Alkylation of Indoles with Allyl Alcohols. Org. Lett. 2020, 22, 1720–1725. [Google Scholar]
- Li, X.-R.; Chen, S.-Q.; Fan, J.; Li, C.-J.; Wang, X.; Liu, Z.-W.; Shi, X.-Y. Controllable Tandem 3+2 Cyclization of Aromatic Aldehydes with Maleimides: Rhodium(III)-Catalyzed Divergent Synthesis of Indane-Fused Pyrrolidine-2,5-dione. Org. Lett. 2020, 22, 8808–8813. [Google Scholar] [PubMed]
- Chen, S.-Q.; Li, X.-R.; Li, C.-J.; Fan, J.; Liu, Z.-W.; Shi, X.-Y. Aldehyde as a Traceless Directing Group for Regioselective C-H Alkylation Catalyzed by Rhodium(III) in Air. Org. Lett. 2020, 22, 1259–1264. [Google Scholar] [PubMed]
- Motiwala, H.F.; Armaly, A.M.; Cacioppo, J.G.; Coombs, T.C.; Koehn, K.R.K.; Norwood Iv, V.M.; Aube, J. HFIP in Organic Synthesis. Chem. Rev. 2022, 122, 12544–12747. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Ghosh, A.; Maiti, D. Hexafluoroisopropanol: The Magical Solvent for Pd-catalyzed C-H Activation. Chem. Sci. 2021, 12, 3857–3870. [Google Scholar] [PubMed]
- Wang, Q.; Tian, S.; Zhang, C.; Li, J.; Wang, Z.; Du, Y.; Zhou, L.; Lu, J. Rh-Catalyzed Regioselective Dialkylation of Cage B-H bonds in o-Carboranes: Oxidative Heck Reactions via an Enol Isomerization. Org. Lett. 2019, 21, 8018–8021. [Google Scholar]
Entry | Additive | Solvent | Yield (%) b | |
---|---|---|---|---|
3a | 3a′ | |||
1 | Cu(OAc)2·H2O | TFE | 32 | 27 |
2 | Cu(OAc)2·H2O | HFIP | 12 | 37 |
3 | Cu(OAc)2·H2O | t-AmylOH | ND c | ND |
4 | Cu(OAc)2·H2O | PhCl | ND | trace |
5 | Cu(OAc)2·H2O | DCE | ND | ND |
6 | Cu(OAc)2·H2O | CH3CN | ND | ND |
7 | Cu(OAc)2·H2O | THF | ND | ND |
8 | Cu(OAc)2·H2O | 1,4-dioxane | ND | ND |
9 d | Cu(OAc)2·H2O | TFE | 42 | 15 |
10 d | AgOAc | TFE | 34 | 14 |
11 d | NaOAc | TFE | 24 | 9 |
12 d | KOAc | TFE | 36 | trace |
13 c | LiOAc | TFE | ND | ND |
14 d | Co(OAc)2 | TFE | 29 | trace |
15 de | Cu(OAc)2·H2O, KOAc | TFE | 76 | 6 |
16 df | Cu(OAc)2·H2O, KOAc | TFE | 78 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.-D.; Zhang, J.-S.; Zhang, L.-Y.; Liu, Z.-W.; Fan, J.; Shi, X.-Y. Rhodium-Catalyzed Alkylation of Aromatic Ketones with Allylic Alcohols and α,β-Unsaturated Ketones. Catalysts 2023, 13, 1157. https://doi.org/10.3390/catal13081157
Li W-D, Zhang J-S, Zhang L-Y, Liu Z-W, Fan J, Shi X-Y. Rhodium-Catalyzed Alkylation of Aromatic Ketones with Allylic Alcohols and α,β-Unsaturated Ketones. Catalysts. 2023; 13(8):1157. https://doi.org/10.3390/catal13081157
Chicago/Turabian StyleLi, Wan-Di, Jia-Shuo Zhang, Lin-Yan Zhang, Zhong-Wen Liu, Juan Fan, and Xian-Ying Shi. 2023. "Rhodium-Catalyzed Alkylation of Aromatic Ketones with Allylic Alcohols and α,β-Unsaturated Ketones" Catalysts 13, no. 8: 1157. https://doi.org/10.3390/catal13081157
APA StyleLi, W. -D., Zhang, J. -S., Zhang, L. -Y., Liu, Z. -W., Fan, J., & Shi, X. -Y. (2023). Rhodium-Catalyzed Alkylation of Aromatic Ketones with Allylic Alcohols and α,β-Unsaturated Ketones. Catalysts, 13(8), 1157. https://doi.org/10.3390/catal13081157