Synthesis and Specific Properties of the Ceria and Ceria-Zirconia Nanocrystals and Their Aggregates Showing Outstanding Catalytic Activity in Redox Reactions—A Review
Abstract
:1. Introduction
2. Concise Description of the Crystal Structure of CeO2−y, ZrO2−y and ZrzCe1−zO2−y
3. Synthesis of the Ceria-Based Nanoparticles
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Voskanyan, A.A.; Tsui, C.-K.J.; Chan, K.-Y. Durable ruthenium oxide/ceria catalyst with ultralarge mesopores for low-temperature CO oxidation. J. Catal. 2020, 382, 155–164. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Jing, M.; Liu, J.; Zhao, Z.; Xu, G.; Song, W.; Wei, Y.; Sun, Y. Ordered Mesoporous CeO2-supported Ag as an Effective Catalyst for Carboxylative Coupling Reaction Using CO2. ChemCatChem 2019, 11, 2089–2098. [Google Scholar] [CrossRef]
- Dziembaj, R.; Chojnacka, A.; Piwowarska, Z.; Gajewska, M.; Świętosławski, M.; Górecka, S.; Molenda, M. Comparative study of Co-rich and Ce-rich oxide nanocatalysts (CoxCe1−xOy) for low-temperature total oxidation of methanol. Catal. Today 2019, 333, 196–207. [Google Scholar] [CrossRef]
- Akinnawo, C.A.; Bingwa, N.; Meijboom, R. Tailoring the surface properties of meso-CeO2 for selective oxidation of benzyl alcohol. Catal. Commun. 2020, 145, 106115. [Google Scholar] [CrossRef]
- Chojnacka, A.; Molenda, M.; Chmielarz, L.; Piwowarska, Z.; Gajewska, M.; Dudek, B.; Dziembaj, R. Ceria based novel nanocomposites catalysts MnxCe1-xO2/γ-Al2O3 for low-temperature combustion of methanol. Catal. Today 2015, 257, 104–110. [Google Scholar] [CrossRef]
- Hu, F.; Chen, J.; Peng, Y.; Song, H.; Li, K.; Li, J. Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion. Chem. Eng. J. 2018, 331, 425–434. [Google Scholar] [CrossRef]
- Moyer, K.; Conklin, D.R.; Mukarakate, C.; Vardon, D.R.; Nimlos, M.R.; Ciesielski, P.N. Hierarchically Structured CeO2 Catalyst Particles From Nanocellulose/Alginate Templates for Upgrading of Fast Pyrolysis Vapors. Front. Chem. 2019, 7, 730. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, P.; Miśta, W.; Małecka, M.A. Function of various levels of hierarchical organization of porous Ce0.9REE0.1O1.95 mixed oxides in catalytic activity. Cryst. Eng. Commun. 2020, 22, 5914–5930. [Google Scholar] [CrossRef]
- Zarur, A.J.; Jing, J.Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 2000, 403, 65–67. [Google Scholar] [CrossRef]
- Bumajdad, A.; Zaki, M.I.; Eastoe, J.; Pasupulety, L. Characterization of nano-cerias synthesized in microemulsions by N2 sorptiometry and electron microscopy. J. Colloid Interface Sci. 2006, 302, 501–508. [Google Scholar] [CrossRef]
- Molenda, M.; Dziembaj, R.; Chmielarz, L.; Drozdek, M.; Dudek, B.; Piwowarska, Z.; Rafalska-Łasocha, A. Synthesis and characterization of nanostructured Cu-doped CeO2 nanopowders prepared by the w/o microemulsion method. Pol. J. Environ. Stud. 2009, 18, 151–154. [Google Scholar]
- Dziembaj, R.; Molenda, M.; Chmielarz, L.; Drozdek, M.; Zaitz, M.; Dudek, B.; Rafalska–Łasocha, A.; Piwowarska, Z. Nanostructured Cu–Doped Ceria Obtained by Reverse Microemulsion Method as Catalysts for Incineration of Selected VOCs. Catal. Lett. 2010, 135, 68–75. [Google Scholar] [CrossRef]
- Zaitz, M.; Molenda, M.; Chmielarz, L.; Piwowarska, Z.; Dudek, B.; Walas, S.; Dziembaj, R. Influence of defect structure on catalytic activity of nanometric materials based on ceria-doped copper. Funct. Mater. Lett. 2011, 4, 165–169. [Google Scholar] [CrossRef]
- Wang, H.; Luo, S.; Zhang, M.; Liu, W.; Wu, X.; Liu, S. Roles of oxygen vacancy and O- in oxidation reactions over CeO2 and Ag/CeO2 nanorod model catalysts. J. Catal. 2018, 368, 365–378. [Google Scholar] [CrossRef]
- Cop, P.; Maile, R.; Sun, Y.; Khalid, O.; Djerdi, I.; Esch, P.; Heiles, S.; Over, H.; Smarsly, B.M. Impact of Aliovalent/Isovalent Ions (Gd, Zr, Pr, and Tb) on the Catalytic Stability of Mesoporous Ceria in the HCl Oxidation Reaction. ACS Appl. Nano Mater. 2020, 3, 7406–7419. [Google Scholar] [CrossRef]
- Torrente-Murciano, L.; Gilbank, A.; Puertolas, B.; Garcia, T.; Solsona, B.; Chadwick, D. Shape-dependency activity of nanostructured CeO2 in total oxidation of polycyclic aromatic hydrocarbons. Appl. Catal. B Environ. 2013, 132–133, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Beck, M.J. Size-Dependent Appearance of Intrinsic Oxq “Activated Oxygen” Molecules on Ceria Nanoparticles. Chem. Mater. 2015, 27, 5840–5844. [Google Scholar] [CrossRef]
- Mahamulkar, S.; Yin, K.; Agrawa, P.K.; Davis, R.J.; Jones, C.W.; Malek, A.; Shibata, H. Formation and Oxidation/Gasification of Carbonaceous Deposits: A Review. Ind. Eng. Chem. Res. 2016, 55, 9760–9818. [Google Scholar] [CrossRef]
- Jang, W.-J.; Shim, J.-O.; Kim, H.-M.; Yoo, S.-Y.; Roh, H.-S. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 2019, 324, 15–26. [Google Scholar] [CrossRef]
- Gao, X.; Wang, Z.; Ashok, J.; Kawi, S. A comprehensive review of anti-coking, anti-poisoning and anti-sintering catalysts for biomass tar reforming reaction. Chem. Eng. Sci. 2020, 7, 100065. [Google Scholar] [CrossRef]
- Alli, R.D.; Zhou, R.; Mohamedali, M.; Mahinpey, N. Effect of thermal treatment conditions on the stability of MOF-derived Ni/CeO2 catalyst for dry reforming of methane. Chem. Eng. J. 2023, 446, 143242. [Google Scholar] [CrossRef]
- Di Sarli, V.; Landi, G.; Lisi, L.; Di Benedetto, A. Ceria-coated diesel particulate filters for continuous regeneration. AIChE J. 2017, 63, 3442–3449. [Google Scholar] [CrossRef]
- Campbell, C.T.; Pedden, C.H.F. Oxygen Vacancies and Catalysis on Ceria Surfaces. Science 2005, 309, 713–714. [Google Scholar] [CrossRef]
- Dziembaj, R.; Molenda, M.; Zaitz, M.M.; Chmielarz, L.; Furczoń, K. Correlation of electrical properties of nanometric copper-doped ceria materials Ce1-x CuxO(2-δ) with their catalytic activity in incineration of VOCs. Solid State Ion. 2013, 251, 18–22. [Google Scholar] [CrossRef]
- Righi, G.; Righi, G.; Magri, R.; Selloni, A. Methane Activation on Metal-Doped (111) and (100) Ceria Surfaces with Charge-Compensating Oxygen Vacancies. J. Phys. Chem. C 2020, 124, 17578–17585. [Google Scholar] [CrossRef]
- Yashima, M. Crystal and electronic structures, structural disorder, phase transformation, and phase diagram of ceria-zirconia and ceria-based materials. In Catalysis by Ceria and Related Materials; Trovarelli, A., Fornansiero, P., Eds.; Imperial College Press: London, UK, 2013; Volume 2, pp. 1–45. [Google Scholar]
- Matsukawa, T.; Hoshikawa, A.; Ishigaki, T. Temperature-induced structural transition of ceria by bulk reduction under hydrogen atmosphere. CrystEngComm 2018, 20, 4359–4363. [Google Scholar] [CrossRef]
- Polo-Garzon, F.; Bao, Z.; Zhang, X.; Huang, W.; Wu, Z. Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. ACS Catal. 2019, 9, 5692–5707. [Google Scholar] [CrossRef]
- Yuan, W.; Haile, S.M. Insensitivity of the extent of surface reduction of ceria on termination: Comparison of (001), (110), and (111) faces. MRS Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef]
- Wang, X.; Rodriguez, J.A.; Hanson, J.C.; Gamarra, D.; Martinez-Arias, A.; Fernandez-Garcia, M. Unusual physical and chemical properties of Cu in Ce1-xCuxO2 oxides. J. Phys. Chem. B 2005, 109, 19595–19603. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, Y.; Lee, J.H.; Cho, S.J.; Kwak, J.H.; Moon, H.R. Facile Synthesis and Characterization of Nanostructured Transition Metal/Ceria Solid Solutions (TMxCe1-xO2-δ, TM = Mn, Ni, Co, or Fe) for CO Oxidation. Chem. Mater. 2017, 29, 2874–2882. [Google Scholar] [CrossRef]
- Migani, A.; Neyman, K.M.; Illas, F.; Bromley, S.T. Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. J. Chem. Phys. 2009, 131, 064701. [Google Scholar] [CrossRef] [PubMed]
- Soler, L.; Casanovas, A.; Urrich, A.; Angurell, I.; Llorca, J. CO oxidation and COPrOx over preformed Au nanoparticles supported over nanoshaped CeO2. Appl. Catal. B Environ. 2016, 197, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Garcia, X.; Soler, L.; Divins, N.J.; Vendrell, X.; Serrano, I.; Lucentini, I.; Prat, J.; Solano, E.; Tallarida, M.; Escudero, C.; et al. Ceria-Based Catalysts Studied by Near Ambient Pressure X-ray Photoelectron Spectroscopy: A Review. Catalysts 2020, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Inaba, H.; Tagawa, H. Ceria-based solid state electrolytes. Solid State Ion. 1996, 83, 1–16. [Google Scholar] [CrossRef]
- Jaiswal, N.; Tanwar, K.; Suman, R.; Kumar, D.; Upadhyay, D.; Parkash, O. A brief review on ceria-based solid electrolytes for solid oxide fuel cells. J. Alloy Comp. 2019, 781, 984–1005. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, J.; Singh, M.; Hu, E.; Jing, Z.; Raza, R.; Wang, F.; Wang, J.; Yang, F.; Zhu, B. Superionic conductivity in ceria-based heterostructure composites for low-temperature solid oxide fuel cells. Nano-Micro Lett. 2000, 12, 178. [Google Scholar] [CrossRef]
- Mars, P.; van Krevellen, D.W. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 1954, 3, 41–59. [Google Scholar] [CrossRef]
- Bielański, A.; Haber, J. Oxygen in catalysis on transition metal oxides. Catal. Rev. Sci. Eng. 1979, 19, 1–41. [Google Scholar] [CrossRef]
- Minico, S.; Scire, S.; Crisafulli, C.; Maggiore, R.; Galvagno, S. Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts. Appl. Catal. B Environ. 2000, 28, 245–251. [Google Scholar] [CrossRef]
- Su, Z.; Yang, W.; Wang, C.; Xiong, S.; Cao, X.; Peng, Y.; Si, W.; Seng, Y.; Xue, M.; Li, J. Roles of Oxygen Vacancies in the Bulk and Surface of CeO2 for Toluene Catalytic Combustion. Environ. Sci. Technol. 2020, 54, 12684–12692. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.P.; Nowick, A.S.; Cox, D.E. X-ray and neutron diffraction study of intermediate phases in nonstoichiometric cerium dioxide. J. Solid State Chem. 1975, 15, 344–351. [Google Scholar] [CrossRef]
- Knappe, P.; Eyring, L. Preparation and electron microscopy of intermediate phases in the interval Ce7O12-Ce11O20. J. Solid State Chem. 1985, 58, 312–314. [Google Scholar] [CrossRef]
- Dziembaj, R.; Łojewski, T. Evolution of oxide layer on the cobalt foil studied by temperature programmed reduction. React. Kinet. Catal. Lett. 1994, 52, 437–443. [Google Scholar] [CrossRef]
- Dziembaj, R.; Łojewska, J.; Łojewski, T. Application of metal oxidation and oxide reduction to determine superficial phases containing active centres in redox catalysts. Solid State Ion. 1999, 117, 87–93. [Google Scholar] [CrossRef]
- Łojewska, J.; Makowski, W.; Tyszewski, T.; Dziembaj, R. Active state of model cobalt foil catalyst studied by SEM, TPR/TPO, XPS and TG. Catal. Today 2001, 69, 409–418. [Google Scholar] [CrossRef]
- Devaiah, D.; Reddy, L.H.; Park, S.-E.; Reddy, B.M. Ceria-zirconia mixed oxides: Synthetic methods and applications. Catal. Rev. 2018, 60, 177–277. [Google Scholar] [CrossRef]
- Vogt, E.T.C.; Fu, D.; Weckhuysen, B.M. Carbon deposit analysis in catalyst deactivation, regeneration and rejuvenation. Angew. Chem. Int. Ed. 2023, 62, e202300319. [Google Scholar] [CrossRef]
- Di Sarli, V.; Landi, G.; Di Benedetto, A.; Lisi, L. Synergy Between Ceria and Metals (Ag or Cu) in Catalytic Diesel Particulate Filters: Effect of the Metal Content and of the Preparation Method on the Regeneration Performance. Top. Catal. 2021, 64, 256–269. [Google Scholar] [CrossRef]
- Dictor, R.A.; Bell, A.T. Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts. J. Catal. 1986, 97, 121–136. [Google Scholar] [CrossRef]
- Lee, K.-M.; Kwon, G.; Hwang, S.; Boscoboinik, J.-A.; Kim, T. Investigation of the NO reduction by CO reaction over oxidized and reduced NiOx/CeO2 catalysts. Catal. Sci. Technol. 2021, 11, 7850–7865. [Google Scholar] [CrossRef]
- Zinkevich, M.; Djurovic, D.; Aldinger, F. Thermodynamic modelling of the cerium–oxygen system. Solid State Ion. 2006, 177, 989–1001. [Google Scholar] [CrossRef]
- Yashima, M.; Kobayashi, S.; Yasui, T. Crystal structure and the structural disorder of ceria from 40 to 1497 °C. Solid State Ion. 2006, 177, 211–215. [Google Scholar] [CrossRef]
- Yashima, M.; Mitsuhashi, T.; Takashina, H.; Kakihana, M.; Ikegami, T.; Yoshimura, M. Tetragonal-Monoclinic Phase Transition Enthalpy and Temperature of ZrO2-CeO2 Solid Solutions. J. Am. Ceram. Soc. 2005, 78, 2225–2228. [Google Scholar] [CrossRef]
- Yashima, M.; Sasaki, S.; Yamaguchi, Y.; Kakihana, M.; Yoshimura, M.; Mori, T. Internal distortion in ZrO2-CeO2 solid solutions: Neutron and high-resolution synchrotron x-ray diffraction study. Appl. Phys. Lett. 1998, 72, 182–184. [Google Scholar] [CrossRef]
- Yashima, M.; Takizawa, T. Atomic Displacement Parameters of Ceria Doped with Rare-Earth Oxide Ce0.8R0.2O1.9 (R = La, Nd, Sm, Gd, Y, and Yb) and Correlation with Oxide-Ion Conductivity. J. Phys. Chem. C 2010, 114, 2385–2392. [Google Scholar] [CrossRef]
- Yashima, M.; Morimoto, K.; Ishizawa, N.; Yoshimura, M. Diffusionless tetragonal-cubic transformation temperature in zirconia solid solutions. J. Am. Ceram. Soc. 1993, 76, 2865–2868. [Google Scholar] [CrossRef]
- Vlaic, G.; Fornasiero, P.; Geremia, S.; Kašpar, J.; Graziani, M. Relationship between the Zirconia-Promoted Reduction in the Rh-Loaded Ce0.5Zr0.5O2 Mixed Oxide and the Zr–O Local Structure. J. Catal. 1997, 168, 386–392. [Google Scholar] [CrossRef]
- Yashima, M. Crystal Structures of the Tetragonal Ceria−Zirconia Solid Solutions CexZr1−xO2 through First Principles Calculations (0 ≤ x ≤ 1). J. Phys. Chem. C 2009, 113, 12658–12662. [Google Scholar] [CrossRef]
- Yashima, M.; Wakita, T. Atomic displacement parameters and structural disorder of oxygen ions in the CexZr1−xO2 solid solutions (0.12 ≤ x ≤ 1.0): Possible factors of high catalytic activity of ceria-zirconia catalysts. Appl. Phys. Lett. 2009, 94, 171902. [Google Scholar] [CrossRef] [Green Version]
- Wakita, T.; Yashima, M. Structural disorder in the cubic Ce0.5Zr0.5O2 catalyst: A possible factor of the high catalytic activity. Appl. Phys. Lett. 2008, 92, 101921. [Google Scholar] [CrossRef]
- Sung, J.; Choi, B.K.; Kim, B.; Kim, B.H.; Kim, J.; Lee, D.; Kim, S.; Kang, K.; Hyeon, T.; Park, J. Redox-sensitive facet dependency in etching of ceria nanocrystals directly observed by liquid TEM. J. Am. Chem. Soc. 2019, 141, 18395–18399. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.; Li, X.; Wang, W.; Zhang, L.; Li, Y.; Peng, Z.; Yang, F.; Liu, Z. Nature of Active Sites on Cu-CeO2 Catalysts Activated by High-Temperature Thermal Aging. ACS Catal. 2020, 10, 12385–12392. [Google Scholar] [CrossRef]
- Yang, C.; Capdevila-Cortada, M.; Dong, C.; Zhou, Y.; Wang, J.; Yu, X.; Nefedov, A.; Heißler, S.; López, N.; Shen, W.; et al. Surface Refaceting Mechanism on Cubic Ceria. J. Phys. Chem. Lett. 2020, 11, 7925–7931. [Google Scholar] [CrossRef] [PubMed]
- Montini, T.; Bañares, M.A.; Hickey, N.; Di Monte, R.; Fornasiero, P.; Kašpara, J.; Graziania, M. Promotion of reduction in Ce0.5Zr0.5O2: The pyrochlore structure as effect rather than cause? Phys. Chem. Chem. Phys. 2004, 6, 1–3. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chen, K.-B.; Lee, C.-S.; Lin, M.C. Direct Synthesis of Zr-Doped Ceria Nanotubes. J. Phys. Chem. C. 2009, 113, 5031–5034. [Google Scholar] [CrossRef] [Green Version]
- Dziembaj, R.; Molenda, M.; Chmielarz, L.; Zaitz, M.M.; Piwowarska, Z.; Rafalska-Łasocha, A. Optimization of Cu doped ceria nanoparticles as catalysts for low-temperature methanol and ethylene total oxidation. Catal. Today 2011, 169, 112–117. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, J.; Jing, G.; Zhang, H.; Zeng, S.; Tian, X.; Zou, X.; Wen, J.; Su, H.; Zhong, C.-J.; et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl. Catal. B Environ. 2018, 239, 665–676. [Google Scholar] [CrossRef]
- Chen, A.; Yu, X.; Zhou, Y.; Miao, S.; Li, Y.; Kuld, S.; Sehested, J.; Liu, J.; Aoki, T.; Hong, S.; et al. Structure of the catalytically active copper–ceria interfacial perimeter. Nat. Catal. 2019, 2, 334–341. [Google Scholar] [CrossRef]
- Moretti, E.; Storaro, L.; Talon, A.; Lenarda, M.; Riello, P.; Frattini, R.; De Yuso, M.D.V.M.; Jiménez-López, A.; Rodríguez-Castellón, E.; Ternero, F.; et al. Effect of Thermal Treatments on the Catalytic Behaviour in the CO Preferential Oxidation of a CuO-CeO2-ZrO2 Catalyst with a Flower-Like Morphology. Appl. Catal. B Environ. 2011, 102, 627–637. [Google Scholar] [CrossRef]
- Mai, H.X.; Sun, L.D.; Zhang, Y.W.; Si, R.; Feng, W.; Zhang, H.P.; Liu, H.C.; Yan, C.H.J. Shape-selective synthesis and oxygen storage behaviour of ceria nanopolyhedra, nanorods and nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, F.; Xiao, P.; Tao, H.; Wang, X.; Hu, Z.; Lu, Y. Great Influence of Anions for Controllable Synthesis of CeO2 Nanostructures: From Nanorods to Nanocubes. J. Phys. Chem. C 2008, 112, 17076–17080. [Google Scholar] [CrossRef]
- Wang, W.; Howe, J.Y.; Li, Y.A.; Qiu, X.F.; Joy, D.C.; Paranthaman, M.P.; Doktycz, M.J.; Gu, B.H. A surfactant and template-free route for synthesizing ceria nanocrystals with tunable morphologies. J. Mater. Chem. 2010, 20, 7776–7781. [Google Scholar] [CrossRef]
- Liu, X.W.; Zhou, K.B.; Wang, L.; Wang, B.Y.; Li, Y.D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141. [Google Scholar] [CrossRef]
- Agarwal, S.; Lefferts, L.; Mojet, B.L.; Ligthart, D.A.J.M.; Hensen, E.J.M.; Mitchell, D.R.G.; Erasmus, W.J.; Anderson, B.G.; Ezra, J.O.; Neethling, J.H.; et al. Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water–gas shift reactivity. Chemsuschem 2013, 6, 1898–1906. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Zho, Y.; Ta, N.; Shen, W. Formation mechanism and size control of ceria nanocubes. CrystEngComm 2020, 22, 3033–3041. [Google Scholar] [CrossRef]
- Li, C.; Luan, Y.; Zhao, B.; Kumbhar, A.; Zhang, F.; Fang, J. Shape Engineering of CeO2-Based Catalysts; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Lykaki, M.; Sónia, E.P.; Carabineiro, C.; Andriopoutou, E.C.; Kallithrakas-Kontos, N.; Boghosian, S.; Konsolakis, M. Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO2 catalysts. Appl. Catal. B Environ. 2018, 230, 18–28. [Google Scholar] [CrossRef]
- Russel-Webster, B.; Abboud, K.A.; Christou, G.C. Molecular particles of cerium dioxide structure-directing effect of halide ions. Chem. Commun. 2020, 56, 5382–5385. [Google Scholar] [CrossRef]
- Zhang, J.; Ohara, S.; Umetsu, M.; Naka, T.; Hakateyama, Y.; Adshiri, T. Colloidal Ceria Nanocrystals: A Tailor-Made Crystal Morphology in Supercritical Water. Adv. Mater. 2007, 19, 203–206. [Google Scholar] [CrossRef]
- Castanet, U.; Feral-Martin, C.; Demourgues, A.; Neale, R.L.; Sayle, D.C.; Caddeo, F.; Flitcroft, J.M.; Caygill, R.; Pointon, B.J.; Molinari, M.; et al. Controlling the {111}/{110} Surface Ratio of Cuboidal Ceria Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 11384–11390. [Google Scholar] [CrossRef]
- Yan, H.; Liu, Z.; Yang, S.; Yu, X.; Liu, T.; Guo, Q.; Li, J.; Wang, R.; Peng, Q. Stable and Catalytically Active Shape-Engineered Cerium Oxide Nanorods by Controlled Doping of Aluminium Cations. ACS Appl. Mater. Interfaces 2020, 12, 37774–37783. [Google Scholar] [CrossRef]
- Bezkrovnyi, O.S.; Małecka, B.; Lisiecki, R.; Ostroushko, V.; Thomas, G.S.; Gorantla, A.; Kępinski, L. The effect of Eu doping on the growth, structure and red-ox activity of ceria nanocubes. CrystEngComm 2018, 20, 1698–1704. [Google Scholar] [CrossRef]
- Symington, A.R.; Molinari, M.; Moxon, S.; Flitcroft, J.M.; Sayle, D.C.; Parker, S.C. Strongly Bound Surface Water Affects the Shape Evolution of Cerium Oxide Nanoparticles. J. Phys. Chem. C 2020, 124, 3577–3588. [Google Scholar] [CrossRef]
- Breysse, M.; Guenin, M.; Claudel, B.; Latreille, H.; Veron, J. Catalysis of carbon monoxide oxidation by cerium dioxide: I. Correlations between catalytic activity and electrical conductivity. J. Catal. 1972, 27, 275–280. [Google Scholar] [CrossRef]
- Ta, N.; Liu, J.J.; Chenna, S.; Crozier, P.A.; Li, Y.; Chen, A.; Shen, W. Stabilized Gold Nanoparticles on Ceria Nanorods by Strong Interfacial Anchoring. J. Am. Chem. Soc. 2012, 134, 20585–20588. [Google Scholar] [CrossRef]
- Bezkrovnyi, O.S.; Kraszkiewicz, P.; Ptak, M.; Kępinski, L. Thermally induced reconstruction of ceria nanocubes into zigzag {111}-nanofacetted structures and its influence on catalytic activity in CO oxidation. Catal. Commun. 2018, 117, 94–98. [Google Scholar] [CrossRef]
- Yang, C.; Yu, X.; Heissler, S.; Nefedov, A.; Colussi, S.; Llorca, J.; Trovarelli, A.; Wang, Y.; Woll, C. Surface Faceting and Reconstruction of Ceria Nanoparticles. Angew. Chem. Int. Ed. 2017, 56, 375–379. [Google Scholar] [CrossRef]
- Soler, L.; Casanovas, A.; Ryan, J.; Angurell, I.; Escudero, C.; Pérez-Dieste, V.; Llorca, J. Dynamic Reorganization of Bimetallic Nanoparticles under Reaction Depending on the Support Nanoshape: The Case of RhPd over Ceria Nanocubes and Nanorods under Ethanol Steam Reforming. ACS Catal. 2019, 9, 3641–3647. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Cullen, D.A.; Wang, R. Ruthenium Diffusion on Different CeO2 Surfaces: Support Shape Effect. Microsc. Microanal. 2019, 25, 2198–2199. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.D.; Tamg, J.; Cui, P.Y.; Jiang, X.Q.; Chang, C.G.; Liu, W.; Gao, Y.X.; Li, M.; Weng, D. An exploration of soot oxidation over CeO2-ZrO2 nanocubes: Do more surface oxygen vacancies benefit the reaction? Catal. Today 2017, 281, 454–459. [Google Scholar] [CrossRef]
- Liu, Y.; McCue, A.J.; Yang, P.; He, Y.; Zheng, L.; Cao, X.; Man, Y.; Feng, J.; Anderson, J.A.; Li, D. Support-morphology dependant alloying behaviour and interfacial effects of bimetallic Ni-Cu/CeO2 catalysts. Chem. Sci. 2019, 10, 3556–3566. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, L.; Zhu, J.; Han, B.; Zhao, L.; Yu, H.; Deng, Z.; Shi, W. Study on different CeO2 structure stability during ethanol steam reforming reaction over Ir/CeO2 nanocatalysts. Appl. Catal. A Gen. 2018, 564, 226–233. [Google Scholar] [CrossRef]
- Bezkrovnyj, O.S.; Kraszkiewicz, P.; Mista, P.; Kępinski, L. The Sintering of Au Nanoparticles on Flat {100}, {111} and Zigzagged {111}-Nanofacetted Structures of Ceria and Its Influence on Catalytic Activity in CO Oxidation and CO PROX. Catal. Lett. 2021, 151, 1080–1090. [Google Scholar] [CrossRef]
- Sartoretti, E.; Novara, C.; Fontana, M.; Giorgis, F.; Plumetti, M.; Bensaid, S.; Russo, N.; Fino, D. New insights on the defect sites evolution during CO oxidation over doped ceria nanocatalysts probed by in situ Raman spectroscopy. Appl. Catal. A Gen. 2020, 596, 117517. [Google Scholar] [CrossRef]
- Vanderspurt, T.H.; Wijzen, F.; Tang, X.; Leffler, M.P. Ceria-Based Mixed-Metal Oxide Structure, Including Method of Making and Use. U.S. Patent 0186805 A1, 28 March 2003. [Google Scholar]
- Susono, Y.T.; Toyota, M.M.; Susono, S.T.; Chiryu, N.T. High Hest-Resistant Catalyst with a Porous Ceria Support. U.S. Patent 5972830, 11 December 1995. [Google Scholar]
- Luccini, E.; Meriani, S.; Sbaizero, O. Preparation of zirconia-ceria powders by coprecipitation of a mixed zirconium carbonate in water with urea. Int. J. Mater. Prod. Technol. 1989, 4, 167–175. [Google Scholar]
- Si, R.; Zhang, Y.-W.; Li, S.-J.; Lin, B.-X.; Yan, C.-H. Urea-Based Hydrothermally Derived Homogeneous Nanostructured Ce1-xZrxO2 (x = 0−0.8) Solid Solutions: A Strong Correlation between Oxygen Storage Capacity and Lattice Strain. J. Phys. Chem. B. 2004, 108, 12481–12488. [Google Scholar] [CrossRef]
- Wolski, L.; Nowaczyk, G.; Jurga, S.; Ziolek, M. Influence of Co-Precipitation Agent on the Structure, Texture and Catalytic Activity of Au-CeO2 Catalysts in Low-Temperature Oxidation of Benzyl Alcohol. Catalysts 2021, 11, 641. [Google Scholar] [CrossRef]
- Mileva, A.; Issa, G.; Henych, J.; Štengl, V.; Kovacheva, D.; Tsoncheva, T. CeO2 and TiO2 obtained by urea assisted homogeneous hydrolyses method as catalysts for environmental protection: Effect of Ti/Ce ratio. Bulg. Chem. Commun. 2017, 49, 77–83. [Google Scholar]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to form a Capacitor. U.S. Patent 3330697A, 11 July 1967. [Google Scholar]
- Dahl, J.A.; Maddux, L.; Hutchison, J.E. Toward Greener Nanosynthesis. Chem. Rev. 2007, 107, 2228–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Kumar, A.; Ma, J.; Kuang, Y.; Luo, L.; Sun, Y. Density gradient ultracentrifugation for colloidal nanostructures separation and investigation. Sci. Bull. 2018, 63, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The Evolution of ‘Sol-Gel’ Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Terrible, D.; Trovarelli, A.; Llorca, J.; Leitenburg, C.; Dolcetti, G. The preparation of high surface area CeO2-ZrO2 mixed oxides by a surfactant-assisted approach. Catal. Today 1998, 43, 79–88. [Google Scholar] [CrossRef]
- Chavhan, M.P.; Lu, C.-H.; Som, S. Urea and surfactant assisted hydrothermal growth of ceria nanoparticles. Coll. Surf. A Physicochem. Eng. Asp. 2020, 601, 124944. [Google Scholar] [CrossRef]
- Mori, K.; Jida, H.; Kuwahara, Y.; Yamashita, H. CoOx-decorated CeO2 heterostructures effects of morphology on their catalytic properties in diesel soot combustion. Nanoscale 2020, 12, 1779–1789. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.; Wang, Y.; Fan, R.; Zhang, C.; Wang, Y.; Guo, X.; Wang, R.; Zhang, S. Ce and Zr Modified WO3-TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3. Catalysts 2018, 8, 375. [Google Scholar] [CrossRef] [Green Version]
- Reddy, B.M.; Lakshmanan, P.; Khan, A.; Loridant, S.; López-Cartes, C.; Rojas, T.C.; Fernández, A. Surface Stabilized Nanosized CexZr1-xO2 Solid Solutions over SiO2: Characterization by XRD, Raman, and HREM Techniques. J. Phys. Chem. B 2005, 109, 13545–13552. [Google Scholar] [CrossRef]
- Cargnello, M.; Doan-Nguyen, V.V.T.; Gordon, T.R.; Diaz, R.E.; Stach, E.A.; Gorte, R.J.; Fornasiero, P.; Murray, C.B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771–773. [Google Scholar] [CrossRef] [Green Version]
- Ai, C.; Zhang, Y.; Wang, P.; Wang, W. Catalytic Combustion of Diesel Soot on Ce/Zr Series Catalysts Prepared by Sol-Gel Method. Catalysts 2019, 9, 646. [Google Scholar] [CrossRef] [Green Version]
- Neyertz, C.A.; Banús, E.D.; Miró, E.E.; Querini, C.A. Potassium-promoted Ce0.65Zr0.35O2 monolithic catalysts for diesel soot combustion. Chem. Eng. J. 2014, 248, 394–405. [Google Scholar] [CrossRef]
- Bolivar-Diaz, C.I.; Conesa, J.C.; Cortes-Corberan, V.; Monte, M.; Martinez-Arias, A. Nanostructured Catalysts Based on Combinations of Cobalt and Cerium Oxides for CO Oxidation and Effect of the Presence of Water. J. Nanosci. Nanotechnol. 2017, 17, 3816–3823. [Google Scholar] [CrossRef]
- Wright, C.S.; Walton, R.I.; Thompsett, D.; Fisher, J.; Ashbrook, S.E. One-Step Hydrothermal Synthesis of Nanocrystalline Ceria-Zirconia Mixed Oxides: The Beneficial Effect of Sodium Inclusion on Redox Properties. Adv. Mater. 2007, 19, 4500–4504. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Kappis, K.; Papavasiliou, J.; Vakros, J.; Kuśmierz, M.; Gac, W.; Georgiou, Y.; Deligiannakis, Y.; Avgouropoulos, D. Copper-promoted ceria catalysts for CO oxidation reaction. Catal. Today 2020, 355, 647–653. [Google Scholar] [CrossRef]
- Xiao, G.; Li, S.; Li, H.; Chen, L. Synthesis of Doped Ceria with Mesoporous Flowerlike Morphology and Its Catalytic Performance for CO Oxidation. Micropor. Mesopor. Mater. 2009, 120, 426–431. [Google Scholar] [CrossRef]
- Si, R.; Zhang, Y.-W.; Wang, L.-M.; Li, S.-J.; Lin, B.-X.; Chu, W.-S.; Wu, Z.-Y.; Yan, C.-H. Enhanced Thermal Stability and Oxygen Storage Capacity for CexZr1-xO2 (x = 0.4−0.6) Solid Solutions by Hydrothermally Homogenous Doping of Trivalent Rare Earths. J. Phys. Chem. C 2007, 111, 787–794. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M.; Wang, H.; Wang, L.; Hou, Y. Effects of ammonia concentration in hydrothermal treatment on structure and redox properties of cerium zirconium solid solution. J. Rare Earths 2021, 39, 419–426. [Google Scholar] [CrossRef]
- Zhu, Y.; Seong, G.; Noguchi, T.; Yoko, A.; Tomai, T.; Takami, S.; Adschiri, T. Highly Cr-Substituted CeO2 Nanoparticles Synthesized Using a Non-equilibrium Supercritical Hydrothermal Process: High Oxygen Storage Capacity Materials Designed for a Low-Temperature Bitumen Upgrading Process. ACS Appl. Energy Mater. 2020, 3, 4305–4319. [Google Scholar] [CrossRef]
- Devaraju, M.K.; Liu, X.; Yusuke, K.; Yin, S.; Sato, T. Solvothermal Synthesis and Characterization of Ceria-Zirconia Mixed Oxides for Catalytic Applications. Nanotechnology 2009, 20, 405606. [Google Scholar] [CrossRef]
- Burri, D.R.; Choi, K.-M.; Lee, J.-H.; Han, D.-S.; Park, S.-E. Influence of SBA-15 Support on CeO2-ZrO2 Catalyst for the Dehydrogenation of Ethylbenzene to Styrene with CO2. Catal. Commun. 2007, 8, 43–48. [Google Scholar] [CrossRef]
- Xin, J.; Cui, H.; Cheng, Z.; Zhou, Z. Bimetallic Ni-Co/SBA-15 catalysts prepared by urea co-precipitation for dry reforming of methane. Appl. Catal. A Gen. 2018, 554, 95–104. [Google Scholar] [CrossRef]
- Bao, J.; Chen, H.; Yang, S.; Zhang, P. Mechanochemical redox-based synthesis of highly porous CoxMn1-xOy catalysts for total oxidation. Chinese J. Catal. 2020, 41, 1791–1811. [Google Scholar] [CrossRef]
- Arandiyan, H.; Dai, H.; Ji, K.; Sun, H.; Li, J. Pt Nanoparticles Embedded in Colloidal Crystal Template Derived 3D Ordered Macroporous Ce0.6Zr0.3Y0.1O2: Highly Efficient Catalysts for Methane Combustion. ACS Catal. 2015, 5, 1781–1793. [Google Scholar] [CrossRef]
- Zhang, D.S.; Du, X.J.; Shi, L.Y.; Gao, R.H. Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Trans. 2012, 41, 14455–14475. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Zhang, D.; Shi, L. CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods. J. Solid State Chem. 2008, 181, 1298–1306. [Google Scholar] [CrossRef]
- Fuentes, R.O.; Acuna, L.M.; Zimic, M.G.; Lamas, D.G.; Sacanell, J.G.; Leyva, A.G.; Baker, R.T. Formation and Structural Properties of Ce−Zr Mixed Oxide Nanotubes. Chem. Mater. 2008, 20, 7356–7363. [Google Scholar] [CrossRef]
- Rombi, E.; Cutrufello, M.G.; Atzori, L.; Monaci, R.; Ardu, A.; Gazzoli, D.; Deiana, P.; Ferino, I. CO Methanation on Ni-Ce Mixed Oxides Prepared by Hard Template Method. Appl. Catal. A Gen. 2016, 515, 144–153. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Dai, H.; He, H. Facile Synthesis and Unique Physicochemical Properties of Three-Dimensionally Ordered Macroporous Magnesium Oxide, γ-Alumina, and Ceria-Zirconia Solid Solutions with Crystalline Mesoporous Walls. Inorg. Chem. 2009, 48, 4421–4434. [Google Scholar] [CrossRef]
- Rood, S.C.; Ahmet, H.B.; Gomez-Ramon, A.; Torrente-Murciano, L.; Reina, T.R.; Eslava, S. Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane. Appl. Catal. B Environ. 2019, 242, 358–368. [Google Scholar] [CrossRef]
- Han, W.Q.; Wu, L.J.; Zhu, Y.M. Formation and Oxidation State of CeO2-x Nanotubes. J. Am. Chem. Soc. 2005, 127, 12814–12815. [Google Scholar] [CrossRef]
- Tang, C.C.; Bando, Y.; Liu, B.D.; Goldberg, D. Cerium Oxide Nanotubes Prepared from Cerium Hydroxide Nanotubes. Adv. Mater. 2005, 17, 3005–3009. [Google Scholar] [CrossRef]
- Zhou, K.B.; Yang, Z.Q.; Yang, S. Highly Reducible CeO2 Nanotubes. Chem. Mater. 2007, 19, 1215–1217. [Google Scholar] [CrossRef]
- Chen, G.Z.; Xu, C.X.; Song, X.Y.; Xu, S.L.; Ding, Y.; Sun, S.X. Template-free Synthesis of Single-Crystalline-like CeO2 Hollow Nanocubes. Cryst. Growth Des. 2008, 8, 4449–4453. [Google Scholar]
- Reddy, L.H.; Devaiah, D.; Reddy, B.M. Microwave Assisted Synthesis: A Versatile Tool for Process Intensification. In Industrial Catalysis and Separations; Raghavan, K.V., Reddy, B.M., Eds.; Apple Academic Press, Inc.: Palm Bay, FL, USA, 2014; Chapter 10; pp. 375–405. [Google Scholar]
- Reddy, B.M.; Bharali, P.; Seo, Y.-H.; Prasetyanto, E.A.; Park, S.-E. Surfactant-Controlled and Microwave-Assisted Synthesis of Highly Active CexZr1-xO2 Nano-Oxides for CO Oxidation. Catal. Lett. 2008, 126, 125–133. [Google Scholar]
- Bang, J.H.; Suslick, K.S. Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv. Mater. 2010, 22, 1039–1059. [Google Scholar] [CrossRef] [PubMed]
- Alammar, T.; Noei, H.; Wang, Y.; Grünert, W.; Mudring, A.-V. Ionic Liquid-Assisted Sonochemical Preparation of CeO2 Nanoparticles for CO Oxidation. ACS Sustain. Chem. Eng. 2015, 3, 42–54. [Google Scholar]
- Tinoco, M.; Fernandez-Garcia, S.; Lopez-Haro, M.; Hungria, A.B.; Chen, X.; Blanco, G.; Perez-Omil, J.A.; Collins, S.E.; Okuno, H.; Calvino, J. Critical Influence of Nanofaceting on the Preparation and Performance of Supported Gold Catalysts. J. ACS Catal. 2015, 5, 3504–3513. [Google Scholar]
- Chen, W.; Li, F.; Yu, J.; Liu, L.; Gao, H. Rapid Synthesis of Mesoporous Ceria-Zirconia Solid Solutions via a Novel Salt-Assisted Combustion Process. Mater. Res. Bull. 2006, 41, 2318–2324. [Google Scholar]
- Baneshi, J.; Haghighi, M.; Ajamein, H.; Abdollahifar, M. Homogeneous precipitation and urea-nitrate combustion preparation of nanostructured CuO/CeO2/ZrO2/Al2O3 oxides used in hydrogen production from methanol for fuel cells. Part. Sci. Technol. 2020, 38, 464–474. [Google Scholar] [CrossRef]
- Kim, M.; Laine, R.M. One-Step Synthesis of Core-Shell (Ce0.7Zr0.3O2)x (Al2O0.3)1-x [(Ce0.7Zr0.3O2)@Al2O3] Nanopowders via Liquid-Feed Flame Spray Pyrolysis (LF-FSP). J. Am. Chem. Soc. 2009, 131, 9220–9229. [Google Scholar] [CrossRef] [PubMed]
- Strobel, R.; Pratsinis, S.E. Effect of Solvent Composition on Oxide Morphology during Flame Spray Pyrolysis of Metal Nitrates. Phys. Chem. Chem. Phys. 2011, 13, 9246–9252. [Google Scholar] [CrossRef]
- Sun, W.; Li, X.; Sun, C.; Huang, Z.; Xu, H.; Shen, W. Insights into the Pyrolysis Processes of Ce-MOFs for Preparing Highly Active Catalysts of Toluene Combustion. Catalysts 2019, 9, 682. [Google Scholar] [CrossRef] [Green Version]
- McCormick, P.G.; Tsuzuki, T.; Robinson, J.S.; Ding, J. Nanopowders synthesized by mechanochemical processing. Adv. Mater. 2002, 13, 1008–1010. [Google Scholar] [CrossRef]
- Sepelik, V.; Duvel, A.; Wilkening, M.; Becker, K.-D.; Heitjans, P. Mechanochemical reactions and synthesis of oxides. Chem. Soc. Rev. 2013, 42, 7507–7520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boldyreva, E.V. Mechanochemistry of inorganic and organic systems: What is similar? what is different? Chem. Soc. Rev. 2013, 42, 7719–7738. [Google Scholar] [PubMed]
- Tsuzuki, T. Mechanochemical synthesis of metal oxide particles. Commun. Chem. 2021, 4, 143. [Google Scholar] [CrossRef]
- Gomollon-Bell, F. Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry in potential to make our planet more sustainable. Chem. Int. 2019, 41, 12–17. [Google Scholar]
- Michalchuk, A.L.; Boldyreva, E.V.; Belenguer, A.M.; Emmerling, F.; Boldyrev, V.V. Tribochemistry, mechanical alloing, mechanochemistry: What is in a name? Front. Chem. 2021, 9, 685789. [Google Scholar] [CrossRef] [PubMed]
- Trovarelli, A.; Zamar, F.; Llorca, J.; De Leitenburg, C.; Dolcetti, G.; Kiss, J.T. Nanophase Fluorite-Structured CeO2-ZrO2 Catalysts Prepared by High-Energy Mechanical Milling. J. Catal. 1997, 169, 490–502. [Google Scholar] [CrossRef]
- Cutrufello, M.G.; Ferino, I.; Solinas, V.; Primavera, A.; Trovarelli, A.; Auroux, A.; Picciau, C. Acid-Base Properties and Catalytic Activity of Nanophase Ceria-Zirconia Catalysts for 4-Methylpentan-2-Ol Dehydration. Phys. Chem. Chem. Phys. 1999, 1, 3369–3375. [Google Scholar] [CrossRef]
- Dodd, A.; Mccormick, P.; Tsuzuki, T. Nanocrystalline zirconia powders synthesized by mechanochemical processing. Mater. Sci. Eng. A 2001, A301, 54–58. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, Z.; Huang, H.; Ji, W.; Sun, M.; Chen, C. Synthesis and Characterization of Nanometer Ce0.75Zr0.25O2 Powders by Solid-State Chemical Reaction Method. J. Nanomater. 2011, 2011, 657516. [Google Scholar] [CrossRef] [Green Version]
- Tsusuki, T.; McCormick, P.G. Synthesis of ultrafine ceria powders by mechanochemical processing. J. Am. Ceram. Soc. 2001, 84, 1453–1458. [Google Scholar]
- Li, Y.X.; Chen, W.F.; Zhou, X.Z.; Gu, Z.Y.; Chen, C.M. Synthesis of CeO2 nanoparticles by mechanochemical processing and the inhibiting action of NaCl on particle agglomeration. Mater. Lett. 2005, 59, 48–52. [Google Scholar]
- Li, F.; Yu, X.; Pan, H.; Wang, M.; Xin, X. Synthesis of MO2 (M: Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature. Solid State Ion. 2000, 2, 267–772. [Google Scholar]
- Shu, Y.; Chen, H.; Chen, N.; Duan, X.; Zhang, P.; Yang, S.; Bao, Z.; Wu, Z.; Dai, S. A principle for highly active metal oxide catalysts via NaCl-based solid solutions. Chem 2020, 6, 1723–1741. [Google Scholar]
- Cheng, H.; Tan, J.; Ren, Y.; Zhao, M.; Liu, J.; Wang, H.; Liu, J.; Zhao, Z. Mechanochemical Synthesis of Highly Porous CeMnOx Catalyst for the Removal of NOx. Ind. Eng. Chem. Res. 2019, 58, 16472–16478. [Google Scholar]
- Lucentini, I.; Serrano, I.; Soler, L.; Divins, N.J.; Llorca, J. Ammonia decomposition over 3D-printed CeO2 structures loaded with Ni. Appl. Catal. A Gen. 2020, 591, 117382. [Google Scholar] [CrossRef]
Reaction | Catalyst | Ref. |
---|---|---|
CO oxidation | • RuO2/CeO2 with ultra-large mesopores | [1] |
• Au nanoparticles supported over nanoshaped CeO2 | [33] | |
• CuO/CeO2—different shaped nanocatalysts | [68] | |
• CuO-CeO2-ZrO2—flower-like morphology | [70] | |
• Au nanoparticles on {100}, {111} and {111} nanofacetted structures of CeO2 | [94] | |
• CeO2 catalysts | [85] | |
• Thermally reconstructed CeO2 nanocubes | [87] | |
• CeO2 nanocatalyst | [95] | |
• Nanostructured CoxCe1−xOy | [114] | |
• Cu-promoted CeO2 catalysts | [116] | |
• Doped CeO2—mesoporous flower-like morphology | [117] | |
• CeO2 nanoplates, nanotubes and nanorods | [127] | |
• CeO2 nanoflakes—graphene oxide as template | [131] | |
• Nanostructured CexZr1−xO2 | [137] | |
• Sonochemically prepared CeO2 nanoparticles | [139] | |
Diesel soot oxidation | • CeO2-ZrO2 nanocubes | [91] |
• CoOx-decorated CeO2 heterostructures | [108] | |
• CeO2/ZrO2 prepared by sol–gel method | [112] | |
• K-promoted Ce0.65Zr0.35O2 monolithic catalysts | [113] | |
Ethanol steam reforming | • Rh-Pd/CeO2 nanocubes and nanorods | [89] |
• Ir/CeO2 nanocatalysts | [93] | |
• Nanostructured CuO/CeO2/ZrO2/Al2O3 | [142] | |
Dry reforming of methane | • MOF-derived Ni/CeO2 catalyst | [21] |
• CeO2 nanoflakes—graphene oxide as sacrificial template | [131] | |
Low-temperature methanol combustion | • CoxCe1−xOy nanocatalysts | [3] |
• Nanocomposite catalysts MnxCe1−xO2/γ-Al2O3 | [5] | |
• Nanometric Ce1−x CuxO(2−δ) materials | [12,24,67] | |
• Nanowire hierarchical CeO2 micro-spheres | [6] | |
• Catalysts prepared by Ce-MOFs pyrolysis | [145] | |
Methane combustion | • Macroporous Ce0.6Zr0.3Y0.1O2 | [125] |
Combustion of polycyclic aromatic hydrocarbons | • Nanostructured CeO2 | [16] |
Fast pyrolysis of organic vapors | • Hierarchically structured CeO2 | [7] |
HCl oxidation with O2 to obtain Cl2 | • Mesoporous CeO2 | [15] |
NO reduction with CO | • Oxidized and reduced NiOx/CeO2 | [50] |
NH3-SCR | • Highly porous CeMnOx | [160] |
NH3 decomposition | • 3D-printed CeO2 structures loaded with Ni | [161] |
Carboxylative coupling using CO2 | • Mesoporous CeO2-supported Ag | [2] |
Dehydrogenation of ethylbenzene to styrene with CO2 | • CeO2-ZrO2/SBA-15 | [122] |
4-methylpentan-2-ol dehydration | • Nanophase CeO2-ZrO2 nanocubes | [153] |
Oxidation of benzyl alcohol with TBHP | • Mesoporous CeO2 | [4] |
Oxidation of benzyl alcohol with O2 | • Au-CeO2 catalysts | [100] |
Low-temperature bitumen upgrading | • Cr-substituted CeO2 nanoparticles | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziembaj, R.; Molenda, M.; Chmielarz, L. Synthesis and Specific Properties of the Ceria and Ceria-Zirconia Nanocrystals and Their Aggregates Showing Outstanding Catalytic Activity in Redox Reactions—A Review. Catalysts 2023, 13, 1165. https://doi.org/10.3390/catal13081165
Dziembaj R, Molenda M, Chmielarz L. Synthesis and Specific Properties of the Ceria and Ceria-Zirconia Nanocrystals and Their Aggregates Showing Outstanding Catalytic Activity in Redox Reactions—A Review. Catalysts. 2023; 13(8):1165. https://doi.org/10.3390/catal13081165
Chicago/Turabian StyleDziembaj, Roman, Marcin Molenda, and Lucjan Chmielarz. 2023. "Synthesis and Specific Properties of the Ceria and Ceria-Zirconia Nanocrystals and Their Aggregates Showing Outstanding Catalytic Activity in Redox Reactions—A Review" Catalysts 13, no. 8: 1165. https://doi.org/10.3390/catal13081165
APA StyleDziembaj, R., Molenda, M., & Chmielarz, L. (2023). Synthesis and Specific Properties of the Ceria and Ceria-Zirconia Nanocrystals and Their Aggregates Showing Outstanding Catalytic Activity in Redox Reactions—A Review. Catalysts, 13(8), 1165. https://doi.org/10.3390/catal13081165