The Investigation of Zeolite to Matrix Ratio Effect on the Performance of FCC Catalysts during Catalytic Cracking of Hydrotreated VGO
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Evaluation of Fresh and Steamed FCC Catalysts
3. Experimental
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalyst Characterization
3.4. Catalyst Evaluation
Analysis of MAT Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J.; Meng, X.; Xiao, F. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Front. Chem. Sci. Eng. 2013, 7, 233–248. [Google Scholar] [CrossRef]
- Jermy, B.; Siddiqui, M.; Aitani, A.; Saeed, M.; Al-Khattaf, S. Utilization of ZSM-5/MCM-41 composite as FCC catalyst additive for enhancing propylene yield from VGO cracking. J. Porous Mater. 2012, 19, 499–509. [Google Scholar] [CrossRef]
- Ebrahimi, A.A.; Mousavi, H.; Bayesteh, H.; Towfighi, J. Nine-lumped kinetic model for VGO catalytic cracking; using catalyst deactivation. Fuel 2018, 231, 118–125. [Google Scholar] [CrossRef]
- Palos, R.; Gutiérrez, A.; Fernández, M.L.; Trueba, D.; Bilbao, J.; Arandes, J.M. Upgrading of heavy coker naphtha by means of catalytic cracking in refinery FCC unit. Fuel Process. Technol. 2020, 205, 106454. [Google Scholar] [CrossRef]
- Vogt, E.; Weckhuysen, B. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 2015, 44, 7342–7370. [Google Scholar] [CrossRef] [PubMed]
- Cejka, J.; van Bekkum, H. Zeolites and Ordered Mesoporous Materials: Progress and Prospects. In Proceedings of the 1st FEZA School on Zeolites, Prague, Czech Republic, 20–21 August 2005; Gulf Professional Publishing: Houston, TX, USA, 2005; Volume 157. [Google Scholar]
- Cejka, J.; Corma, A.; Zones, S. Zeolites and Catalysis: Synthesis, Reactions and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Richter, M.; Berndt, H.; Eckelt, R.; Schneider, M.; Fricke, R. Zeolite-mediated removal of NOx by NH3 from exhaust streams at low temperatures. Catal. Today 1999, 54, 531–545. [Google Scholar] [CrossRef]
- Tao, Y.; Kanoh, H.; Kaneko, K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. J. Phys. Chem. B 2003, 107, 10974–10976. [Google Scholar] [CrossRef]
- García, J.R.; Fals, J.; Dietta, L.E.; Sedran, U. VGO from shale oil. FCC processability and co-processing with conventional VGO. Fuel 2022, 328, 125327. [Google Scholar] [CrossRef]
- Corma, A.; Díaz-Cabañas, M.J.; Martínez-Triguero, J.; Rey, F.; Rius, J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature 2002, 418, 514–517. [Google Scholar] [CrossRef]
- Corma, A.; Díaz-Cabañas, M.J.; Jordá, J.L.; Martinez, C.; Moliner, M. High-throughput synthesis and catalytic properties of a molecular sieve with 18-and 10-member rings. Nature 2006, 443, 842–845. [Google Scholar] [CrossRef]
- Mitchell, S.; Pinar, A.B.; Kenvin, J.; Crivelli, P.; Kärger, J.; Pérez-Ramírez, J. Structural analysis of hierarchically organized zeolites. Nat. Commun. 2015, 6, 1–14. [Google Scholar] [CrossRef]
- Krumeich, F.; Ihli, J.; Shu, Y.; Cheng, W.-C.; van Bokhoven, J.A. Structural changes in deactivated fluid catalytic cracking catalysts determined by electron microscopy. ACS Catal. 2018, 8, 4591–4599. [Google Scholar] [CrossRef]
- Ishihara, A.; Ninomiya, M.; Hashimoto, T.; Nasu, H. Catalytic cracking of C12-C32 hydrocarbons by hierarchical β-and Y-zeolite-containing mesoporous silica and silica-alumina using Curie point pyrolyzer. J. Anal. Appl. Pyrolysis 2020, 150, 104876. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, Y.; Zheng, H.; Zhao, L.; Gao, J.; Xu, C.; Shen, B. A first-principles evaluation of the stability, accessibility, and strength of Brønsted acid sites in zeolites. J. Catal. 2017, 352, 627–637. [Google Scholar] [CrossRef]
- Mitchell, S.; Michels, N.-L.; Pérez-Ramírez, J. From powder to technical body: The undervalued science of catalyst scale up. Chem. Soc. Rev. 2013, 42, 6094–6112. [Google Scholar] [CrossRef]
- Scherzer, J. Octane-Enhancing Zeolite FCC: Scientific and Technical Aspects; Marcel-Dekker, Ed.; CRC Press: New York, NY, USA, 1990. [Google Scholar]
- García-Martínez, J.; Li, K.; Krishnaiah, G. A mesostructured Y zeolite as a superior FCC catalyst–from lab to refinery. Chem. Commun. 2012, 48, 11841–11843. [Google Scholar] [CrossRef]
- Fals, J.; Garci, J.R.; Falco, M.; Sedran, U. Performance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGO. Energy Fuels 2020, 34, 16512–16521. [Google Scholar] [CrossRef]
- Buchanan, J. The chemistry of olefins production by ZSM-5 addition to catalytic cracking units. Catal. Today 2000, 55, 207–212. [Google Scholar] [CrossRef]
- Al-Absi, A.A.; Aitani, A.M.; Al-Khattaf, S. Thermal and catalytic cracking of whole crude oils at high severity. J. Anal. Appl. Pyrolysis 2020, 145, 104705. [Google Scholar] [CrossRef]
- Tarighi, S.; Juibari, N.M.; Binaeizadeh, M. Different binders in FCC catalyst preparation: Impact on catalytic performance in VGO cracking. Res. Chem. Intermed. 2019, 45, 1737–1752. [Google Scholar] [CrossRef]
- Velázquez, H.D.; Cerón-Camacho, R.; Mosqueira-Mondragón, M.L.; Hernández-Cortez, J.G.; Montoya de la Fuente, J.A.; Hernández-Pichardo, M.L.; Beltrán-Oviedo, T.A.; Martínez-Palou, R. Recent progress on catalyst technologies for high quality gasoline production. Catal. Rev. 2022, 1–221. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, G.; Zhao, L.; Gao, J.; Xu, C. Research Progress of Basic Catalyst Used in Catalytic Cracking for Olefin Production and Heavy Oil Utilization. Ind. Eng. Chem. Res. 2023, 12, 1371. [Google Scholar] [CrossRef]
- Occelli, M.L.; O’Connor, P. Fluid Catalytic Cracking III; American Chemical Society: New York, NY, USA, 1994. [Google Scholar]
- Whiting, G.T.; Chowdhury, A.D.; Oord, R.; Paalanen, P.; Weckhuysen, B.M. The curious case of zeolite–clay/binder interactions and their consequences for catalyst preparation. Faraday Discuss. 2016, 188, 369–386. [Google Scholar] [CrossRef]
- Hasanudin, H.; Asri, W.R.; Wijaya, K. Lump Kinetic Method in Solving Kinetic Problems and Cracking Reaction Mechanism: A Review. Iran. J. Catal. 2022, 12, 115–125. [Google Scholar]
- Wang, B.; Han, C.; Zhang, Q.; Li, C.; Yang, C.; Shan, H. Studies on the preliminary cracking of heavy oils: The effect of matrix acidity and a proposal of a new reaction route. Energy Fuels 2015, 29, 5701–5713. [Google Scholar] [CrossRef]
- Falco, M.; Morgado, E.; Amadeo, N.; Sedran, U. Accessibility in alumina matrices of FCC catalysts. Appl. Catal. A Gen. 2006, 315, 29–34. [Google Scholar] [CrossRef]
- Velthoen, M.; Paioni, A.L.; Teune, I.; Baldus, M.; Weckhuysen, B.M. Matrix Effects in a Fluid Catalytic Cracking Catalyst Particle: Influence on Structure, Acidity, and Accessibility. Chem.–A Eur. J. 2020, 26, 11995–12009. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Thommes, M.; Schwieger, W. Hierarchically-ordered zeolites: A critical assessment. Adv. Mater. Interfaces 2021, 8, 2001841. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Yan, W.; Yu, J. Regulation of the Si/Al ratios and Al distributions of zeolites and its impact on properties. Chem. Sci. 2023, 14, 1935–1959. [Google Scholar] [CrossRef]
- Lappas, A.; Iatridis, D.; Papapetrou, M.; Kopalidou, E.; Vasalos, I. Feedstock and catalyst effects in fluid catalytic cracking–Comparative yields in bench scale and pilot plant reactors. Chem. Eng. J. 2015, 278, 140–149. [Google Scholar] [CrossRef]
- Moorehead, E.; McLean, J.; Cronkright, W. Microactivity evaluation of FCC catalysts in the laboratory: Principles, approaches and applications. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1993; Volume 76, pp. 223–255. [Google Scholar]
- Suganuma, S.; Katada, N. Innovation of catalytic technology for upgrading of crude oil in petroleum refinery. Fuel Process. Technol. 2020, 208, 106518. [Google Scholar] [CrossRef]
- Treacy, M.M.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed.; Revised Edition; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Tempelman, C.H.; Zhu, X.; Gudun, K.; Mezari, B.; Shen, B.; Hensen, E.J. Texture, acidity and fluid catalytic cracking performance of hierarchical faujasite zeolite prepared by an amphiphilic organosilane. Fuel Process. Technol. 2015, 139, 248–258. [Google Scholar] [CrossRef]
- Zakaria, Z.Y.; Linnekoski, J.; Amin, N.S. Catalyst screening for conversion of glycerol to light olefins. Chem. Eng. J. 2012, 207, 803–813. [Google Scholar] [CrossRef]
- Mante, O.D.; Agblevor, F.; Oyama, S.; McClung, R. The effect of hydrothermal treatment of FCC catalysts and ZSM-5 additives in catalytic conversion of biomass. Appl. Catal. A Gen. 2012, 445, 312–320. [Google Scholar] [CrossRef]
- Schmidt, F.; Hoffmann, C.; Giordanino, F.; Bordiga, S.; Simon, P.; Carrillo-Cabrera, W.; Kaskel, S. Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction. J. Catal. 2013, 307, 238–245. [Google Scholar] [CrossRef]
- Argyle, M.D.; Bartholomew, C.H. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269. [Google Scholar] [CrossRef]
- Hussain, A.; Aitani, A.; Kubů, M.; Čejka, J.; Al-Khattaf, S. Catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives for maximizing propylene yield. Fuel 2016, 167, 226–239. [Google Scholar] [CrossRef]
- Sadeghbeigi, R. Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units. Butterworth-Heinemann: Oxford, UK, 2020. [Google Scholar]
Catalyst | Surface Area a | Micropore Volume | Mesopore Volume | Total Pore Volume | Total Acidity b |
---|---|---|---|---|---|
(m2/g) | Vmic (cc/g) | Vmes (cc/g) | (cc/g) | (mmol/g) | |
CAT01 | 163 | 0.048 | 0.257 | 0.305 | 0.470 |
CAT02 | 186 | 0.060 | 0.240 | 0.300 | 0.590 |
CAT03 | 203 | 0.070 | 0.229 | 0.299 | 0.670 |
CAT04 | 220 | 0.078 | 0.220 | 0.298 | 0.750 |
CAT05 | 258 | 0.102 | 0.200 | 0.302 | 0.950 |
Catalyst | Surface Area a | Micropore Volume | Mesopore Volume | Total Pore Volume | Total Acidity b |
---|---|---|---|---|---|
(m2/g) | Vmic (cc/g) | Vmes (cc/g) | (cc/g) | (mmol/g) | |
CAT01 | 125 | 0.039 | 0.220 | 0.259 | 0.072 |
CAT02 | 146 | 0.048 | 0.212 | 0.260 | 0.090 |
CAT03 | 160 | 0.055 | 0.207 | 0.262 | 0.100 |
CAT04 | 173 | 0.064 | 0.202 | 0.266 | 0.110 |
CAT05 | 202 | 0.080 | 0.190 | 0.270 | 0.140 |
Name of Catalyst | CAT01 | CAT02 | CAT03 | CAT04 | CAT05 |
---|---|---|---|---|---|
Catalyst/oil (g/g) | 3 | 3 | 3 | 3 | 3 |
Zeolite/matrix ratio | 18 | 25 | 30 | 35 | 50 |
Mass balance | 96.3 | 99.7 | 97.6 | 97.6 | 98.2 |
Conversion (%) | 84.37 | 85.07 | 84.68 | 85.51 | 91.36 |
Product Yields (wt.%) | |||||
H2 | 0.19 | 0.20 | 0.18 | 0.21 | 0.22 |
C1 | 1.59 | 1.98 | 2.01 | 2.30 | 2.35 |
C2 | 1.38 | 1.83 | 1.67 | 1.99 | 1.92 |
C2= | 2.34 | 2.76 | 2.69 | 3.04 | 2.76 |
C3 | 5.20 | 6.41 | 6.78 | 7.21 | 8.30 |
C3= | 5.88 | 5.28 | 5.66 | 5.45 | 4.81 |
iC4 | 9.26 | 10.23 | 10.88 | 11.28 | 12.62 |
nC4 | 3.31 | 3.85 | 4.02 | 4.22 | 4.87 |
T2C4= | 1.34 | 1.11 | 1.07 | 1.00 | 0.71 |
1C4= | 1.06 | 0.88 | 0.88 | 0.81 | 0.57 |
iC4= | 1.00 | 0.83 | 0.86 | 0.78 | 0.63 |
C2C4= | 1.09 | 0.90 | 0.88 | 0.82 | 0.59 |
C4 = (Liq.) | 0.33 | 0.53 | 0.45 | 0.32 | 0.68 |
Total gas | 34.11 | 36.79 | 38.04 | 39.44 | 41.01 |
Gasoline | 41.43 | 36.72 | 36.45 | 36.10 | 37.12 |
LCO | 9.32 | 9.51 | 9.46 | 8.95 | 4.93 |
HCO | 6.31 | 5.42 | 5.86 | 5.54 | 3.72 |
Coke | 8.83 | 11.57 | 10.19 | 9.97 | 13.23 |
H2-C2 (dry gas) | 5.49 | 6.76 | 6.55 | 7.54 | 7.25 |
C3-C4 (LPG) | 28.62 | 30.02 | 31.48 | 31.90 | 33.76 |
C2 = -C4 = (light olefins) | 13.18 | 12.29 | 12.49 | 12.23 | 10.74 |
Selectivity (yield/conversion) % | |||||
Gasoline | 49.11 | 43.16 | 43.05 | 42.22 | 40.63 |
LCO | 11.04 | 11.18 | 11.17 | 10.47 | 5.39 |
HCO | 7.48 | 6.37 | 6.92 | 6.48 | 4.07 |
Coke | 10.47 | 13.60 | 12.04 | 11.66 | 14.48 |
LPG | 33.92 | 35.29 | 37.18 | 37.31 | 36.95 |
Light olefins | 15.62 | 14.45 | 14.75 | 14.30 | 11.76 |
Dry gas | 6.51 | 7.95 | 7.74 | 8.82 | 7.94 |
Name of Catalyst | CAT01 | CAT02 | CAT03 | CAT04 | CAT05 |
---|---|---|---|---|---|
Catalyst/oil (g/g) | 3 | 3 | 3 | 3 | 3 |
Zeolite/matrix ratio | 18 | 25 | 30 | 35 | 50 |
Mass balance | 101 | 102.8 | 101.8 | 100.1 | 97.8 |
Conversion (%) | 76.90 | 76.96 | 77.84 | 78.87 | 81.44 |
Product Yields (wt.%) | |||||
H2 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 |
C1 | 0.89 | 0.79 | 0.89 | 0.98 | 1.07 |
C2 | 0.97 | 0.81 | 0.97 | 1.04 | 1.08 |
C2= | 1.57 | 1.31 | 1.79 | 1.64 | 1.67 |
C3 | 1.17 | 1.09 | 1.60 | 1.49 | 1.62 |
C3= | 7.12 | 6.75 | 7.82 | 7.25 | 7.31 |
iC4 | 4.62 | 5.85 | 5.62 | 5.71 | 6.03 |
nC4 | 0.87 | 2.11 | 1.09 | 1.16 | 1.29 |
T2C4= | 2.53 | 2.20 | 2.36 | 2.39 | 2.34 |
1C4= | 1.95 | 1.72 | 1.82 | 1.86 | 1.83 |
iC4= | 2.03 | 1.67 | 1.88 | 1.55 | 1.41 |
C2C4= | 2.04 | 1.76 | 1.88 | 1.90 | 1.87 |
C4 = (Liq.) | 0.39 | 0.86 | 0.64 | 0.82 | 0.85 |
Total gas | 26.59 | 27.32 | 28.60 | 28.08 | 29.03 |
Gasoline | 48.66 | 47.81 | 46.96 | 48.30 | 49.38 |
LCO | 14.80 | 14.79 | 14.27 | 13.95 | 12.62 |
HCO | 8.29 | 8.25 | 7.89 | 7.18 | 5.94 |
Coke | 1.65 | 1.83 | 2.28 | 2.50 | 3.03 |
H2-C2 (dry gas) | 3.51 | 2.96 | 3.70 | 3.72 | 3.87 |
C3-C4 (LPG) | 23.08 | 24.36 | 24.90 | 24.35 | 25.16 |
C2=-C4= (light olefins) | 18.00 | 16.61 | 18.37 | 17.63 | 17.89 |
Selectivity (yield/conversion) % | |||||
Gasoline | 63.3 | 62.1 | 60.3 | 61.2 | 60.6 |
LCO | 19.2 | 19.2 | 18.3 | 17.7 | 15.5 |
HCO | 10.8 | 10.7 | 10.1 | 9.1 | 7.3 |
Coke | 2.1 | 2.4 | 2.9 | 3.2 | 3.7 |
LPG | 30.0 | 31.6 | 32.0 | 30.9 | 30.9 |
Light olefins | 23.4 | 21.6 | 23.6 | 22.4 | 22.0 |
Dry gas | 4.56 | 3.85 | 4.76 | 4.72 | 4.75 |
Name of Catalyst | USY (wt.%) | Siral 40 (wt.%) | Ludox AS-40 (wt.%) | Kaolin (wt.%) | Zeolite/Matrix Ratio |
---|---|---|---|---|---|
CAT01 | 15 | 11 | 21 | 53 | 18 |
CAT02 | 20 | 10 | 20 | 50 | 25 |
CAT03 | 23 | 10 | 19 | 48 | 30 |
CAT04 | 26 | 9 | 19 | 46 | 35 |
CAT05 | 34 | 8 | 17 | 42 | 50 |
Property | Value |
---|---|
Density (15 °C) (g/cm3) | 0.88 |
Nitrogen (ppm) | 172 |
Sulfur (ppm) | 298 |
Aromatics (wt.%) | 42 |
Saturates (wt.%) | 60 |
Residue (wt.%) | 0.9 |
Distillation data (vol %) | Temperature (°C) |
Initial boiling point | 310 |
5% | 345 |
25% | 375 |
50% | 422 |
90% | 510 |
Final boiling point | 565 |
Property | Value |
---|---|
Feed weight injected | About 1.0 g |
Catalyst weight | 3.0 g |
Feed injection time (time on stream) | 30 s |
Feed syringe temperature | Room temperature |
Feed injector temperature | 5 °C higher than the reaction temperature |
Liquid receiver temperature | −9 °C |
Catalyst/liquid stripping time | Total 9 min |
With a receiver in a cold bath | 5 min |
With cold bath removed | 4 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.; Ahmed, S.; Siddiqui, M.A.B.; Al-Shammari, A.A. The Investigation of Zeolite to Matrix Ratio Effect on the Performance of FCC Catalysts during Catalytic Cracking of Hydrotreated VGO. Catalysts 2023, 13, 1255. https://doi.org/10.3390/catal13091255
Ahmad A, Ahmed S, Siddiqui MAB, Al-Shammari AA. The Investigation of Zeolite to Matrix Ratio Effect on the Performance of FCC Catalysts during Catalytic Cracking of Hydrotreated VGO. Catalysts. 2023; 13(9):1255. https://doi.org/10.3390/catal13091255
Chicago/Turabian StyleAhmad, Adeel, Shakeel Ahmed, Mohammed Abdul Bari Siddiqui, and Abdallah A. Al-Shammari. 2023. "The Investigation of Zeolite to Matrix Ratio Effect on the Performance of FCC Catalysts during Catalytic Cracking of Hydrotreated VGO" Catalysts 13, no. 9: 1255. https://doi.org/10.3390/catal13091255
APA StyleAhmad, A., Ahmed, S., Siddiqui, M. A. B., & Al-Shammari, A. A. (2023). The Investigation of Zeolite to Matrix Ratio Effect on the Performance of FCC Catalysts during Catalytic Cracking of Hydrotreated VGO. Catalysts, 13(9), 1255. https://doi.org/10.3390/catal13091255